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Abstract

We recently demonstrated how sepsis influences the subsequent development of experimental 

autoimmune encephalomyelitis (EAE) presented a conceptual advance in understanding the 

postsepsis chronic immunoparalysis state. However, the reverse scenario (autoimmunity prior 

to sepsis) defines a high-risk patient population whose susceptibility to sepsis remains poorly 

defined. In this study, we present a retrospective analysis of University of Iowa Hospital and 

Clinics patients demonstrating increased sepsis prevalence among multiple sclerosis (MS), relative 

to non-MS, patients. To interrogate how autoimmune disease influences host susceptibility to 

sepsis, well-established murine models of MS and sepsis and EAE and cecal ligation and puncture, 

respectively, were used. EAE, relative to non-EAE, mice were highly susceptible to sepsis-induced 

mortality with elevated cytokine storms. These results were further recapitulated in LPS and 

Streptococcus pneumoniae sepsis models. This work highlights both the relevance of identifying 

highly susceptible patient populations and expands the growing body of literature that host 

immune status at the time of septic insult is a potent mortality determinant.
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INTRODUCTION

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the CNS that affects 

~2.8 million individuals worldwide, and cases are rising (1, 2). The symptomology of MS 

includes (but is not limited to) pain, motor dysfunction, and cognitive dysfunction. The 

cause of MS is not well understood but is thought to stem from a complex interaction 

of genetic and environmental factors (3, 4). MS is commonly diagnosed between the 

ages of 20–40, although underlying subclinical pathogenesis may be present long before 

diagnosis. MS pathogenesis is mediated by proinflammatory autoreactive T cells and other 

immune cells activated prior to migration into the CNS to promote axonal damage (1). 

In an attempt to subvert the aberrant immune response to the CNS, immunomodulatory/

immunosuppressive drugs are often prescribed to patients with MS with varying degrees of 

success (5). Unfortunately, the use of disease-modifying drugs in patients with MS often 

comes with an increased risk of opportunistic infection (6). The increased propensity to 

infection may leave MS patients at an increased risk of sepsis (7).

Sepsis, a dysregulated host response to infection, impacts nine people every 6 s, of which 

two will succumb to the associated cytokine storm (8). Additionally, those who survive 

demonstrate an increased susceptibility to subsequent infection or cancer development (9–

12). This increased risk for secondary complication leads to a substantial economic burden 

costing over $20 billion annually in the United States alone (13). Although mortality due 

to the cytokine storm has diminished over time because of early intervention, the sepsis 

mortality rate of ~20% is still excessive (14, 15). Mortality from sepsis is in part due to the 

complexity and interconnectedness of the cytokine storm that is composed of both pro- and 

anti-inflammatory cytokines (16–18) and is further complicated by individual comorbidities 

(19, 20). The underlying link between MS and subsequent sepsis is not clear. MS patients 

are often prescribed one of several immunosuppressant drugs, putting them at greater risk 

of infection. Indeed, certain disease-modifying therapies for MS pose a greater risk for 

infection, such as rituximab, compared with others (21).

Patients with autoimmune diseases, such as MS, are often treated with immunomodulatory 

drugs that may increase their susceptibility to infection and sepsis. For example, urinary 

tract infection and respiratory infection are both common causes of sepsis (22) and 

complications for MS patients, relative to the general population (23, 24). In fact, compared 

with the general healthy population, individuals with MS are at greater risk of sepsis, 

sepsis-induced complications, and death because of infection (25). MS patients are also 

more likely to have a principal diagnosis of infection at their final hospital stay prior to death 

compared with the general healthy population and individuals with diabetes mellitus (26). 

Moreover, sepsis was a secondary diagnosis for 51% of MS patients compared with 36 and 

31% of diabetes mellitus and general healthy individuals, respectively, during a hospital stay 

(26), demonstrating that even among autoimmune disease, MS patients are at increased risk 

of developing sepsis. The increased propensity to become septic also extends to military 

veterans, a population that is skewed toward individuals >50 y of age and male (27), both 

of which are associated with an increased prevalence of sepsis. Last, veterans with MS are 

more likely to be hospitalized and die of infection compared with veterans without MS (28).
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We previously studied the impact of sepsis on subsequent MS-like disease using 

the experimental autoimmune encephalomyelitis (EAE) animal model as a means of 

conceptually interrogating the immunoparalysis state that occurs after sepsis (29). However, 

there is a strong need to understand how underlying autoimmune conditions, such as MS, 

influence susceptibility to sepsis-induced mortality, given the increased prevalence in this 

potentially vulnerable population. Thus, with the present study, we affirm the increased 

prevalence of sepsis in MS patient cohorts relative to non-MS patient cohorts and interrogate 

how autoimmunity as a comorbidity in septic populations influences susceptibility to sepsis-

induced mortality using murine models of MS (EAE) sepsis (cecal ligation and puncture 

[CLP], LPS, and Streptococcus pneumoniae).

