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Abstract

Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction
networks with a large number of parameters and species, which are typical in the modeling
and simulation of complex biochemical phenomena. In this paper, a two-step strategy for
parametric sensitivity analysis for such systems is proposed, exploiting advantages and
synergies between two recently proposed sensitivity analysis methodologies for stochastic
dynamics. The first method performs sensitivity analysis of the stochastic dynamics by
means of the Fisher Information Matrix on the underlying distribution of the trajectories; the
second method is a reduced-variance, finite-difference, gradient-type sensitivity approach
relying on stochastic coupling techniques for variance reduction. Here we demonstrate that
these two methods can be combined and deployed together by means of a new sensitivity
bound which incorporates the variance of the quantity of interest as well as the Fisher Infor-
mation Matrix estimated from the first method. The first step of the proposed strategy labels
sensitivities using the bound and screens out the insensitive parameters in a controlled
manner. In the second step of the proposed strategy, a finite-difference method is applied
only for the sensitivity estimation of the (potentially) sensitive parameters that have not
been screened out in the first step. Results on an epidermal growth factor network with fifty
parameters and on a protein homeostasis with eighty parameters demonstrate that the pro-
posed strategy is able to quickly discover and discard the insensitive parameters and in the
remaining potentially sensitive parameters it accurately estimates the sensitivities. The new
sensitivity strategy can be several times faster than current state-of-the-art approaches that
test all parameters, especially in “sloppy” systems. In particular, the computational accelera-
tion is quantified by the ratio between the total number of parameters over the number of the
sensitive parameters.

Introduction

Biological and biochemical reaction networks provide a powerful computational and modeling
tool for the intrinsic understanding of fundamental mechanisms in systems biology such as
metabolic, regulatory and signalling pathways. With the advent of ever-increasing computa-
tional power and the desire for more accurate representations of the physical processes at the
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level of the (sub-)cell or at the level of populations, larger, more complex and more sophisti-
cated biochemical reaction networks have been developed. For instance, reconstruction for
genome-scale, steady-state models of metabolic networks, macromolecular synthesis and mul-
tiscale systems biology necessitates reaction networks with (tens of) thousands of reactions [1-
3]. The enormous increase in the size of modeled reaction networks presents severe modeling
and computational challenges, among others the understanding, designing, inferring and pre-
dicting the properties and the behavior of the output, especially when the stochasticity is a pre-
requisite for correct modeling, e.g. [4, 5]. Indeed, for low species populations, stochastic
models are critical for the correct representation of the inherent randomness and discrete
nature of intracellular networks. In particular, a ubiquitous problem in biochemical reaction
networks is to quantify the response of the system when perturbations on the input or on the
parameters of the system are performed. Subsequently, questions on the robustness, (struc-
tural) identifiability, experimental design, uncertainty quantification, estimation and control
can be addressed, [6]. The quantification of system response to parameter perturbations is
called sensitivity analysis and is an indispensable analysis tool for the study of kinetic models
6, 7].

For large-scale reaction networks, sensitivity analysis is especially important due to the con-
fluence of the nonlinear, stochastic and typically non-equilibrium statistical mechanics charac-
teristics of the models. Additionally, the large number of parameters yields a very high number
of sensitivity indices needed to be estimated, increasing by orders of magnitude the overall
computational cost when compared to simply the forward simulation of the model. Finally, the
stochasticity may also result in high variance in the estimators of the sensitivity indices, adding
both further computational cost and uncertainty in the predictions of the sensitivity analysis.
This paper addresses precisely such challenges, namely the parametric sensitivity analysis of
high-dimensional stochastic reaction networks, both in the size of the parameter vector (large
parameter space) and the number of species (large state space).

Recently, there has been significant progress in developing sensitivity analysis tools for low-
dimensional stochastic dynamics, modeling well-mixed chemical reactions and biological net-
works. Some of the mathematical tools includes log-likelihood methods and Girsanov transfor-
mations [8-10], polynomial chaos expansions [11], finite difference methods and their variants
[12-14], as well as pathwise sensitivity methods [15]. Moreover, in recent years there has been
a significant development in sensitivity analysis software for reaction networks. Existing
modeling software like COPASI [16], PottersWheel [17], SensSB [18] analyzes parameter sen-
sitivity with deterministic modeling of dynamical systems. Sensitivity analysis for stochastic
reaction networks has been implemented in software packages like SPSens [19], StochSS [20],
StochSens [21] and ISAP [22].

In another and complementary direction, recent sensitivity analysis approaches have been
proposed as means to quantify the overall behavior of the reaction network and not just the
response of a specific observable function. These sensitivity analysis methods employ informa-
tion theory metrics such as the relative entropy (also known as Kullback-Leibler divergence) as
well as the Fisher Information Matrix (FIM). Moreover, taking into account the fact that the
knowledge of the stationary distribution is rarely known in biochemical reaction networks,
these information-based methods resort either on linearized Gaussian approximations of the
underlying process [23] or they rely on path-space distribution calculations, [24, 25]. The latter
approach is exact since no approximation is necessary, while it is gradient-free in the sense that
a single model (parameter) simulation is carried out, resulting in reduced-variance estimators.
Overall, gradient-free sensitivity analysis methods such as the ones proposed in [23-25] are
highly appropriate for systems with a high-dimensional parameter space since they allow for
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an efficient exploration of the parameter space without the calculation of a very high number
of (directional) derivatives.

However, existing sensitivity analysis methods are not capable of estimating the sensitivity
analysis of specific quantities of interest (observables) for large stochastic networks, in a com-
putationally efficient and accurate manner. Indeed, beginning with the deterministic models,
their sensitivity analysis is fairly easily formulated by the adjunct system of differential equa-
tions which is the ODE system that governs the dynamics of the reaction network augmented
by the ODEs for the derivatives with respect to the parameters [7]. However, this is not always
adequate because such models do not take into account the intrinsic stochasticity which cru-
cially affects the behavior of the system [4, 5]. On the other hand, stochastic sensitivity analysis
methods based on information criteria [23, 24] are also inexpensive in terms of computational
cost since they can handle large networks with many parameters due to their gradient-free
nature, [25], however, they are not observable-based, hence may not provide precise analysis
for specific quantities of interest. Finally, observable-based approaches such as finite-difference
(gradient) methods can have an overwhelming computational cost, either due to high variance
in the gradient estimators [26] or the high-dimensional state space [14]; in the latter case such
computations can be prohibitively expensive when they need to be run over and over again for
many parameter perturbations related to the sensitivity indices.

Here we demonstrate that the aforementioned methods can be combined and deployed
together by means of a new sensitivity bound which incorporates the variance of the quantity
of interest as well as the FIM, see inequality (4). The proposed strategy is a two-step hierarchi-
cal approach where in the first step the insensitive observables and parameters are found and
eliminated from further analysis with controlled accuracy; the second step targets the remain-
ing (potentially) sensitive parameters and observables:

o Step I: Screen the parameters through a computational inexpensive labelling of the insensi-
tive parameters based on a sensitivity bound (SB) derived from a path-space Cramer-Rao
inequality (see (Eq 4)). The sensitivity index (SI) for an observable (see (Eq 3) for a defini-
tion) can be bounded by the square root of the variance of the observable multiplied by the
diagonal FIM elements. Here we utilize the pathwise FIM [25] which quantifies information
from both the steady states and the dynamics of the reaction network.

