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Abstract: Increased antimicrobial resistance (AMR) has been reported for pathogenic and commensal
Escherichia coli (E. coli), hampering the treatment, and increasing the burden of infectious diarrhoeal
diseases in children in developing countries. This study focused on exploring the occurrence, patterns,
and possible drivers of AMR E. coli isolated from children under-five years in Zambia. A hospital-
based cross-sectional study was conducted in the Lusaka and Ndola districts. Rectal swabs were
collected from 565 and 455 diarrhoeic and healthy children, respectively, from which 1020 E. coli were
cultured and subjected to antibiotic susceptibility testing. Nearly all E. coli (96.9%) were resistant to
at least one antimicrobial agent tested. Further, 700 isolates were Multi-Drug Resistant, 136 were
possibly Extensively-Drug Resistant and nine were Pan-Drug-Resistant. Forty percent of the isolates
were imipenem-resistant, mostly from healthy children. A questionnaire survey documented a
complex pattern of associations between and within the subgroups of the levels of MDR and socio-
demographic characteristics, antibiotic stewardship, and guardians’ knowledge of AMR. This study
has revealed the severity of AMR in children and the need for a community-specific-risk-based
approach to implementing measures to curb the problem.

Keywords: antimicrobial resistance; Escherichia coli; children; risk factors; Zambia

1. Introduction

The emergence of antimicrobial resistance (AMR) is a global public health threat [1].
Increased resistance to commonly used antibiotics has been reported for various pathogenic
and commensal bacteria, hampering the treatment, and increasing the burden of infectious
diarrhoeal disease in general, especially in children under five years [2,3]. Resistance against
all available antimicrobial agents has been reported [4], including the last line of antibiotics
reserved for treating infectious diarrhoeal diseases, which is medically alarming [5].

In developing countries, the burden of childhood infectious diseases remains high [6],
partly due to inadequate health care systems [7]. Infectious diarrhoeal disease is one of the
significant causes of mortality and morbidity in children under-five years in developing
countries, including Zambia [8,9]. Pathogenic Escherichia coli is a major cause of bacterial
diarrhoeal disease in this age group [10] and AMR increases the burden of such diarrhoeal
diseases even further [3].
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The rapidly growing trend of AMR is a multifaceted problem driven by several
interlinked factors, including inherent microbial characteristics, selective pressures of
antimicrobial use, and changes in society and technology that enhance the transmission of
drug-resistant organisms [11,12]. A significant driver of AMR development is the over- and
misuse of antimicrobials as therapeutics in human and veterinary medicine, agriculture
growth promotors, and disinfectants in households [13–16]. Many of these compounds
end up in the environment [17–19], hence contributing to the spread of AMR in animals,
the environment, and directly or indirectly to humans [20–23]. Further, other factors such
as behavioural, e.g., self-prescription of antibiotics [24]; sanitation and demographic e.g.,
crowded settings, poor cleanliness [25,26]; socio-economic e.g., poverty [27,28], have been
implicated in the spread of AMR in communities.

Increased consumption of antibiotics during the last decades, especially in developing
countries [29] has led to an increase in the occurrence of AMR [30,31]. Due to the lack of
strict regulations on the use of antibiotics in many developing countries, the population has
easy access to these compounds, even without prescription [32–34]. In addition, despite the
World Health Organization (WHO) recommendation to reserve antibiotics only in cases
of bloody diarrhoea [35], antibiotics are readily used to treat any form of diarrhoea in
children [36].

Most studies have focused on AMR in pathogenic E. coli collected from diarrhoeic
children, as antimicrobial susceptibility patterns govern the treatment and AMR pathogenic
bacteria is a direct public health threat. However, samples from healthy children may reveal
resistant commensal E. coli that might act as significant reservoirs for resistance genes [37]
hence, playing a considerable role in spreading the resistance within a community [38].
Tenover and McGowan (1996) suggested that exposure of commensal bacteria like E. coli to
antibiotics increases the carriage levels of resistant organisms and, if plasmid-mediated,
resistance might be transmitted to a more virulent acquired organism [39].