MATERIALS AND METHODS

Retrospective patient assessment

TriNetX was used to query a limited, deidentified dataset of patients at the University of 

Iowa admitted between 2008 and 2020. Adult patients (age 18–119 y) who had inpatient 

encounters were queried. Because this period spans the transition from the International 

Classification of Diseases (ICD) 9 to ICD-10 coding, the TriNetX software uses algorithms 

to transform ICD-9 codes to ICD-10 codes. Sepsis patients were queried for all ICD-10 

codes including sepsis in their description using the [or] operator. MS patients were 

queried using ICD-10 code group G35 MS. TriNetX is compliant with the Health Insurance 

Portability and Accountability Act (HIPAA), the U.S. federal law that protects the privacy 

and security of health care data. TriNetX is certified to the Information Security Officer 

27001:2013 standard and maintains an Information Security Management System to ensure 

the protection of the health care data it has access to and to meet the requirements of the 

HIPAA Security Rule. Any data displayed on the TriNetX Platform in aggregate form or 

any patient level data provided in a dataset generated by the TriNetX Platform only contain 

deidentified data as per the deidentification standard defined in Section 164.514(a) of the 

HIPAA Privacy Rule. The process by which the data are deidentified is attested to through 

a formal determination by a qualified expert as defined in Section 164.514(b) (1) of the 

HIPAA Privacy Rule.

Ethics statement

Experimental procedures using mice were approved by University of Iowa Animal Care 

and Use Committee under Animal Care and Use Review Form protocol no. 6121915 and 

no. 9101915. The experiments performed followed Office of Laboratory Animal Welfare 

guidelines and Public Health Service Policy on Humane Care and Use of Laboratory 

Animals. Cervical dislocation was used as the euthanasia method of all experimental mice.

Mice

Inbred male and female C57BL/6 (Thy1.2/1.2) mice were purchased from the National 

Cancer Institute (Frederick, MD) and maintained in the animal facilities at the University 

of Iowa at the appropriate biosafety level. Genders were equally represented across 

experimental groups in experiments.
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CLP model of sepsis induction

CLP surgery was performed as previously described (30). Briefly, mice were anesthetized 

with ketamine/xylazine (University of Iowa, Office of Animal Resources), the abdomen 

was shaved and disinfected with Betadine (Purdue Products), and a midline incision was 

made. The distal third of the cecum was ligated with Perma-Hand Silk (Ethicon), punctured 

once using a 25-gauge needle, and a small amount of fecal matter was extruded. The 

cecum was returned to abdomen, the peritoneum was closed with 641G Perma-Hand Silk 

(Ethicon), and skin was sealed using surgical Vetbond (3M). Following surgery, 1 ml PBS 

was administered s.c. to provide postsurgery fluid resuscitation. Lidocaine was administered 

at the incision site, and flunixin meglumine (Phoenix Scientific) was administered for 

postoperative analgesia. This procedure created a septic state characterized by loss of 

appetite and body weight, ruffled hair, shivering, diarrhea, and/or periorbital exudates, with 

0–10% mortality rate. Sham mice underwent identical surgery excluding CLP.

LPS endotoxemia induction

Mice received a single i.p. injection of LPS from Escherichia coli O55:B5 (2.5 mg/kg body 

weight; Sigma), as previously described (31).

S. pneumoniae infection

Streptococcus was grown in brain heart infusion (BHI) broth and then pelleted by 

centrifugation. Pellet was washed three times and diluted to a target absorbance of 0.1 using 

PBS, as measured by ABS600. Mice were anesthetized with ketamine/xylazine and received 

40 μL of S. pneumoniae by intranasal inoculation. Infectious dose was confirmed by plating 

inoculum (1.5 × 106 CFU/mouse) on BHI plates.