To this end note that since the SB is an upper bound of the SIs (see (Eq 4)), neither guaran-
tees that large values of the bound imply large SIs, nor infers information on their order. There-
fore, for the SIs where the SB is large, a more accurate sensitivity analysis method is needed.
Indeed, in the second step of the strategy, an observable-based sensitivity analysis algorithms is
applied to the potentially sensitive parameters and observables:

o Step 2: Employ an estimator for the SIs on the remaining potentially sensitive parameters.
Here we choose the gradient estimator given by the coupling method [13] which is a finite-
difference approach with reduced variance, even in high-dimensional systems, [14].

The pathwise FIM quantifies the information change of the path-space distribution (i.e., the
distribution of the species trajectories) of stochastic processes under perturbations, [25]. Fur-
thermore, the estimation of the pathwise FIM is very efficient because a single model simula-
tion is required for the computation of the whole matrix, while the variance of the statistical
estimator is typically small. The acceleration in sensitivity analysis due to the proposed strategy
can be very significant especially when sloppy systems are considered, [25, 27, 28], and most of
the parameters are expected to be screened out as insensitive from Step 1. Moreover, the pro-
posed strategy offers a simple way to rationally balance accuracy and computational cost,
selecting the number of insensitive parameters that need to be discarded. The discrimination
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between sensitive and insensitive parameters can be performed by a user-determined tolerance
or by the availability of computational resources. The proposed strategy, through the SB, guar-
antees that the SIs for the insensitive parameters will lie below the value of the tolerance.

A detailed demonstration and validation of the proposed strategy applied on three biological
models is provided. The p53 model [29-31] is presented as a small-size example, having 21 SIs,
introducing the idea of screening out negligible sensitivities. Due to the nontrivial stationary
behavior of the p53 model, with random and persistent oscillations of the solution, sensitivities
of observables such as the amplitude and the frequency of the oscillations are explored. A more
complex model with a large number of species and parameters, the Epidermal Growth Factor
Receptor (EGFR) model [32-34], is studied next. The EGFR model is studied both in the tran-
sient and in the stationary regimes allowing us to demonstrate the applicability of the proposed
strategy in both settings. In this particular example, more than half of the sensitivities can be
excluded by the computationally inexpensive SB of Step 1. Finally, a protein homeostasis
model, [35], with a total of 4160 SIs is presented as a “sloppy” example, where more that 85%
of the total SIs can be safely ignored having a guaranteed maximum bound by the screening in
Step 1. The results of the proposed strategy are compared against the results of the full coupling
method applied to all SIs without any screening. The computational cost of the two methods,
measured in number of samples, is compared and found that the two-step strategy can acceler-
ate up to approximately & times the sensitivity analysis where K is the total number of parame-
ter, while K’ is the number of parameters remaining after the screening in Step I; as we show in
the demonstrated examples, the SB calculation in Step I is negligible since it is at least one
order of magnitude less expensive compared to a single run of the coupling method in Step 2.

The paper is organized as follows. In the Methods section, the sensitivity analysis strategy is
presented. The validation of the proposed sensitivity analysis approach is provided in the
Results section, where one small and two large biochemical reaction networks are tested while
the computational advantages are quantified and presented in the Discussion section.

Methods

A well-mixed reaction network with N species, S = {S, . . ., Sy}, and J reactions, R = {R, . . ., R}}
is considered. The state of the system at any time ¢ > 0 is denoted by an N-dimensional vector
Xi=[Xe1 - X N T where X, ;is the number of molecules of species S; at time ¢. Let the N-
dimensional vector v; correspond to the stoichiometry vector of j-th reaction such that v; ;is
the stoichiometric coefficient of species S; in reaction R;. Given that the reaction network at
time ¢ is in state X, = x, the propensity function, a/(x), is defined so that the infinitesimal quan-
tity a/ (x)dt gives the probability of the j-th reaction to occur in the time interval [t, ¢ + dt]. Pro-
pensities are typically dependent on the state, X, of the system and the reaction conditions of
the network which are made explicit by the parameter vector 6 € R¥. Mathematically, {X,},
R, is a continuous-time Markov chain (CTMC) with countable state space E C NY. The transi-
tion rates of the CTMC are the propensity functions a/(-),j = 1,...,J. The transition rates

determine the clock of the updates (or jumps) from a current state x to a new (random) state

x' = x + v; through the total rate af(x) := ](:1 a/(x) while the transition probabilities of the

. . alx) - .
process are determined by the ratio pr order to have a complete description of the reaction
0

network, an initial distribution of the state at time instant ¢ = 0 denoted by V(- is also needed.
There are exact algorithms for the simulation of the reaction network such as the stochastic
simulation algorithm (SSA) of Gillespie [36, 37] or the next reaction algorithm of Gibson and
Bruck [38] or the constant-time kMC algorithm of Slepoy et al. [39] as well as inexact approxi-
mation algorithms such as 7-leap [40] and several variations of it [41, 42]. As an example,
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given that the system is at the state X, = x at time ¢, SSA computes the waiting time Jt as a ran-
dom number drawn from an exponential distribution with the total rate aj)(x), while the R;-
reaction occurs where j* € {1, .. ., J} is chosen such that Zj;ll al(x) < uaj(x) < Z}].:j* al(x)
and u is a random number uniformly chosen in the interval [0, 1]. The new state is given by X
(t+ot) =x'=x+v;.

The path space distribution of the stochastic process on the time-interval [0, T] is denoted
by Q?O‘T]. Notice that the dependence of the path space distribution to the initial distribution is
made implicit for notational simplicity. Intuitively, the path space is the set of all possible tra-
jectories in [0, T, generated by SSA for the particular reaction network while the path space
distribution is the probability to observe a particular trajectory. For a concrete and simple
example of a path distribution, we refer to Section 2 in S1 File where Discrete-Time Markov
Chains (DTMCs) are considered. As we shall show next (see also S1 File), the path space per-
spective is easy to implement exploiting concepts from information theory and from non-equi-
librium statistical mechanics.

