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Introduction: Late stage clinical trials in non-alcoholic steatohepatitis (NASH) are
currently required by the FDA to use liver biopsy as a primary endpoint. The well-
reported limitations with biopsy, such as associated risks and sampling error, coupled
with patient preference, are driving investigation into non-invasive alternatives. MRI-
derived biomarkers proton density fat fraction (PDFF) and iron-corrected T1 mapping
(cT1) are gaining traction as emerging alternatives to biopsy for NASH. Our aim was to
explore the correlations between cT1 and PDFF (from LiverMultiScan®), with the
histological components on the NAFLD-NASH spectrum in a large cohort of cross-
sectional data, in order to calibrate the measurement to histology, and to infer what might
constitute a clinically meaningful change when related to the FDA’s criteria.

Materials and Methods: In a retrospective analysis of data combined from three
previously published observational NASH studies, in which adult participants who
underwent liver biopsy on suspicion of NAFLD or NASH and had an MRI scan
measuring cT1 and PDFF (LiverMultiScan®, Perspectum Ltd, UK), associations
between imaging biomarkers and histology were tested using Spearman’s rank
correlation coefficient (rs), and further exploration of the relationships between the
imaging variables and histology were performed using linear regression.

Results: N = 264 patients with mean age of 54 (SD:9.9), 39% female, and 69% with BMI
≥ 30kg.m−2 were included in the analysis. cT1 and PDFF both correlated with all features
of the NAFLD activity score (NAS). cT1 was also positively correlated with Kleiner-Brunt
fibrosis. Partial correlations, adjusting for steatosis, revealed cT1 correlated with
inflammation and fibrosis, whereas PDFF did not, and both were still associated with
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the NAS, but correlation was weaker with PDFF than cT1. An estimated difference of 88
ms in cT1, or 21% relative difference in PDFF was related to a two-point difference in
overall NAS.

Conclusion: The correlations between cT1 and PDFF with the histopathological
hallmarks of NASH demonstrate the potential utility of both cT1 and PDFF as non-
invasive biomarkers to detect a pharmacodynamic change in NASH, with cT1 showing
superiority for detecting changes in inflammation and fibrosis, rather than liver fat alone.
Keywords: imaging, NASH, NAFLD, non-invasive biomarkers, MRI
INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) and its progressive
form non-alcoholic steatohepatitis (NASH) have complex
histological signatures reflecting coexisting fat deposition,
inflammation, hepatocellular injury (ballooning) and fibrosis,
that are each subject to time-dependent and reversible changes.
NASH results when fat accumulation in the liver triggers
inflammatory signals and reactive oxygen species that can
amplify liver injury and stimulate fibrosis (1). NAFLD is the
most common cause of chronic liver disease in the world,
affecting approximately 25% of the global population (2), with
a quarter of those having NASH, or approximately 6% of the
general population worldwide (3). NASH is now the second most
common cause for liver transplantation in the US overall (4) and
is the leading cause in females (5). This clinical burden has driven
a rapid increase in the number of clinical trials evaluating
pharmacotherapies. Liver biopsy is the current gold standard
measurement for both clinical diagnosis and as endpoints in
clinical trials, a method that is expensive, invasive, and suffers
from high discordance rate among pathologists (6), likely related
to the uneven distribution of the disease (7). This has driven the
need to identify alternative, non-invasive, endpoints which the
FDA has strongly encouraged (8). Vendor-neutral and scalable
MRI-derived measurements of proton density fat fraction
(PDFF) and iron corrected T1 mapping (cT1) are emerging as
promising quantitative imaging biomarkers (QIBs) for NASH.

PDFF has an excellent correlation with histologically graded
steatosis across the clinical range seen in NASH (9–11) and high
diagnostic accuracy in stratifying all grades of liver steatosis (12–
14), although it decreases with advanced fibrosis (9). PDFF is a
more robust method of measuring liver fat than histology (7, 15),
has been shown to be a repeatable and reproducible metric (16–
18) that is sensitive to small changes (15), and as such it is
considered to be the most superior non-invasive test for liver fat
imaging; NAS, NAFLD activity score;
D, non-alcoholic fatty liver disease;
OLLI, shortened modified look-locker
ging biomarker; ELF, Enhanced Liver
type III collagen; IDEAL, Iterative
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(19). cT1 mapping is an indicator of regional tissue water
content. Each of the key histopathological features of NASH is
known to have an influence on the cT1 signal when measured
using the T1 “shMOLLI” sequence (20–22); as such, is it has been
reported to correlate with ballooning (23, 24), fibrosis (22, 23, 25,
26), and NAS (24), and has also been shown to predict clinical
outcomes (27). Liver cT1 has also been shown to be significantly
elevated in patients with clinically significant portal hypertension
with low liver fat (28), and has also been reported to be
repeatable and reproducible across MRI manufacturers and
field strengths (17).