CFU per gram of lung was determined by sacrificing mice and weighing the lungs. Lungs 

were mechanically homogenized in 1 ml of PBS. Twenty microliters of homogenate on BHI 

plates in duplicate.

EAE disease induction and evaluation

EAE was induced and evaluated as shown previously (32). Briefly, mice were immunized 

s.c. on day 0 on the left and right flank with 100 μg of MOG35–35 emulsified in CFA 

followed by 80 ng of pertussis toxin i.p. on days 0 and 2. Disease severity was scored as 

follows: 0, no clinical symptoms; 1, loss of tail tonicity; 2, hind limb weakness; 3, hind limb 

paralysis; 4, fore limb weakness; and 5, moribund or death.

Cytokine analysis

Multiplex cytokine analysis was performed via Thermo Fisher Scientific ProcartaPlex 7-

Plex, according to the manufacturer’s instructions for plasma cytokine analysis. Multiplex 

was analyzed on Bio-Rad Bio-Plex (Luminex 200) analyzer in the University of Iowa Flow 

Cytometry core facility.

IL-6 and IL-10 ELISAs (ELISA MAX Deluxe Set; BioLegend) were performed according 

to the manufacturer’s instructions.
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Statistical analysis

Unless stated otherwise, data were analyzed using Prism 8 software (GraphPad Software) 

using two-tailed Student t test (for two individual groups, if variance was unequal, then 

Mann–Whitney U test), one-way ANOVA with Bonferroni post hoc test (for more than two 

individual groups, if variance was unequal, then Kruskal–Wallis with Dunn post hoc test was 

used), and two-way ANOVA (for multiparametric analysis of two or more individual groups, 

pairing was used for samples that came from the same animal) with a confidence interval 

of >95% to determine significance (*p < 0.05). Log-rank (Mantel–Cox) curve comparisons 

were used to determine a significant difference in time to EAE disease onset (*p < 0.05). 

Data are presented as SEM.

RESULTS

MS patients are more prone to sepsis than the general population

Prior literature suggests an increased susceptibility of MS patients to develop sepsis relative 

to non-MS patient cohorts (25). Therefore, to begin interrogating this potentially interesting 

interplay, we performed a retrospective analysis of intensive care unit admissions at the 

University of Iowa Hospital and Clinics. This analysis included 211,470 patients admitted 

between 2008 and 2020, of which there were 22,930 that were septic and 1180 that had MS 

(Table I). Notable features of these patient cohorts included that septic patients tended to 

be older and male, known risk factors associated with developing sepsis (19, 20), whereas 

MS patients tended to be female; MS is a known female-biased disease (1). There was also 

a slight increase in the proportion of white patients among the septic patients. Importantly, 

MS patients exhibited a significant increase in sepsis prevalence (14.4%) relative to non-MS 

patients (10.8%; odds ratio: 1.387, p = 0.0001) (Table I). Additionally, whereas MS patients 

tended to be female, there was a higher proportion of males among the septic MS patients 

(35%) relative to the nonseptic MS patients (26%) (Table I). Further, septic MS patients 

also tended to be older (64 ± 14 y) than their nonseptic MS patient counterparts (56 ± 16 

y) (Table I). These data reaffirm both the higher prevalence of sepsis in males and with 

age, even within the MS patient cohort. Overall, these data affirm that MS patients have an 

increased prevalence of sepsis relative to non-MS patient cohorts.

EAE increases host susceptibility to sepsis-induced mortality

Given that MS patients have a higher prevalence of sepsis, we sought to understand 

how having an ongoing autoimmune disease would influence host susceptibility to 

sepsis. To address this relationship, well-established models of inducible MS-like disease 

and polymicrobial sepsis, EAE and CLP, respectively, were used. C57BL/6 mice were 

immunized with MOG35–35 to induce EAE or left unimmunized (non-EAE). CLP or sham 

surgery was performed >35 d postimmunization, and mortality was assessed (Fig. 1A). To 

ensure that mortality was not simply because of ongoing EAE disease, EAE mice were 

segregated into sham and CLP groups to establish a similar distribution of EAE clinical 

scores prior to surgery (Fig. 1B). Non-EAE mice exhibited some mortality; however, EAE 

mice had diminished survival relative to non-EAE mice (Fig. 1C). Importantly, EAE mice 

that underwent sham surgery did not have any mortality, consistent with the model system 

and demonstrating that mortality in EAE with CLP was not because of EAE disease. These 
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data also suggest the presence of CNS autoimmunity increases the host susceptibility to a 

fatal septic event. Interestingly, there was an observed relationship between the EAE disease 

score prior to sepsis induction and the likelihood of mortality (Fig. 1D,1E). Mice with a 

score of ≤2 had a similar survival rate to naive CLP mice, whereas all mice with an EAE 

score >2 succumbed to disease (Fig. 1E).