We now turn our attention to observables of the stochastic process, X,. We denote by F(-) =
[Fy(+), ..., F1(-)]" the vector with L state-dependent observable functions, Fp: X - R, €=1, ...,
L. Two typical options for the observable function are the time-average of a function as well as
the value of a function at a specific time instant. The time-average observable is defined in a
general setting as

FUXID =1 [ AX)d o

while the time-specific observable is defined as

F({X} o) = fi(Xy) - (2)

The most common observable is the population of the £-th species, i.e., the projection of the
state vector to the £-th direction (fp(x) = x,), however, other observable functions such as correla-
tions between various species of the network, time-correlations for a specific species as well as
switching or exit times can be considered. Another important discrimination for the observable
functions stems from the time regime where the stochastic process is sampled. There are two
important regimes; the stationary regime where the process is at equilibrium and the transient
regime where the stochastic process initialized far from equilibrium and in the course of time it
relaxes towards the steady states. At the stationary regime, the initial distribution of the stochastic
process is the stationary distribution and both time-average and time-specific observables pro-
duce the same ensemble averages since EQ& . L[ f(X)dt] = EQ& ; [f(X,)] = E[f(x)] where u*:

E — R is the stationary distribution while E,[f] denotes the expectation of f{-) with respect to the
probability P (i.e., E,[f(x)] := [ f(x)P(x)dx). Moreover, due to the (assumed) ergodicity prop-
erty of the reaction network, it is typical to obtain ensemble averages and statistics from time-
averaged observables since ergodicity asserts thatlim,._ 1 [ f(X,)dt = E , [f(x)].

The goal of this paper is to describe an efficient and highly resolved strategy to compute the
parameter sensitivities on the observable functions, i.e., to compute the sensitivity matrix, S €
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RX* L, defined element-wise by

0 Ey [F({X}_)], k=1,...,K&{=1,... L. (3)

Skt = 9o,

The element, Sy o, is the Sensitivity Index (SI) of the £-th observable to the k-th parameter.
The proposed strategy is separated into two steps where, in the first step, a Sensitivity Bound
(SB) is computed for each SI. The evaluation of the SB is based on tools from estimation theory
[43, 44] and information theory [45]. The SB is a product of two factors where the first one
depends on the properties of the observable function while the second factor depends only on
the properties of the underlying path space distribution of the stochastic process (see (Eq 4)
and (Eq 6) below). The computational efficiency of the SB stems from its factorization into two
terms each one quantifying different aspects of the SIs. Then, in the second step, we apply a
computationally more expensive but accurate sensitivity estimation method. In particular, we
use the coupling method [13], however, applied only on the potentially sensitive SIs since from
the first step the least sensitive SIs have been screened out with a controlled error given by the
SB. We discuss these two components of our proposed methodology next.

Step 1: Screening out insensitive parameters and observables

In parameter estimation theory, the Cramer-Rao theorem states that the variance of an estima-
tor cannot be smaller than the inverse of the FIM [43, 44]. Here, we are not interested to bound
the variance of the estimator from below as in the Cramer-Rao theorem, but rather to bound
the bias of the estimator from above which in our context corresponds to the SI. Thus, the sen-
sitivity bound (SB) can be obtained by rearranging the generalized Cramer-Rao bound for a
biased estimator, [43, 44]. In particular, when the distribution in the Cramer-Rao theorem is
the path distribution, the absolute SI of the £-th observable is bounded by the inequality

‘Sk,£| < B, = VarQﬂ]_’T] (Fz)\/I(QFo.T])k,k ) (4)

where 7 (Q%_’T]) is the K x K pathwise FIM. We also recall that the path space distribution of the
stochastic process on the time-interval [0, T] is denoted by Q[G&T]' This inequality is a general SB
which, assuming that the estimation of the variance of the observable and the pathwise FIM is
tractable and fast, can be utilized to discard the most insensitive SIs. Indeed, if the right hand
side of the inequality is small then the corresponding SI is also small. In other words, given a
specific observable, diagonal FIM elements with small values imply low SIs. However, notice
that large FIM values in (Eq 4) do not necessarily imply large SIs or any information on rank-
ing the SIs with high values. From this latter observation stems the need for the second step in
the proposed sensitivity analysis strategy.

Opverall, with the cost of estimating an upper bound instead of the actual values, the estima-
tion of K x L sensitivity indices is reduced to the estimation of L variances and K elements of
the FIM which is a significant reduction especially when the studied system is high-dimen-
sional both in the parameter space (K >> 1) and in state space (N >> 1). In typical cases, F(x) =
xe (i.e., projection operators as observables) hence L = N >> 1, however, when correlations
between species are of interest then L = N(N — 1)/2 and the computation of the sensitivity
matrix (Eq 3) becomes readily intractable.

From an information theory perspective, pathwise FIM is the Hessian of the pathwise rela-
tive entropy which geometrically corresponds to the curvature around its minimum value [24].
For a definition of pathwise relative entropy as well as its properties for both discrete-time
Markov chain (DTMC) and CTMC cases we refer to S1 File. The SB (Eq (4)) can be also
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derived as a limit of a variational inequality which relates the weak error between two path dis-
tributions with their pathwise relative entropy (see S1 File for details). Another derivation of
the SB can be obtained as a limit of the Chapman-Robbins inequality which incorporates the
chi-squared divergence [46].

We also remark that (Eq 4) can be generalized to provide a SB for any combination of the
parameters (i.e., bound the directional derivative). The estimation of pair directional deriva-
tives provides a manner to infer information about correlations between parameters and how
combinations of perturbation affect the output of the reaction network. Notice that the order
of the size of pair directional derivatives is O(K*) and for each pair a new call of the gradient
estimation is required making the computational cost of estimating the correlations intractable
in high-dimensional systems. However, using the proposed strategy in combination with the
following sensitivity bound the estimation of correlations between parameters is tractable.
Mathematically, for any v € R¥ with |v| = 1 and denoting the directional derivative by
aVEQ([:).T] [F], it holds that the sensitivity bound for an observable function F(-) at the direction v

is given by

|8VEQ([2]_T] [FH < A /VarQ(:m (F) VTI( E;)’T])V. (5)

It was shown (Fig. 1 in [25]) that pathwise FIM has a block-diagonal structure which
reduces the non-zero elements of the matrix from O(K?) to O(K) thus reducing the number of
elements needed to be estimated. Furthermore, inequality (Eq 5) combined with direct spectral
analysis of the block-diagonal pathwise FIM can infer the least sensitive directions of the sys-
tem as well as the most sensitive candidate directions [23, 25].

The computation of the pathwise FIM, Z ( EZ).T] ), necessitates the explicit knowledge of the
probability function which is not always possible. However, in the setting of Markov processes,
explicit formulas for the pathwise FIM exist [25]. Indeed, using the properties for the pathwise
relative entropy, we are able to derive explicit formulas for the pathwise FIM. Next, we provide
such formulas for both the stationary and the transient regime. Note that, as expected, the SB is
time-independent in the stationary regime.

Stationary regime. In stationary regimes of stochastic processes, the probability law of the
process is time-independent. Therefore, the typical observables utilized in steady state regimes
are the time-averaged observables given by (Eq 1). Then, it can be shown for the stationary
regime and time-averaged observables that the SB given by (Eq 4) becomes time-independent
and it can be rewritten as

Seal < /2 () T @)y (6)

where 7,(f,) is the Integrated Autocorrelation Time (IAT) while IH(QG) is the FIM of the so
called Relative Entropy Rate [24, 25] (for a proof, see Section 1.1 of S1 File). The IAT is given
by (see Section 3.2, S1 File for a derivation)

win= [ T CF(X) —Eplflf(X,) — Elf]> pdt ?)

where < f(X,) = E o [f(x)],f(X,) — E[f (x)]> 0 is the stationary covariance between f(X,)
and f(X,). We remark that IAT has been used in a series of problems in probability and statis-
tics to measure the performance of samplers and estimators, [47]. Many of the state-of-the-art
estimators of IAT give non-reliable results while those that can give satisfactory results depend
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on parameters that need to be tuned by visual inspection of the autocorrelation time. In fact,
we have found that the most reliable estimator of IAT is the one presented in S2 File.