A number of phase II trials are already employing the non-
invasive QIBs PDFF and cT1 as diagnostic screening biomarkers
and as secondary or exploratory endpoints (29–31). In order for
QIBs to be adopted as primary endpoints in pivotal trials, they
must demonstrate agreement with liver biopsy and ability to
measure a clinically meaningful response. Meaningful responses
are being classified as those demonstrating either (i) a resolution
of steatohepatitis as defined by a ballooning score of 0 and an
inflammation score of 0–1 and no worsening of liver fibrosis, (ii)
improvement in liver fibrosis greater than or equal to one stage
and no worsening of steatohepatitis, or (iii) both resolution of
steatohepatitis and improvement in fibrosis (8), often expressed
as a two-point change in the NAFLD activity score (NAS) with
no worsening in fibrosis. Analysis of a trial of ezetimibe in NASH
showed that PDFF could distinguish histological responders
from non-responders (32), which was later characterized as a
relative reduction of ~30% liver fat corresponding to a two-point
change in NAS (33, 34). Equally, data on the ability of cT1 to
measure changes in fibroinflammatory disease have recently
been published (30, 31). In a trial exploring the efficacy of an
FGF-19 (fibroblast growth factor) analog in patients with NASH
(NCT02443116), patients showed significant drops in both PDFF
and cT1, with greater reductions in cT1 (as well as in circulating
biomarkers of fibrosis, ELF, and Pro-C3) (30). Specifically, it was
observed that a reduction in cT1 of 78 and 82 ms in the 1- and 3-
mg treatment groups, respectively, accompanied the regulatory
accepted histological response. Furthermore, analysis comparing
histological responders from non-responders showed greater
reductions in cT1 than in PDFF following 12 weeks of
therapy (30).

In order to inform what drives change in cT1 and PDFF, and
also to estimate what might constitute a meaningful change in
both biomarkers when compared to biopsy, we set out to explore
January 2021 | Volume 11 | Article 575843
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the relationships between both QIBs and the histological features
of NASH in a cross-sectional analysis of a large cohort of NAFLD
patients with paired biopsies and MRI scans.
EXPERIMENTAL PROCEDURES

Study Design and Setting
This was a retrospective analysis of a subset of data combined from
three prospective, cross-sectional studies on the utility of MR
methods to evaluate liver disease. The RIAL (NCT01543646)/
NICOLA study enrolled adult patients scheduled for a standard-
of-care liver biopsy to investigate known or suspected liver disease
from two large tertiary UK liver centres (Oxford and Reading)
between March 2011 to May 2015. Similarly, the CALM study
(ISCRTN39463479) invited adult patients scheduled for a
standard-of-care liver biopsy to investigate known or suspected
liver disease from two large tertiary UK liver centres (Queen
Elizabeth Hospital Birmingham and Royal Infirmary of
Edinburgh) between February 2014 and September 2015 (26).
Patient exclusion criteria for both RIAL/NICOLA and CALM
studies were the same: inability or unwillingness to give fully
informed consent, any contraindication to MRI, and liver biopsy
targeted at a focal liver lesion. Full details have been published
elsewhere (25, 26). For the purpose of this analysis, only those
patients from both studies with a histological diagnosis of NAFLD
were included (Figure 1). The Prevalence study (NCT03142867)
invited adults who were being screened for colon cancer to
participate in a trial to investigate the prevalence of NAFLD at
Brooke Army Medical Center in San Antonio, Texas, between
August 2015 and December 2017. Participants had no prior
Frontiers in Endocrinology | www.frontiersin.org 3
history of liver disease or alcohol abuse. LiverMultiScan®,
FibroScan® liver stiffness measurement (LSM) with controlled
attenuation parameter (CAP) and MR Elastography (MRE) were
acquired as part of the screening protocol. Participants were
invited to undergo core liver biopsy if evidence of steatosis
(PDFF ≥ 5%) or fibro-inflammation (from one of LSM ≥ 7.0
kPa, evidence of fibrosis on MRE, elevated cT1 ≥ 780ms).
Full details have been described elsewhere (35). All studies
were conducted in accordance with the ethical principles of
the Declaration of Helsinki 2013, were approved by local (all)
and or national (RIAL: 11/H0504/2 and CALM 14/WM/0010
ethics review services), and all participants gave written
informed consent.