Autoimmune inflammation, not clinical disease, dictates susceptibility to sepsis

The relationship between disease severity and mortality suggests that either the paralysis 

and associated neurologic damage during EAE is promoting sepsis-induced mortality, or 

differences in the inflammatory response may increase the likelihood of mortality. Indeed, 

we previously reported that microbially experienced “dirty” mice with a high degree of 

immunologic experience are highly susceptible to sepsis-induced mortality due (in part) to 

elevations in plasma cytokine concentrations both at a baseline and during the peak (~12 h 

postinduction) of the cytokine storm (31). Similarly, we have also described a relationship 

between tumor size at the time of sepsis induction and host mortality (12). Thus, to begin 

teasing apart the roles of the interconnected phenomena of inflammation and paralysis, mice 

were immunized at varying times leading up to sepsis induction. This approach establishes 

a scenario in which disease is subclinical (day 5 [D5]), being established (day 15 [D15]), 

or fulminant (day 25 [D25]), with ongoing inflammation anticipated in all cohorts (Fig. 

2A). Clinical disease progression occurred in agreement with these expectations (Fig. 2B). 

All EAE cohorts, however, exhibited profound susceptibility to sepsis-induced mortality, 

demonstrating that clinical disease and paralysis were not required for sepsis-induced 

mortality (Fig. 2C).

To then address the extent to which EAE, similar to infection and cancer, was altering 

the severity of the sepsis-induced cytokine storm, plasma was collected prior to and 12 h 

post–CLP surgery in D5, D15, and D25 (as well as non-EAE) mice and assessed for IL-6, 

TNF, IL-1β, IFN-γ, IL-10, IL-2, and IL-12p70 (Fig. 3A). Importantly, although there was 

a cytokine storm in all CLP cohorts, the magnitude of the cytokine storm was substantially 

higher in EAE mice relative to the non-EAE mice (Fig. 3B–D). Further, EAE mice had a 

higher baseline expression of many cytokines (Fig. 3C, 3D), recapitulating observations in 

dirty mice (31). Of particular note was IL-6, which has previously been described as a strong 

indicator of the severity of the cytokine storm (33–35) and was strongly increased in all EAE 

groups both prior to and after CLP (Fig. 3D).

These results then led us to question whether there was a quantitative difference in the 

magnitude of the cytokine storm between survivor and nonsurvivor mice at day 35 post–

EAE induction. Thus, plasma IL-6 and IL-10 were interrogated in survivor and nonsurvivor 

EAE mice as well as non-EAE mice prior to and 12 h after EAE induction (Fig. 4). Indeed, 

nonsurvivor mice had an elevated cytokine storm, whereas survivor mice had a similar 

magnitude of the cytokine storm as non-EAE mice. This finding further illustrates that 

the susceptibility of EAE mice to sepsis-induced mortality is through enhancement of the 

cytokine storm.
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EAE mice have increased susceptibility to various models of sepsis induction

Given the high susceptibility of EAE mice to fatal CLP-induced sepsis, we sought to extend 

the applicability of this effect to other models of sepsis induction. i.p. injection of LPS 

is a well-established model of endotoxemia and sepsis with a highly tunable degree of 

mortality by modulating the concentration of LPS (18, 36). With this system, a dose of 

LPS that elicits a robust cytokine storm but does not elicit mortality in unmanipulated (e.g., 

non-EAE) mice was interrogated (31). LPS was injected 15 d post–EAE induction on EAE 

and non-EAE cohorts, and mortality was monitored throughout with plasma IL-6 evaluated 

prior to and 12 h post–LPS injection (Fig. 5A). Consistent with prior experiments, EAE 

mice had a range of disease scores (Fig. 5B). Importantly, whereas non-EAE mice exhibited 

no mortality, as anticipated, EAE mice exhibited rapid and profound mortality, recapitulating 

the observations with CLP (Fig. 5C). The enhanced mortality of EAE mice was attributable 

to increased IL-6 following LPS injection (Fig. 5D), similar to observations with CLP mice. 