In the context of well-mixed reaction networks and assuming smoothness of the propensity
functions, a]‘.’(x), j=1,...,], with respect to the parameter vector, 0, the pathwise FIM is

explicitly written as, [25],
i
7,(Q) =E, Za}‘,’(x)vo loga]’.’(x)Vo logaf(x)T . (8)
j=1

Thus, the time-independent pathwise FIM can be practically estimated as an ergodic average.
Statistical estimators for the stationary pathwise FIM are provided in S2 File.

Remark: As a concrete example of (Eq 6) consider a stochastic process whose autocorrela-
tion function with respect to an observable f decays exponentially fast with rate (i.e., decorrela-
tion time) 7, = 74(f, u%). Then, the IAT satisfies T 0 (f) = 2t,Var,(f), [47], and then the

stationary SB (Eq 6) becomes

el < V20 Var (£)JTu(@)s (9)

Transient regime. In the transient regime, the sensitivity bound is given by the general
inequality (Eq 4). Nevertheless, in terms of implementation, the estimators of the transient
regime are the same as in the stationary regime. This is evident in (Eq 10) below, which is
derived in Section 3.1, S1 File.

More precisely, assuming that the propensity functions are differentiable with respect to the
parameter vector 0, the pathwise FIM for the transient regime is given by

T(Q),) = (") + / 7,(Q)dr | (10)

where Z(+?) is the FIM of the initial distribution, +’, and X,_ denotes the the left-side limit at
time ¢. The process Z,,,(Q?) can be viewed as the instantaneous pathwise FIM given by

IH(Q?) = EQ‘[{M

]
3 a!(X, )V, logd!(X, )V, loga'(X, )" | , (11)
=1

which readily reduces to (Eq 8), in the stationary regime. The formula of the instantaneous
pathwise FIM is not as simple as in the DTMC case (see Section 2.1, S1 File) because the wait-
ing time of the jumps is now random, however, the statistical estimator for the pathwise FIM
in the transient regime is as simple as in the stationary regime. In fact it has exactly the same
formula as we show in S2 File. Finally, we would like to point out that a software package called
ISAP has been recently launched [22] that computes among other quantities the pathwise FIM
in both transient and stationary regimes further strengthening the usefulness of the proposed
strategy.

Step 2: Finding and ranking the most sensitive Sls

In this second step of the proposed strategy, we employ a computationally more expensive but
accurate sensitivity estimation method: we use the the coupling method [13], which is only
applied on the potentially sensitive SIs since from the Step I the least sensitive SIs have been
screened out with a controlled error given by the SB. We discuss the coupling methodology
next.
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Fig 1. Trajectories of the species of the p53 model. The solid and the dashed lines correspond to the unperturbed and the perturbed parameters
respectively. Left panel: The result of the coupled algorithm (upper plot) in comparison to the result of two completely uncoupled runs (lower plot) is
presented. Note that the coupled algorithm produces correlated paths, that are close to each other, thus leading to smaller variance in the estimator (12).
Right panel: The same computation as in the left panel for a larger time interval. The coupling method manages to keep the trajectories very close.

doi:10.1371/journal.pone.0130825.g001

First, the SI defined in (Eq 3) is approximated by a second-order finite difference scheme as

—E[F,(X7)]) (12)

where we use the abbreviated notation X* = { X/ }IT:O while ¢y € R and ¢y < 1. In this
study we set €, = 0.1. Notice also that, for notational simplicity, we dropped the dependence on
the underlying path space distribution from the expectation. The variance of the estimator in
(Eq 12) is proportional to

Var[F,(X7) — F,(X7)] = Var[F(X")] + Var [FA(X")] — Cov (E,(X*),F,(X")) . (13)

In order to minimize the variance of the estimator we have to correlate the processes in a
way such that the covariance Cov(F,(X"), F,(X")) is maximized since the first two terms in
(Eq 13) do not depend on the correlation between the two processes, X" and X ™. One way to
correlate these two processes is the stochastic coupling method, [13, 14], where it has been
proved that the coupling between the two processes indeed reduces the variance of the estima-
tor of (Eq 12). S3 File contains implementation details regarding the coupling method. Notice
also that the coupling method is employed K times; one for each parameter, 6, k=1, ..., K
and if pair directional derivatives needed to be computed then the coupling method must be
invoked K(K-1)/2 times which for networks with high-dimensional parameter space is prohib-
itively expensive.

In Fig 1, the trajectories of the species of the p53 model (details in Results below) obtained
from the coupling method are compared with two completely uncoupled trajectories. Even
when the processes have random oscillations, the coupling method manages to keep the trajec-
tories very close. As it is also evident from Fig 1 this is also true even for long times. On the
other hand, the uncoupled trajectories start to separate shortly after their starting point and for
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longer times the peaks of the oscillatory trajectories are in completely different positions as it
can be seen in the right lower plot of Fig 1.

How to use the proposed strategy

In this subsection, we describe some of the ways the proposed methodology can be used in
practice, but clearly other approaches are also possible.

Setting a maximum number of SIs. In this first perspective, we assume that the user is
given a computational resources budget that allows the simulation of at most M sensitivity
indices. Two important questions arise:

(a). Which SIs, S, ¢, should be chosen?
(b). Are there any guarantees regarding the magnitude of the remaining SIs?

In order to answer these questions we sort the SBs, see (Eq 4), in a descending order and define
the set

Cy = {all (k,£): B, is one of the M largest SBs}. (14)

Let also
TOL (M) := B,,. 15
(M) (klj%gé(M k¢ (15)

Then the answers to the above questions are: (a) Choose all pairs (k, £) € Cy, (b) for all (k,
£) ¢ Cy; we have from the inequality (4) that,

Sl < By, < TOL (M). (16)

Thus, the proposed strategy guarantees that the discarded SIs will be less or equal than TOL
(M). Note that inequality (Eq 16) quantifies the error in the proposed methodology.

Setting a pre-specified tolerance. On the other hand, a user can also take advantage of
some pre-existing intuition regarding the modeled system, to argue that under a pre-specified
tolerance the SIs can be discarded as insensitive. In this case we define the set,

Ctor, := {all (k,¢): B,,> TOL }, (17)

where TOL is the pre-specified tolerance. As in the previous case, where the maximum number
of SIs to be computed is fixed, the user will employ a gradient estimation method (here a finite
difference coupled algorithm is proposed, see Eq (12)) to compute the SIs, Sy, ¢, for all pairs (k,
£) in C;, with the guarantee that the discarded SIs will have magnitude less than TOL.