Histological Analysis of Liver
Biopsy Samples
All biopsies were reported by at least two liver histopathologists,
and adequacy assessed using the definition of the Royal College
of Pathologists, UK. Histology was graded according to the
NASH-CRN for Kleiner-Brunt fibrosis, hepatocellular
ballooning, lobular inflammation, steatosis, and the composite
NAS. All pathologists were blinded to patient characteristics and
non-invasive assessment data. Discordance was adjudicated by a
third blinded observer. Biopsy scores used for the analysis were
those collected as part of the three independent studies and were
not re-read centrally.

Magnetic Resonance Protocol
and Analysis
The LiverMultiScan® MRI scanning protocol was installed,
calibrated, and phantom tested on all the MRI systems in these
FIGURE 1 | Flow diagram of patient inclusion from the three trials RIAL/NICOLA, CALM, and PREVALENCE.
January 2021 | Volume 11 | Article 575843
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trials in a standard way (17). Patients underwent their MRI
having fasted for at least 4 h. The average scan time for this
protocol was 10 min. The MRI protocol included a multi-echo
spoiled-gradient-echo chemical shift encoded acquisition to
calculate T2* and PDFF maps in most cases, although some
PDFF values were generated using in vivo proton magnetic
resonance spectroscopy (MRS), a specialized magnetic
resonance technique that measures fat by quantifying the
overall volume fraction of lipids in the liver parenchyma. A
ShMOLLI sequence was used to derive T1-relaxation. Iron was
calculated from the T2* relaxation. To generate cT1 maps, the
acquired MOLLI image data were fit using a Bloch equation
simulation approach. The resultant cT1 maps were generated
according to the latest LiverMultiScan® post-processing
algorithms that reflect a measurement that would be expected
if the patient had been scanned with a heart rate of 60 bpm, with
normal liver iron and on a Siemens 3T scanner. This general
approach has been found to yield accurate fitting to MOLLI data
in previous work [as described by Mozes et al. (21)] and has been
shown to improve standardization across vendors and field
strengths by standardizing the contribution from fat. As a
result a higher proportion of MRI scans from the older trials
did not pass the required data quality checks for this processing
and thus were excluded from further analysis (Figure 1).

Four single transverse slices were captured through the liver
centred on the porta hepatis. Anonymized MR data were analyzed
off-site using LiverMultiScan® software by image analysts trained
in abdominal anatomy and artifact detection, who were blinded to
the clinical data and risk grouping. For T2* (measured in
milliseconds, ms) and PDFF (measured in %), three 15-mm
diameter circular regions of interest (ROIs) were selected on the
transverse maps to cover a representative sample of the liver
Frontiers in Endocrinology | www.frontiersin.org 4
parenchyma. For cT1 (ms), ROIs were placed on the central slice
within the typical percutaneous biopsy region. Median values from
all pixels within the ROIs were calculated and used as the
representative score. Example images are presented in Figure 2.

Statistical Analysis
Descriptive statistics were used to summarize baseline participant
characteristics. Mean and standard deviation (SD) were used to
describe normally distributed continuous variables, median with
interquartile range for non-normally distributed, and frequency
and percentage for categorical variables. The distribution of the
QIB data and the categorical histological data was investigated
using box plots.

Associations between both QIBs and histology were tested
using the Spearman’s rank correlation coefficient (rs), both with
and without adjusting for steatosis as a covariate. A p-value less
than 0.05 was considered statistically significant.