These data demonstrate increased sensitivity to TLR4 stimulation, which likely contributes 

to the enhanced mortality among EAE mice.

Next, we examined the impact of having EAE followed by an intranasal S. pneumoniae 
infection. S. pneumoniae is the most prevalent causative pathogen of community-acquired 

pneumonia, and S. pneumoniae models of sepsis have high clinical relevance as nearly half 

of all sepsis cases result from this bacterial infection (37). Similar to the LPS endotoxemia 

model, S. pneumoniae infection in this system does not lead to mortality in unmanipulated 

mice. It does, however, represent a relevant respiratory infection (38), which, along with S. 
pneumoniae infection, are both a common cause of sepsis (22) and a frequent complication 

among MS patients (24). Further host ability to control the infection can be assessed by 

determining the number of CFUs in the lungs and plasma cytokines to give an indication of 

the host ability to mount an inflammatory response and clear infection. Using this system, 

EAE mice and non-EAE controls were intranasally inoculated with S. pneumoniae 15 d 

post–EAE induction. Plasma IL-6 was evaluated prior to and 12 h post–S. pneumoniae 
infection. Additionally, lung S. pneumoniae CFUs were evaluated in three mice from each 

cohort 3 d postinfection while mortality was monitored in the remaining mice (Fig. 5E). As 

before, EAE mice exhibited a range of disease severity prior to infection (Fig. 5F) and some 

mortality subsequent to the insult (Fig. 5G), although this mortality was not significantly 

different from non-EAE control mice. Further, a trending increase in plasma IL-6 was 

observed from EAE mice 12 h post–S. pneumoniae infection (Fig. 5H), in agreement with 

the prior findings of an elevated inflammatory response in EAE mice challenged with either 

CLP or LPS. However, the elevation in IL-6 was not to the same degree as it was seen in 

the other sepsis models. This potentially reveals a relevant distinction in how autoimmunity 

(EAE) enhances host susceptibility to sepsis-induced mortality. Some of these relevant 

factors may include the site of inoculation, stimulus itself, cells activated in response to 

challenge, and capacity of the insult to evoke a systemic response. Interestingly, EAE mice 

also had reduced control of S. pneumoniae infection 3 d postinfection, relative to non-EAE 

mice (Fig. 5I). These data indicate that despite enhanced inflammation, EAE mice have 

a dysregulated inflammatory response that has a reduced capacity to provide protection 

to subsequent insult. Thus, the culmination of enhanced inflammatory responses with a 
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reduced capacity to control pathogen insult may set the stage for the enhanced susceptibility 

of EAE mice and MS patients to develop and succumb to septic insults.

DISCUSSION

Cumulatively, these findings indicate that MS patients are at a higher risk of developing 

sepsis, and ongoing autoimmune reactions lay the groundwork for an exacerbated 

inflammatory response during septic insult that in turn increases the risk of mortality. This 

conclusion is relevant to both the identification and management of patient populations that 

are likely to become septic and at high risk of mortality in the event they become septic. 

Future work should interrogate the utility of intervention strategies in promoting the survival 

of sepsis, and assessments of intervention strategies should account for these highly relevant 

comorbidities in determining efficacy. Importantly, patients with autoimmunity tend to be on 

immunosuppressive regimens (5, 6); although it is yet unclear what the net result of these 

interventions are on the development of sepsis, these immunosuppressive regimens will 

undoubtedly be pertinent to the management of the cytokine storm. The patient data used in 

this study is deidentified and lacks the granularity necessary to assess what medications MS 

patients may be on at the time of septic insult. Future interrogation should be performed to 

parse the influences of different immunosuppressive regimens on MS patient susceptibility 

to septic insult. This can be further extended by exploring the interactions between therapies 

for autoimmunity and interventions during sepsis in mouse models to potentially facilitate 

patient-specific intervention strategies during sepsis, dependent on the therapy they receive 

for their autoimmunity.

In addition, it is relevant to consider the classification of MS and its influence on host 

survival. As with the immunosuppressive medications, our dataset does not provide enough 

information to address the susceptibility of different MS patient cohorts to MS (e.g., 

relapsing remitting versus primary progressive). In the current study, we use an EAE model 

that mimics primary progressive MS. However, relapsing remitting MS is the most common 

type of MS, and future studies using the SJL model of relapsing remitting MS should be 

performed. It is interesting to consider that in the current study, clinical disease was not 

required to enhance survival (i.e., D5 postimmunization). Alternately, EAE mice continued 

to exhibit enhanced susceptibility to sepsis after the peak inflammatory response has passed 

(i.e., day 35 postimmunization). This potentially emulates an extended remission, further 

suggesting that even during remissions, patients may still have an increased susceptibility to 

sepsis.