Results

In this section, we present and validate the proposed sensitivity analysis strategy in three bio-
logical reaction networks. The first example is the p53 model which is a reaction network with
five reactions, three species and seven parameters. It is a small but interesting system due to the
nontrivial long-time dynamics exhibiting random oscillations. Here, p53 is used as an intro-
ductory example to present and test the proposed strategy. Then, we present and validate the
proposed strategy for the Epidermal Growth Factor Receptor (EGFR) model in the transient as
well as in the stationary regime showing that our method can be equally applied at both
regimes. Finally, we discuss a protein homeostasis model with a total number of 4160 SIs. This
is a large-scale realistic model with sloppy characteristics.
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Table 1. The reaction table where x corresponds to p53, y, to Mdm2-precursor while y corresponds to
Mdm2. The state of the reaction model is defined as x = [y, yo, x]” while the parameter vector is defined as 6 =
[bx, @ @i k, by, a0, a1

Event Reaction Rate Rate’s derivative

R, 0 —x ay(x) = by Veay(x)=[1,0,0,0,0,0,0]"

R x—0 a,(x) =ax +2x Vo ax(x) = [0, X, xy/(x + k), —awxy/(x + k)2, 0, 0, 0]"
Rs X = X+Yo as(X) = byx Veas(x)=[0,0,0,0,x,0,0]"

Ry Yo=Y as(x) = aoYo Voaa(x)=[0,0,0,0,0,y,0]"

Rs y—0 as(x) =ay Veas(x)=1[0,0,0,0,0,0,y]"

doi:10.1371/journal.pone.0130825.t001

The comparison of computational costs between the proposed strategy and the direct calcu-
lation of all SIs is discussed separately, both in a general context as well as concretely for the
two latter examples; we refer to the Discussion section below.

A p53 model

The p53 gene plays a crucial role for effective tumor suppression in humans as its universal
inactivation in cancer cells suggests [29-31]. The p53 gene is activated in response to DNA
damage and gives rise to a negative feedback loop with the oncogene protein Mdm2. Models of
negative feedback are capable of oscillatory behavior with a phase shift between the gene con-
centrations. Here, we validate the proposed sensitivity analysis strategy to a simplified reaction
network between three species, p53, Mdm2-precursor and Mdm?2 introduced in [31]. The
model consists of five reactions and seven parameters provided in Tables 1 and 2. The nonlin-
ear feedback regulator of p53 through Mdm?2 takes place in the second reaction while the
remaining four reactions fall in the mass action kinetics category. Due to these mechanisms a
nontrivial steady state regime characterized by random oscillations.

Since the demonstrated model admits persistent, random oscillations we choose as observ-
able the amplitude of the oscillations for each of the three species. We extract the value of this
observable from the Power Spectral Density (PSD) [48] of the species time-series which is
defined as the Fourier transform of the autocorrelation function of the species time-series. The
PSD of a continuous-time process, X;, denoted by |X |, can be also given by

2

o I
|X|2<é>=;\ | xea (18)
0

The maximum amplitude of the PSD corresponds to the most prominent oscillation and it is
given by

F({X,} ;) = max|[X['(2) - (19)

Table 2. Parameter values for the p53 model.

Parameter b, ax ay k b, ao a,
Value 90 0.002 1.7 0.01 1.1 0.8 0.8
doi:10.1371/journal.pone.0130825.t002
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Fig 2. The SB for the SI S, ,, see Eq (4), can be writtenas |S, | < V,J,, where V, = \/Var(F,) and
T = 1/ Zu(Qp ). Inthis figure, the x-axis is divided into K = 7 intervals each with size 7, and the y-axis into

3intervals each having size V. The model is the p53 and the observables chosen here is the maximum
amplitude of the PSD (Eq (19)) for the 3 species. The area of the (k, {) rectangle corresponds to the SB of Sy
¢ The red, green, blue and orange rectangles correspond to values of the SB larger than 5000, between 5000
and 500, between 500 and 50 and less than 50, containing 10, 5, 0, and 6 Sls, respectively. Notice that the
6-th and 7-th parameters are relatively insensitive since the corresponding pathwise FIM elements are
relatively very small.

doi:10.1371/journal.pone.0130825.9002

This observable is not in the form of (Eq 1); however, our stationary sensitivity analysis as pre-
sented in (Eq 4)-(Eq 8) still applies; in order for the SB in (Eq 4) to be independent of the final
time T in the stationary regime, we have to prove that the variance of F scales like O(7). Indeed,

Var[F({X,}_,)] = E[F({X,},_,)"] — E[F({X,} )"
<Lle| [ x| 20)

showing that the variance of F is of order O(3), provided E[X, | remains bounded.

In total, 21 SIs which correspond to 3 observables (max amplitude of PSD for each species
time-series) and 7 parameters must be computed. In Fig 2, the stationary SB (Eq (6)) of the SIs
of the 3 observables with respect to the 7 parameters is plotted as rectangle; the x-axis is divided
into K = 7 intervals each with size the square root of the pathwise FIM (Eq (8)) while the the y-
axis is divided into L = 3 intervals each with size equal to the square root of the IAT (Eq (7)).
The area of the rectangle corresponds to the arithmetic value of the SB. Thus, rectangles with
small area indicate that the corresponding SI should also be small. In Fig 2, the two least sensi-
tive parameters have relatively so small SBs, due to the fact that the FIM for the 6th and 7th
parameter is relatively small, therefore they cannot be distinguished in the plot.

Notice that the grouping of the SIs of Fig 2 corresponds to the case “Setting a pre-specified
tolerance” as described in the “How to use the strategy” section. Dictated by the average value
of the observable functions which take values in the range between 10° and 10% we set the tol-
erance values to 5000, 500 and 50.
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Fig 3. Sls for the maximum value of the PSD (Eq (19)) of the three species of the p53 model for t < [0, 50] computed using the coupling gradient
estimator (Eq (12)). No ordering of the observables or the parameters in the left plot. In the middle plot, the Sls are ordered in the parameter direction using
the pathwise FIM (Eq (8)). The ordering reveals that the pathwise FIM can serve as a first screening procedure to exclude the insensitive parameters. In the
right plot, the estimated sensitivities are further ordered in the observable direction by sorting the IAT (Eq (7)) in descending order.

doi:10.1371/journal.pone.0130825.g003

In order to validate the ordering of the SIs from high to low values based on the stationary
SB, we estimate them using the finite-difference coupling gradient estimator. In the left plot of
Fig 3, the SIs are plotted without any ordering, i.e., as they are provided by the database [49]. In
the middle plot, the SIs are ordered in the parameter direction according only to the values of
pathwise FIM. As expected from Fig 2 and the SB, the two least sensitive parameters have rela-
tively very small SIs. In the right plot of Fig 3, the SIs are further ordered according to the val-
ues of IAT. The SIs with the largest values are concentrated to the right upper corner which
correspond to the larger SBs validating Step 1 of the proposed strategy. Moreover, despite the
fact that the SB correctly predicts the ordering of the SIs, the actual values of the SIs which cor-
respond to the SB that are labeled sensitive (red color in Fig 2) differ by an order of magnitude
from the values of the SB making the Step 2 of the proposed strategy necessary for quantitative
sensitivity results. On the other hand, the SIs that are labeled as insensitive (dark blue color in
Fig 2) can be safely eliminated from the Step 2 since the SB are relatively close to zero (when
compared to the remaining value of SB).