Further exploration of the relationships between the dependent
QIB variables and histological scores for NAS, fibrosis and
ballooning as the explanatory variables were performed with
linear regression analysis, following confirmation of assumptions
of normality in the residuals (and log transforming parameters
that did not meet these assumptions). Extraction of the difference
in imaging biomarkers associated with the histological endpoints
(i) two-point difference in NAS and (ii) 1 stage difference in
ballooning (in order to predict level required per patient to return
to stage 0 depending on ballooning at baseline) were performed by
applying the equation for each linear model.

Case-wise deletionwas employed to include only complete cases
for NAS, Kleiner-Brunt Fibrosis score and cT1 and PDFF data, and
to excludeNAS groups with less than five data points. All statistical
analysis was performed using R software version 3.6.0.
FIGURE 2 | Example PDFF and cT1 parametric maps for patients with NAS = 1 (A) cT1 = 684ms, PDFF = 6.5%; NAS = 3 (B) cT1 = 833ms, PDFF = 16.9%;
and NAS = 5 (C) cT1 = 916ms, PDFF = 18.5%.
January 2021 | Volume 11 | Article 575843
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RESULTS

Following case-wise deletion, a total of 264 biopsy and MRI
paired datasets were included in the analysis (N = 187 from
prevalence study, N = 40 from CALM, and N = 37 from RIAL/
NICOLA). The mean (SD) age was 54 years (9.7) and patients
had a median Body Mass Index (BMI) of 32.6 kg.m−2 (IQR 29.7–
36.3). The majority of the patients were male (n = 161; 61%). The
participant characteristics of the whole cohort (demographics,
histology and MR data) are presented in Table 1.

Correlations Between Variables
Box plots (Figure 3) showing the relationships between NAS and
fibrosis with both cT1 and PDFF indicate a positive linear
relationship between cT1 and both NAS and fibrosis, and
between PDFF and NAS. However, the relationship between
Frontiers in Endocrinology | www.frontiersin.org 5
PDFF and fibrosis showed a more parabolic distribution,
reflecting the common observation that patients with severe
fibrosis often have lower liver fat, and thus preventing
meaningful interpretation of linear associations.

The correlations between all imaging and histological
variables are shown in Table 2. All histological parameters
were correlated with each other.

There was a moderate association between cT1 and
histological steatosis (rs = 0.54, P <.001), and a strong
association between PDFF and steatosis (rs = 0.68, P <.001);
both cT1 and PDFF correlated with the overall NAS (cT1: rs =
0.59, P <.001; PDFF: rs = 0.61, P <.001). There was a moderate
correlation between cT1 and PDFF with ballooning grade (cT1:
rs = 0.47, P <.001; PDFF: rs = 0.38, P < 0.01), inflammation (cT1:
rs = 0.31, P <.001; PDFF: rs = 0.28, P <.001), and for cT1 with
fibrosis (cT1: rs = 0.43; P <.0001). There was also a strong
association between cT1 and PDFF (rs = 0.66, P <.001).

Given the co-linearity between all variables and the potential
for steatosis to dominate the signal, correlations were repeated
controlling for steatosis. The resulting partial correlation between
both cT1 and PDFF with ballooning indicated that the correlation
with cT1 remained (rs = 0.36, P <.001) but the correlation with
PDFF was weaker (rs = 0.21, P = 0.03). After correction for
steatosis, the correlation with inflammation remained significant
for cT1 (rs = 0.17, P <.05) but the correlation with PDFF was no
longer significant (rs = 0.13, P = 0.07). Both remained significantly
correlated with NAS, although the correlation with PDFF was
weaker than for cT1 (cT1: rs = 0.36, P <.001; PDFF: rs = 0.20,
P <.001, respectively). Fibrosis remained moderately correlated
with cT1 (rs = 0.33; P <.001).

Difference in cT1 and PDFF Relating to the
NAFLD Activity Score and Ballooning
cT1
The univariable analysis to predict cT1 adjusting for NAS
resulted in a regression model [F(1,262) = 142.2, P <.001] with
an adjusted R2 suggesting that NAS explained 35% of cT1
variability; the residuals of the model satisfied assumptions of
the normal distribution. The coefficient of NAS in the linear
regression model suggests that a 2-unit increase in NAS score,
has a significant increase in cT1 of 88ms. By way of illustration,
an 88ms change in cT1 for a patient moving from NAS 5 to NAS
3 would be equivalent to a drop from 921 to 833 ms.