Alternately, it is also relevant to consider the consequences for a patient with autoimmunity 

who survives a septic insult. This notion is highly related to our previous findings, wherein 

we observed sepsis-induced immunoparalysis ablated the subsequent development of EAE 

through the numeric reduction in naive autoantigen-specific CD4 T cells (29). Indeed, 

sepsis similarly reduces the number and function effector and memory T cells (39–43). 

Therefore, it is plausible for those individuals that survive to experience a reduction in 

their autoimmune disease symptoms. Contrastingly, sepsis may also reduce the capacity of 

suppressor cell populations to mediate their activity and lead to disease exacerbation (44–

46). There are likely multiple complicating factors that dictate whether any such benefit or 
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detriment arises, including the stage of autoimmune disease progression. Such interrogation 

may lead to enhanced understanding of the sepsis-induced immunoparalysis state or even 

future therapeutic intervention for MS and autoimmune disease patients.

Finally, it is relevant to consider the observation that clinical disease was not required for 

the enhancement in mortality among EAE mice. This finding suggests individuals with 

subclinical or newly developing autoimmunity may be at risk for increased mortality from 

sepsis. This possibility may be problematic for delineating patient populations with high 

susceptibility to sepsis-induced mortality as it may not be a recognized complicating factor. 

Thus, enhanced susceptibility of patient populations to sepsis-induced mortality may be 

better understood as a result of active inflammatory responses prior to septic insult rather 

than highly specific comorbidities such as autoimmunity or cancer. These are highly relevant 

notions when seeking to promote survival and develop future therapeutics.
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FIGURE 1. EAE mice have increased susceptibility to sepsis-induced mortality.
(A) Experimental design: C57BL/6 mice were immunized with MOG35–35 to induce EAE. 

EAE mice underwent either sham or CLP 35 d after EAE induction followed by assessment 

of mortality age-matched nonimmunized (non-EAE) underwent CLP surgery at the same 

time. (B) EAE clinical scores of mice prior to either sham or CLP surgery. (C) Kaplan–

Meier survival curves of EAE mice that underwent sham (black closed circle) or CLP 

(red semicircle) surgery and non-EAE mice that underwent CLP surgery (red closed circle 

with black outline). (D) EAE clinical scores prior to surgery of EAE mice that either 

succumbed to or survived the septic insult. (E) Kaplan–Meier survival curves of EAE mice 

that underwent sham (black circle), had an EAE score ≤2 prior to CLP (white circle with red 

outline), or had an EAE score >2 prior to CLP (red closed circle with red outline) surgery 

and non-EAE mice that underwent CLP surgery (red closed circle with black outline). 

Data are cumulative of two independent experiments with 7–21 mice per group. Error bars 

represent SEM. *p < 0.05.
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FIGURE 2. Increased susceptibility of EAE mice to sepsis is independent of disease onset.
(A) Experimental design: C57BL/6 mice were immunized with MOG35–35 to induce EAE at 

day −25, −15, or −5 prior to either sham or CLP surgery, and age-matched nonimmunized 

(non-EAE) underwent CLP surgery at the same time. Mortality was monitored in all cohorts. 

(B) EAE clinical scores of mice that were induced for EAE at −25, −15, −5 prior to 

either sham or sepsis surgery. (C) Kaplan–Meier survival curves of day −25 EAE mice 

that underwent sham surgery (black circle), non-EAE mice that underwent sepsis surgery 

(red circle with black outline), and day −25 (red circle with red outline), day −15 (red 

semicircle), and day −5 (white circle with red outline) EAE mice that underwent CLP. 