An EGFR model

The EGFR model is a well-studied reaction network describing signaling phenomena of (mam-
malian) cells [32-34]. As its name suggests, EGFR regulates cell growth, survival, proliferation
and differentiation and plays a complex and crucial role in embryonic development and in
tumor progression [50, 51]. In this paper, we study the reaction network developed by Kholo-
denko et al. [52] which consists of 23 species and 47 reactions.

The propensity function for the R; reaction of the EGFR network is written in the form
(mass action kinetics, see [7])

XA‘ XB‘ . .
a(x)=k{ 7 7, j=1,...,47 and j # 7,14,29 , (21)

% )\ B
. <« k » .
for a reaction of the general form ochj + ﬁij 2, ..., where Aj and Bjare the reactant species,
ajand f; are the respective number of molecules needed for the reaction and k; the reaction
constant. The binomial coefficient is defined by (Z) = k,(n"—lk), Here, x4, and Xp is the total
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Fig 4. Step 1 of the proposed sensitivity analysis strategy, graphically presented in the left plot, consists of identifying the least sensitive Sls (see
also Fig 2). The area of rectangle (k, £) represents the SB of the SI, Sy 4, for the transient regime. Every color corresponds to a predefined percentage of the
total area, i.e. blue, light blue, yellow and red correspond to to 10%, 15%, 25% and 50% of the total area containing 650, 224, 165 and 111 Sls, respectively.
The plot in the right represents Step 2 of the strategy where each column corresponds the a Sl which was estimated by the coupling estimator (Eq (12)). The
computed Sls are colored by the region identifier color of the left plot, showing that areas with low sensitivities correspond to areas with low values of the SB.

doi:10.1371/journal.pone.0130825.9004

number of species A; and B, respectively. Reactions Ry, Ry4, R9 are exceptions with their pro-
pensity functions being described by the Michaelis—-Menten kinetics, see [7],

a(x) = ijA]_/(Kj+xAj), j=17,14,29 , (22)
where V; represents the maximum rate achieved by the system at maximum (saturating) sub-
strate concentrations while K; is the substrate concentration at which the reaction rate is half
the maximum value. The parameter vector contains all the reaction constants,

T
O0=1Tkp, . kg ke kg kiss ooy kogs Kagy ooy kyry Vi Koy Vi Kiyy Vg Kol (23)

with K = 50. In this study the values of the reaction constants are the same as in [52].

Since the EGFR reaction network models signalling phenomena, it consists of a transient
regime that corresponds to the time interval [0, 50] and a stationary regime which approxi-
mately corresponds to the time interval [50, co). In this study, the computations in the steady
states regime were done in the time interval [50,100]. The general SB (Eq (4)) and the station-
ary SB (Eq (6)) are employed for the transient and the stationary regime, respectively. Fig 4
presents results from the transient regime. In the left plot of Fig 4, the parameters (x-axis) and
species populations (y-axis), which define the observable functions, are sorted according to the
square root of pathwise FIM and the square root of the variance of the observable, respectively,
as dictated by the SB (see also Fig 2). Thus, the area of every rectangle corresponds to the value
of the SB. This plot visualizes Step I of the proposed strategy; the SI, Sy ;, corresponding to a
rectangle with small area can be safely excluded from Step 2 of the sensitivity analysis strategy.
The coloring of the rectangles is performed as follows: starting from rectangles with large area
we color the first 50% of the total area using red, the next 25% using yellow and the next 15%
and 10% using light blue and dark blue, respectively. This grouping is equivalent to “Setting the
maximum number of SIs” as discussed in section “How to use the proposed strategy”.
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In the right plot of Fig 4, Step 2 of the proposed strategy is depicted. Even though all the SIs
are computed using the coupling method for validation purposes, we could exclude for
instance the SIs that correspond dark blue area in the left plot of Fig 4 since these “dark blue”
SIs are just a small portion of the total area of the rectangle. Thus, approximately half of the SIs
are excluded from Step 2 and a upper bound (or tolerance) is assigned to them. Moreover, the
right plot of Fig 4 serves as a validation of the proposed strategy; for instance, the SIs with large
values are concentrated on the upper right corner (red and yellow in the right plot of Fig 4)
which corresponds to the large values of the SB while the SIs with small values (dark blue) are
concentrated on the lower left corner validating the proposed strategy.

In Fig 5, the SIs for the transient regime (plots on left column) and the stationary regime
(plots on right column) are presented showing that the proposed strategy is capable of handling
both regimes. For further validation, all SIs are computed using the finite-difference coupling
estimator (Eq (12)). In the upper row of Fig 5, the SIs are unordered (arranged according to the
database ordering, see [49]). In the middle row of Fig 5, the SIs are ordered in the parameter
direction using only the pathwise FIM given by (Eq 10) for the transient regime and by (Eq 8)
for the stationary regime. Notice that this ordering produces also a qualitative separation
between insensitive and sensitive parameters. Hence, pathwise FIM alone can serve as an even
simpler alternative to Step I of the proposed strategy (see also the Discussion section, below).
In the lower row of Fig 5, the SIs are further ordered using the standard deviation of the time-
averaged observable and the IAT for the transient and stationary regime, respectively. In both
regimes, the SIs with large values are concentrated on the upper right corner (lower row of Fig
5) which corresponds to the large values of the SB validating the proposed strategy. Finally,
notice that there are SIs for insensitive parameters (left side in lower row’s plots) with relatively
non-negligible values, however they stem from the statistical bias of the coupling method and
not from a wrong labelling of the SIs based on the SB.

A protein homeostasis model

In [35], the authors propose a reaction network that models the role of two chaperones, the
Hsp70 and the Hsp90, in the maintenance of protein homeostasis. Loss of protein homeostasis is
the common link between many neuro-degeneration disorders which are characterized by the
accumulation of aggregated protein and neuronal cell death. The authors examined the role of
both Hsp70 and Hsp90 under three different conditions: no stress, transient stress and high
stress. Their model was validated against experimental data. The studied reaction network con-
sists of 52 species and 80 reactions with propensities being of mass action kinetics type described
by (Eq 21). The reaction constants as well as the initial populations were taken from [35]. Defin-
ing as observables the averaged species populations, i.e., f,(x) = x,, [ = 1,...,N in (Eq 1), the
total number of Sls in this model is 4160. The parameter vector consists of all reaction constants

0=1lky,... ky]" (24)

where the parameter values used here were taken from [35].