The above analysis was repeated controlling for liver fat
measured using PDFF. The multivariable analysis to predict
cT1 from NAS, adjusted for PDFF, resulted in a regression
model [F(1,262) = 129.9, P <.001] with an R2 suggesting that
NAS explained 49% of cT1 variability. Predicted cT1 using the
effect estimates of the resultant model indicated an average 44-
ms difference in cT1 between two stages of NAS when adjusted
for PDFF.

A multivariable analysis was performed with ballooning as the
independent variable and revealed a model to predict cT1 [F(1,262) =
73.3, P <.001], with an R2 suggesting that ballooning explained 22%
of cT1 variability. The coefficient of ballooning in the linear
regression model suggested that a 1 unit increase in ballooning
TABLE 1 | Baseline patient characteristics.

N = 264 Statistic

Age (years; mean [SD]) 54.1 [9.6]
Sex (F, %) 103 (39%)
BMI (kg.m−2; median; IQR) 32.6 (29.7–36.3)
Fibrosis (n,%)
F0 83 (31)
F1 96 (36)
F2 42 (16)
F3 31 (12)
F4 12 (5)

Ballooning (n,%)
B0 92 (35)
B1 128 (48)
B2 44 (17)

Lobular Inflammation (n,%)
I0 72 (27)
I1 158 (60)
I2 32 (12)
I3 2 (1)

Steatosis (n,%)
S0 0 (0)
S1 119 (45)
S2 80 (30)
S3 65 (25)

NAS (n,%)
1 38 (14)
2 50 (19)
3 42 (16)
4 43 (16)
5 69 (26)
6 17 (6)
7 5 (2)

NASH classification* (n,%)
NAFL 175 (66%)
NASH 89 (34%)

cT1 (mean ms; [SD])
NAFL 836.3 [125]
NASH 859 [108]

PDFF (mean %; [SD])
NALF 9.7 [6.3]
NASH 14.3 [5.8]
*NASH classification using either the FLIP [fatty liver inhibition of progression, (36)]
algorithm or the CRN criteria depending on availability.
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has a significant increase in cT1 of 81 ms. This remained significant,
but the estimated coefficient was reduced to 44 ms if the model was
adjusted for PDFF.

PDFF
The univariable analysis to predict PDFF from NAS resulted in a
regression model [F(1,262) = 157, P <.001]; however, the residuals
of the model did not satisfy assumptions of the normal
distribution and thus PDFF data were log-transformed and the
model repeated. This resulted in a model [F(1,261) = 123, P <.001]
with an R2 suggesting that NAS explained 32% of PDFF
variability. The coefficient of NAS in the linear regression
model suggests that a 2-unit increase in NAS score has a
significant relative increase in PDFF of 21.1%. By way of
illustration, a 21.1% relative change in PDFF for a patient
moving from NAS 5 to NAS 3 would be equivalent to a drop
from 15.6% to 12.4%.

A univariable analysis was performed with ballooning as the
independent variable and revealed amodel topredictPDFF[F(1,261) =
39, P <.001] with an R2 suggesting that ballooning explained 13% of
PDFFvariability.The coefficient of ballooning in the linear regression
Frontiers in Endocrinology | www.frontiersin.org 6
model suggests that a 1 unit increase in ballooning score, has a
significant relative increase in PDFF of 16%.
DISCUSSION

Our results show positive correlations between the quantitative
image–derived biomarkers (QIBs) of cT1 and PDFF, with all
histopathological hallmarks of NASH, and between these
histological features themselves. This serves to demonstrate the
complex interactions between the nature and timing of the
pathology in NAFL and NASH, and to demonstrate how
increasing levels of hepatic steatosis are associated with more
profound hepatocyte injury, that can ultimately result in fibrosis
(37), the downstream consequence of NASH linked to poor
clinical outcomes (38). Steatosis is the dominant feature for both
NAFL and NASH and has the potential to dominate or confound
imaging derived metrics. While a change in PDFF is a common
endpoint in proof-of-concept Phase 2 NASH studies (31, 32), our
study revealed an interesting observation when controlling for
steatosis in the correlation analyses. In these analyses, the
FIGURE 3 | Box plots showing relationships between cT1 and PDFF with NAS (top row) and fibrosis (bottom row).
TABLE 2 | Spearman’s correlation coefficients for all variables.