Data are cumulative of two independent experiments with 5–31 mice per group. Error bars 

represent SEM. *p < 0.05.
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FIGURE 3. EAE mice have increased inflammation prior to and following sepsis induction.
(A) Experimental design: C57BL/6 mice were immunized with MOG35–55 to induce EAE 

at day −25, −15, or −5 prior to CLP surgery, and age-matched nonimmunized (non-EAE) 

underwent CLP surgery at the same time. Plasma was collected prior to surgery and 12 h 

postsurgery. (B) Heatmap of normalized plasma IL-6, TNF, IL-1β, IFN-γ, IL-10, IL-2, and 

IL-12p70 concentrations in non-EAE, D5EAE, D15 EAE, and D25 EAE mice prior to and 

12 h post–CLP surgery. (C) Radar plots of plasma IL-6, TNF, IL-1β, IFN-γ, IL-10, IL-2, 

and IL-12p70 in non-EAE mice (black line), D5 (dotted red line), D15 (dashed red line), 
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and D25 EAE mice (solid red line) prior to (top) and 12 h post– (bottom) CLP surgery. 

(D) Representative plasma cytokines (top to bottom: IL-6, TNF, and IL-10) prior to (left) 

and 12 h post– (right) CLP surgery in non-EAE (red circle with black outline), D5 EAE 

(white circle with red outline), D15 EAE (red semicircle), and D25 EAE (red circle with 

red outline) mice. Gray dashed lines indicate the upper limit of detection (ULOD) and 

lower limit of detection (LLOD) for the multiplex assay. Samples are combined from two 

independent experiments run on a single multiplex assay with 5–10 mice per group. Error 

bars represent SEM. *p < 0.05.
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FIGURE 4. Mortality in EAE mice is associated with elevated inflammation.
C57BL/6 mice were immunized with MOG35–55 to induce EAE. EAE and age-matched 

nonimmunized (non-EAE) mice under went CLP 35 d after EAE induction. Plasma 

cytokines were assessed prior to and 12 h post–CLP surgery in non-EAE, EAE mice that 

survived CLP-induced sepsis, and EAE mice that succumbed to CLP-induced sepsis. Plasma 

IL-6 (A and B) and IL-10 (C and D) prior to (A) and (C) and 12 h post– (B) and (D) 

CLP surgery in non-EAE, EAE mice that survived CLP-induced sepsis, and EAE mice that 

succumbed to CLP-induced sepsis. Gray dashed lines indicate the upper limit of detection 

(ULOD) and lower limit of detection (LLOD) for the respective ELISA plate. Samples are 

combined from two independent experiments run on single ELISA plates with five to eight 

mice per group. Error bars represent SEM. *p < 0.05.
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FIGURE 5. EAE mice have an increased susceptibility to multiple sepsis models.
(A) Experimental design: C57BL/6 mice were immunized with MOG35–55 to induce EAE 

15 d prior to i.p. LPS injection, and age-matched nonimmunized (non-EAE) received 

identical injections. Plasma was collected prior to and 12 h post–LPS injection. Cohorts 

were monitored for survival. (B) EAE disease scores prior to LPS injection of EAE 

mice. (C) Kaplan–Meier survival curves for non-EAE and D15 EAE mice following LPS 

injection. (D) Plasma IL-6 prior to and 12 h post–LPS injection in non-EAE (red circle with 

black outline) and D15 EAE (red semicircle). Gray dashed lines indicate the upper limit of 

detection (ULOD) and lower limit of detection (LLOD) for IL-6 ELISA. Data are from a 

single experiment with 10–12 mice per group. Error bars represent SEM. *p < 0.05. (E) 

Experimental design: C57BL/6 mice were immunized with MOG35–55 to induce EAE 15 

d prior to intranasal S. pneumoniae infection, and age-matched nonimmunized (non-EAE) 

received identical infections. Plasma was collected prior to and 12 hpost–LPS injection. 

Three mice from each cohort were used for determining lung CFU at 3 d postinfection. The 

remaining mice in each cohort were monitored for survival. (F) EAE disease scores prior 

to S. pneumoniae infection of EAE mice. (G) Kaplan–Meier survival curves for non-EAE 

and D15 EAE mice following S. pneumoniae infection. (H) Plasma IL-6 prior to and 12 
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h post–S. pneumoniae infection in non-EAE (red circle with black outline) and D15 EAE 

(red semicircle). Gray dashed line indicates the lower limits of detection (LLODs) for IL-6 

ELISA. (I) S. pneumoniae CFU per gram of lung tissue 3 d after intranasal infection of 

non-EAE and D15 EAE mice. Dashed line indicates the limit of detection (LOD). Data are 

from a single experiment with 9–12 mice per group. Error bars represent SEM. *p < 0.05.
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