In this model under the mechanism of no stress, only few SIs have large values while most
of them are close to zero presenting a good example for “sloppiness” (see right plot of Fig 6).
Note that when more complex mechanisms are included, the “sloppiness” of the reaction net-
work will be changed but since we are interested in the validation of the proposed strategy, we
restrict our discussion in the no stress case. Due to the high number of SIs, it is of great impor-
tance to screen out the insensitive pairs of parameters—observables using the stationary SB (Eq
(6)). Then, a more accurate and refined estimation of the potentially large SIs using the cou-
pling method can be performed (Step 2 of the proposed strategy).
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Fig 5. Sls for the EGFR model on the transient regime t € [0, 50] (plots on left column) and on steady states regime t < [50, 100] (plots on right
column). The upper row presents the Sls without any ordering. On the middle row, the Sls are ordered in the parameter direction using the pathwise FIM
(Egs (10) and (8) for the transient and stationary regime, respectively). On the lower row, the Sls are further ordered using the standard deviation of the
observable and the IAT for the transient and stationary regime, respectively.

doi:10.1371/journal.pone.0130825.9005
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Fig 6. Step 1 of the proposed sensitivity analysis strategy consists of identifying the least sensitive parameters. In the left plot, the area of rectangle
(k, £) is the SB of the SI, Sy ¢ (see also Fig 2). Red, yellow, light blue and dark blue regions correspond to SB values greater than 100, between 10 and 100,
between 1 and 10 and less than 1, containing 76,268,318 and 3498 Sls, respectively. The plot in the right shows Step 2 of the strategy and simultaneously
serves as a validation of the proposed methodology. Each column correspond to an actual SI, computed by the coupling method. The Sl are sorted according
to the sorting provided by the the first step of the strategy and colored by the region identifier color of the left plot, showing that areas with low sensitivities
correspond to areas with low values of the SB.

doi:10.1371/journal.pone.0130825.9006

We group the SIs in the same way as in the p53 model, i.e. the range of the estimated SB is
divided into regions of the same order of magnitude, e.g. the red and the dark blue region on
the left plot of Fig 6 correspond to SIs in which the SB has a value greater than 100 and less that
1, respectively. The SIs with large values are concentrated on the upper right corner (right plot
of Fig 6) which corresponds to the large values of the SB while the SIs with small values are
concentrated on the lower left corner, validating once again the proposed strategy. More pre-
cisely, Step I of the proposed sensitivity strategy consists of screening out the parameter—
observable pairs that correspond to regions of rectangles with small area. Assigning the value
of the SB to the SIs with associated SB value less than 1 (dark blue in Fig 6) results in a signifi-
cant reduction in the total computational cost since 3498 out of 4160 (approximately 85%) SIs
can be safely discarded as insensitive. Then, in Step 2, the SIs of the remaining pairs are com-
puted using the coupling method. As it can be seen in the right plot of Fig 6, computing the SIs
in red, yellow and light blue areas is enough to obtain the important information for the whole
sensitivity matrix.

Discussion

This section provides a detailed discussion on the computational gain of the proposed strategy
as well as a simple formula on the achieved speedup. Moreover, we discuss the error quantifica-
tion in the proposed sensitivity analysis strategy.

Using (only) FIM to screen out insensitive parameters

As discussed earlier (middle row of Fig 5) the pathwise FIM (Eqs (10) or (8) in the steady state
case) can serve as a fast alternative screening method instead of the complete SB (inequalities
(4) or (6) in the steady state case). In this case, the calculation of the standard deviation of the
observable (or the IAT (Eq (7)) in the stationary case) is bypassed leading to a less accurate but
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Fig 7. An alternative 1st step in the proposed strategy is presented in left plot where the diagonal elements of the pathwise FIM for the EGFR
model is sorted in descending order. This ordering of the pathwise FIM gives a sorting in the parameters which gives a qualitative measure of the
sensitivity of the model with respect to parameters. In the second step of the strategy (right plot), the Sls computed using the finite-difference coupling
estimator are ordered according to the pathwise FIM value of the left plot. This figure validates the fact that pathwise FIM alone can give a first qualitative
estimate of the Sls.

doi:10.1371/journal.pone.0130825.9007

observable-independent screening method. The ordering of the FIM from high to low values
provides a qualitative measure of sensitivity with respect to the parameters.

In Fig 7, the pathwise FIM alone is utilized for the ordering of the SIs for the EGFR model in
the stationary regime, providing a computationally less expensive alternative to Step I of the
strategy discussed earlier. In the left plot of Fig 7, the pathwise FIM is ordered in descending
order. Then, the potentially most sensitive parameters whose pathwise FIM values summing to
50% of the total sum of the pathwise FIM are organized into the red group and the following
25%,15% and 10% are organized into three groups (yellow, light blue and dark blue, respec-
tively). Notice that this grouping is not unique and different parameter groupings can be used
depending on the model under consideration. In the right plot of Fig 7, the SIs are computed
using the coupling method and sorted according to the ordering given by the pathwise FIM as
in the middle row of Fig 5. Moreover, the SIs are grouped and colored according to the group-
ing based on the pathwise FIM, see left plot of Fig 7. It is evident that there is a separation of
the SIs into groups containing parameters with high (red and yellow), low (light blue) and
almost zero (dark blue) sensitivities.

Although pathwise FIM as a sensitivity tool for reaction networks was studied and used ear-
lier in [25], there are some differences with the methodology proposed in this article. Here
pathwise FIM serves as part of the upper bound of the SI while in [25] there was no (immedi-
ate) connection of the pathwise FIM with the SIs. Moreover, in [25] there was no estimation of
the actual SIs while here only the SIs of the most sensitive species/parameters are estimated in
Step 2 of the proposed strategy. Nevertheless, estimates such as (Eq 4) and (Eq 26) below give
us quantified guarantees to employ only the pathwise FIM, thus bypassing the costly Step 2. Of
course, we can only use this strategy provided that identifying and screening out insensitive
parameters is the focus of the sensitivity analysis. We also refer to the “Computational Cost”
subsection below for related comments on this issue.
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Error quantification in the accelerated sensitivity analysis

In this section, we quantify the error of the proposed methodology under the assumptions that
only pathwise FIM is used in Step I and the quantity of interest is fo(x) = xp, £ = 1, . . ., N, where
N is the number of the species. We consider the case where there is a fixed amount of computa-
tional resources M = K’ x N, where K’ is the maximum number of parameters in which SIs can
be computed. Note that this is a special case of the error quantification discussed in section
“How to use the proposed strategy”. Then the questions posed here are:

(a). For which parameters should the SIs be computed?
(b). What is the magnitude of the SIs that are discarded by Step I of the proposed strategy?
To answer these questions we define the set

Cy = {all k:k—th diagonal element of pathwise FIM is one of the K’ largest values} (25)

Then, the answer to (a) is to compute SIs for all k € Cys. The answer to (b) is that for all k ¢ Cy
and£=1, ..., N, we have the bound

Sul < o) max /Z,(Q), = TOL(LK), (26)

where the tolerance TOL(¥, K’) is defined as above and the last inequality follows from the sta-
tionary SB (ineq. (6)). The SB given by (Eq 26) assures that the error in the proposed methodol-
ogy due to the discarded (by Step 1) SIs, will be less or equal to max, TOL(¢, K').