N = 264 Steatosis Ballooning Inflammation Fibrosis NAS

Steatosis rs = 0.38, P <.001 rs = 0.31, P <.001 rs = 0.19, P <.001 rs = 0.78, P <.001
Ballooning rs = 0.39, P <.001 rs = 0.44, P <.001 rs = 0.77, P <.001
Inflammation rs = 0.43, P <.001 rs = 0.71, P <.001
Fibrosis rs = 0.45, P <.001
cT1 Full rs = 0.54, P <.001 rs = 0.47, P <.001 rs = 0.31, P <.001 rs = 0.43, P <.001 rs = 0.59, P <.001

Partial rs = 0.36, P <.001 rs = 0.17, P <.05 rs = 0.33, P <.001 rs = 0.36, P <.001
PDFF Full rs = 0.68, P <.001 rs = 0.38, P <.001 rs = 0.28, P <.001 rs = 0.08, P <.05 rs = 0.61, P <.001

Partial rs = 0.21, P <.001 rs = 0.13, P= 0.08 rs = -0.04, P= 0.49 rs = 0.20, P <.001
January 2021 | Volume 1
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relationships between the QIBs and histology metrics were all
weakened highlighting the contribution of fat to the signal for
both cT1 and PDFF. Despite this cT1 still correlated significantly
with inflammation, ballooning, and fibrosis; PDFF however was
only weakly associated with ballooning and was not linearly
related to either inflammation or fibrosis. In order to explore
how a difference in disease severity (defined by NAS) relates to a
difference in QIBs, we performed linear regression modeling.
NAS was able to significantly predict cT1 and PDFF, with
parameter estimates for a difference between two points in the
NAS equivalent to 88 ms in cT1 and a 21% relative difference in
PDFF. These results are in reasonably close agreement with
observations from two previous longitudinal NASH clinical trials
(30, 33). Given the resolution of NASH is another commonly used
endpoint in clinical trials, which is defined as the absence of fatty
liver disease and a score of 0–1 for inflammation and 0 for
ballooning, we set out to explore the estimate change in QIB
related to a one-point change in ballooning. The results suggested
an 81 ms difference in cT1 or a 16% relative difference in PDFF was
equivalent to the difference between one point in ballooning.

While PDFF is not strongly associated with disease activity and
has an inverted-u shaped relationship with fibrosis, the positive
associations between the histopathological measures in non-
cirrhotic NASH translate into patients with more steatosis being
more likely to exhibit characteristics of advanced features of NASH
(39); and thus, changes in hepatic steatosis may be correlated with
changes in other histological endpoints. This phenomenon has
recently been observed in a trial of resmetirom, a highly selective
thyroid hormone receptor b (THR-b) agonist [(40),
NCT03900429] where it was observed that fat reduction, as
measured by week 12 MRI-PDFF, predicted NASH resolution on
biopsy in 64% of cases at week 36. In addition, the authors also
reported that higher fat reduction (>50%) was correlated with a
greater than 60% likelihood of NASH resolution with fibrosis
reduction. It is likely that the sensitivity of PDFF to change in
NASH status is driven more by the indirect and complex interplay
between the mechanisms that result in a downstream change in
disease activity when liver fat is reduced, rather than the change in
activity itself. Regardless, the above results demonstrate the
potential utility for both QIBs to detect a meaningful change in
NAS and ballooning and confirm the observation regarding the
relative difference inPDFFof around30% for a two-point change in
NAS. Furthermore, it demonstrates the added value of the cT1
measurement as a biomarker of disease activity and fibrosis. This
relationship is highlighted when steatosis is controlled for in the
partial correlations.

Any interpretation of what constitutes a meaningful change
in a biomarker must of course also consider the intended use
population and the technical performance, in particular the
variability expected across repeated measures with no change
in underlying pathology. Both QIBs have been used in variety of
NAFLD and NASH studies (e.g., Regenerate, NCT02548351;
NGM282, NCT02443116, Maestro-Nash, NCT03900429) and
subjected to rigorous test-retest performance testing (17, 18),
the performance of particular metrics reported in this analysis
were published previously (17). The repeatability coefficients for
Frontiers in Endocrinology | www.frontiersin.org 7
test-retest of the LiverMultiScan reported QIBs, which
represent the variation that may be expected across repeated
measures were 46 ms for cT1 and 0.8% (absolute) for PDFF.
This is lower variation than has been reported previously for
PDFF (18) likely due to standardization of acquisition methods
and advances in post-processing employed in LiverMultiScan
software. Techniques that have continued to develop since the
data acquisition used in this analysis, are the implementation of
LiverMultiScan® IDEAL (Iterative Decomposition of water and
fat with Echo Asymmetry and Least-squares estimation) (41)
and magnitude only reconstruction (MAGO) (42) post-
processing techniques. By comparison, while the financial and
human costs of liver biopsy in clinical trials are high, the biggest
problem is the lack of precision. There is considerable
discordance between even expert pathology readers in NASH
clinical trials, with expert inter-rater agreement for steatohepatitis
diagnosis reported as 0.66 and 0.52 for the NAS (43). While there
is an abundance of data emerging for the utility and
interpretation of both QIBs in NAFLD and NASH, it should
be acknowledged that as part of the metabolic syndrome, other
factors such as gender may be contributing to the signal. The
overall effect of age and gender on cT1 values has been evaluated
previously using data from the UK biobank imaging study with
results revealing these effects are minimal. This study reported a
trend for cT1 to be lower in women, although not significantly,
and also lower in older compared to younger women, again not
significant (44).

In terms of the different utility of the QIBs for detecting
clinically meaningful change with pharmacological interventions,
both the correlation analysis and the literature suggests PDFF
(15) and cT1 (21) are both sensitive to modulation of liver fat.
However, steatosis is also closely associated with the other
histopathological hallmarks of the disease and it is very difficult to
dissociate them. cT1 may offer an advantage over PDFF as an
endpoint in NASH clinical trials due to the fact that it is also
independently associated with inflammation and fibrosis. These
are often the features of greatest interest to the physician and
healthcare communities because they correlate the most to
clinical outcomes, thus are driving research into emerging
pharmacotherapies regarding these specific mechanisms of action
[e.g., FarnesoidXreceptor (FXR)agonists, FG19, andFG21analogs,
THRb and PPARd agonists]. Thus, combining the information
from both PDFF and cT1 is likely to be superior to either on
their own for understanding the treatment response dynamics,
particularly when interested in more than the movement of fat
from the liver.

Limitations of this study were that the estimates for the
difference in biomarker measurement related to histological
changes were derived from cross-sectional rather than
longitudinal data and that the histological data were obtained
independently, without central reads. Given the known large
inter-rater variability for granular histologic data such as
inflammation and ballooning, there is a possibility for
discordance between readers. This however was mitigated to
some extent as each study had at least dual read with consensus
review. Also, while the combined sample size is substantial, it
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does not cover all possible combinations of the NAS and fibrosis
scores meaning the linear relationships may not be accurately
reflected. Despite these limitations, it is encouraging that
these data closely reflect the observations from prospective
interventional clinical trials using PDFF (32, 45) and cT1 (30,
31, 46). The availability of longitudinal data from ongoing
clinical trials will be extremely valuable in validating the
conclusions drawn in this study and will hopefully be made
available by large research consortia in the USA and Europe [e.g.,
the Non-Invasive Biomarkers of Metabolic Liver Disease
(NIMBLE) project and the Liver Investigation: Testing Marker
Utility in Steatohepatitis (LITMUS) project]. Furthermore, the
inherent difficulties with the histopathological interpretation of
liver tissue may also be addressed in the future by emerging
digital pathology techniques.
CONCLUSIONS

In summary, both cT1 and PDFF show correlations with the
histopathological features of NASH and show potential as non-
invasive endpoints in NASH trials to detect a relevant
pharmacodynamic response. A cT1 difference of 88 or 81 ms is
related to a two-point change in NAS and a one-point decrease in
ballooning, respectively. Similarly, a relative difference of 21% in
PDFF is related to a two-point change in NAS, and a relative
difference of >16% to a one-point change in ballooning. As PDFF
is largely dominated by steatosis, cT1 shows superiority when the
focus is on changes in inflammation and/or fibrosis, and thus
using both in combination may provide more granularity for
distinguishing specific treatment effects.
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