Computational Cost

The computational cost of the proposed strategy, consists of the cost of the estimation of the
SB (ineq. (4) or (6)) as well as the cost of estimation of the SIs not discarded from Step 1 by
using the coupling method. This cost is compared with the computational cost of using the
coupling method for all SIs without the screening step of Step 1. The comparison will be done
in terms of the computational gain G, which is the sum of the costs from Step 1 and Step 2 of
the strategy over the cost of the coupling method for all SIs:

__cost of proposed strategy

" cost of computing all SIs

cost of SB cost of computing sensitive SIs (27)

~ cost of computing all SIs cost of computing all SIs
=G +G, .

Note that 1/G measures how many times the proposed strategy is faster compared to the esti-
mation of all SIs using the coupling method. For the technical details on this comparison see S4
File.

For simplicity we consider the case where only the pathwise FIM is used to discard insensi-
tive parameters, see the previous section “Error quantification in the accelerated sensitivity
analysis”. In this case information on the sensitivity of observables is obtained from (Eq 26)
using Step 1. Moreover, the quantity of interest (observables) considered here is the species
population, i.e. fo(x) = x,. Finally, the comparison is being done under the requirement that the
relative confidence intervals (for the definition, see S4 File) of all estimators involved in both
approaches will have variance less or equal to § < 1.
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We observe that the variance of the SB is much less than the variance of the coupling
method (i.e. Eq (13)) leading to G; < 1 (see Figure A in S4 File). After the computation of the
SB, the SIs are grouped into two categories, i.e., potentially sensitive and insensitive. Let K’ be
the number of sensitive parameters that correspond to the potentially sensitive SIs and K the
number of all parameters. Then, under some reasonable assumptions (see S4 File for more
details), the G, term is approximately equal to G, = £ and the computational gain G is approx-
imated by

Gr—. (28)

We next validate the approximation (Eq 28) of the computational gain on the EGFR model
presented earlier, where the number of parameters is K = 50. By inspection of Fig 7 the number
of sensitive parameters is K' = 28, which correspond to the first three colored regions of the
graph. Thus, G can be approximated by G =~ £ = 0.56. On the other hand, we compute the G,
and G, terms exactly by measuring the simulation cost of the two methods in terms of counting
the number of required samples. The G; term is equal to 0.0034 showing that the estimation of
the SB needs about 300 times less samples than that of computation of SIs using the coupling
estimator while G, is equal to 0.72. As a result, the actual speed-up due to the proposed strategy
is approximately 1/G ~ 1.4. These are modest computational gains, however they are achieved
with minimal investment in computational resources in Step I; on one hand, the variance cal-
culation in the SB is anyhow necessary in any forward simulation, in order to obtain confidence
intervals for the species (observables), while the calculation of the pathwise FIM is straightfor-
ward and can be viewed as the simulation of just one additional observable.

Although the computational gains in systems such as EGFR, where a large number of
parameters are relatively sensitive are modest, the gains are very significant in “sloppy” sys-
tems. Indeed, for the Protein Homeostasis reaction network, assuming that G; is negligible
compared to G, and using the approximation in (Eq 28) to obtain an estimate for G,, we have
that the computational gain for this model is G ~ £ = 16 = 0.2. The value for K’ is obtained by
assuming that the important parameters are those colored with red, yellow and light blue in
Fig 8. The value of G ~ 0.2 suggests a 5-times speed-up in the sensitivity analysis of this
“sloppy” example.

Finally, as discussed at the end of the subsection “Using (only) FIM to screen out insensitive
parameters”, we may also employ just Step 1 (and skip Step 2), at least when identifying and
screening out insensitive parameters is the focus of the sensitivity analysis. This may be the
case in high-dimensional reaction networks with suspected “sloppy” characteristics. In this
case, the computational cost of the proposed methodology dramatically decreases. For
instance, in the EFGR case the speed-up is 1/G; ~ 294 times faster than the full coupling
method. In the case of the Protein Homeostasis example the gains are much higher.

Conclusions

Existing information-based parametric sensitivity analysis methods for stochastic reaction net-
works can tackle systems with a large number of parameters without however providing
insights on specific quantities of interest (observables). On the other hand, existing gradient-
based methods can perform accurate sensitivity analysis for arbitrary observables but with high
computational cost which can become prohibitive for networks with a high dimensional state
and/or parameter space due to (a) the high variance of SI estimators, and/or (b) the need to cal-
culate gradients corresponding to all parameters. In the proposed methodology, we address
these challenges through a two-step strategy, combining two different sensitivity analysis
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Fig 8. Diagonal elements of the pathwise FIM for the Protein Homeostasis model sorted in descending order. The coloring of the parameters is being
done as follows: parameters whose pathwise FIM values sum to 70%, 20%, 8% and 2% of the total sum of pathwise FIM values, are grouped together and
correspond to red, yellow, light blue and dark blue color, respectively.

doi:10.1371/journal.pone.0130825.9008

approaches using a new SI upper bound. More specifically, in Step 1, we first perform an
“insensitivity” analysis: namely, the parameters’ sensitivity can be systematically screened and
many can be eliminated as insensitive based on derived SBs of the SI which are computationally
inexpensive; in Step 2, only the potentially sensitive parameters which were not screened out in
Step 1 are estimated exactly, based on the finite-difference (gradient) coupling approach.

The acceleration in sensitivity analysis due to the proposed strategy can be very significant
especially when sloppy systems are considered and most of the parameters are expected to be
screened out as insensitive from Step 1. Moreover, the proposed strategy offers a simple way to
rationally balance accuracy and computational cost, selecting the number of insensitive param-
eters that need to be discarded from further sensitivity analysis. Specifically, the tradeoff
between computationally expensive gradient estimation and accuracy in SI computation is
quantified in terms of an easily computable SBs on the SIs (see (Eq 4) and (Eq 6) for the tran-
sient and the stationary regimes, respectively), which in turn determines a cutoff (or a user-
determined tolerance) of insensitivity. The proposed strategy, through the SB, guarantees that
the SIs for the insensitive parameters will lie below the value of the cutoff. Thus, it is upon the
practitioner’s choice how many of the parameters will be screened out, based on the SB values
and the overall computational budget. The computational acceleration of the proposed strategy
is approximately quantified by the ratio between the total number of parameters over the num-
ber of the potentially sensitive parameters which were not eliminated in Step 1, i.e., the ratio %.

We conclude this paper by noting that the proposed strategy is by no means restricted to
well-mixed systems such as reaction networks and can be directly applied to spatially-extended
systems (high-dimensional in state space). Indeed, the pathwise FIM used in the screening in
Step 1, still has low variance for spatially-extended systems such as Kinetic Monte Carlo, as it
has been shown in catalysis examples [24], while the coupling method in Step 2 can be modi-
fied for such models so that it still gives reduced-variance estimators for the Sls, see [14]. In
fact, the proposed strategy is absolutely necessary in spatially-expended systems with a large
number of parameters since gradient computations are prohibitively expensive due to the need
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for a large number of repeated runs arising in the computation of SIs. Finally, the proposed
strategy is compatible with any other sensitivity analysis approach in the sense that any gradi-
ent estimation method can be utilized in Step 2 instead of the coupling method.

Supporting Information

S1 File. Information Theory and Sensitivity Bounds. The SBs are presented from an infor-
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