Therefore, this study aimed to explore the occurrence and patterns of antimicrobial-
resistant E. coli isolated from children under five years old in Zambia and identify possible
drivers for AMR in the study population. We used E. coli since it is commonly found in
humans and animals, can cause diseases in both host categories, and might serve as markers
of antibiotic resistance spread to pathogens and the remaining gut microbiota [40,41].

2. Materials and Methods
2.1. Study Design, Sites, and Population

A hospital-based cross-sectional study was conducted in 12 purposively selected health
centres (hospitals) and the children’s hospital in Lusaka and Ndola districts, respectively.
The study sites are the provincial headquarters of the most populated provinces of Zambia
and host heterogeneous populations from different cultures and social backgrounds [42]
(Figure 1).

2.2. Sample Size and Sampling Strategy

The population of children under five years of age in the Lusaka and Ndola districts
in 2019 were projected at 425,000 and 89,000, respectively [43]. If 50% of these children
sought health services [44], a fraction of 0.5% would be considered representative, and the
chosen sample size would be large enough to detect rare varieties of AMR. The targeted
sample size was, therefore, estimated to be 1287 children (diarrhoea and non-diarrhoeic).
Sampling was proportionally distributed in both districts using the under-five population
as a weighing proxy factor. The standard World Health Organization (WHO) definition
of diarrhoea was used [45], while healthy children were those without any symptomatic
disease at the time of visiting the clinic. Children undergoing antibiotic treatment at the
time of sampling and non-concerting parents were excluded.
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Figure 1. Map of Zambia showing the study sites.

2.3. Sample Collection and Epidemiological Survey

A rectal swab specimen was aseptically collected from each study participant and
transported chilled (<4 ◦C) in Cary-Blair enteric transport media (Oxoid, Basingstoke, UK)
to the Bacteriology Laboratory at the University Teaching Hospital in Lusaka for analysis.
Health status, food habits, socio-demographic characteristics, antibiotic stewardship, and
awareness of AMR of guardians were investigated through a pre-tested structured ques-
tionnaire administered to the child’s guardian. The final questionnaire used is provided as
a Supplementary Material File.

2.4. Laboratory Analysis
2.4.1. Isolation and Identification of E. coli

Rectal swabs were pre-enriched in buffered peptone water (Oxoid, Basingstoke, UK)
and aerobically incubated at 37 ◦C for 24 h. The enriched broth was plated onto MacConkey
agar plates (Oxoid, Basingstoke, UK) and incubated aerobically for an additional 24 h at
37 ◦C. Lactose fermenting colonies were then sub-cultured onto Eosin Methylene Blue
(EMB) agar plates (Oxoid, Basingstoke, UK) and incubated aerobically at 37 ◦C for 24 h.
Presumptive E. coli colonies displaying a green metallic sheen were then purified on
nutrient agar (Oxoid, Basingstoke, UK). One colony from each plate was further confirmed
by phenotypic characterization and standard biochemical tests using triple sugar iron
(Oxoid, Basingstoke, UK), Sulphur Indole Motility (Oxoid, Basingstoke, UK) and citrate
agar (Oxoid, Basingstoke, UK). For additional taxonomic confirmation, 323 isolates were
randomly selected for further identification by matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) using the VITEK® MS—SARAMIS®

KB V4.16 (bioMérieux, Lyon, France).
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2.4.2. Antimicrobial Susceptibility Testing (AST)

The AST was performed by the Kirby-Bauer disc diffusion method using the Clinical
Laboratory Standards Institute (CLSI) guidelines on Müeller-Hinton agar plates (Oxoid,
Basingstoke, UK) [46]. Suspensions of 0.5 McFarland were prepared from pure colonies of
isolated E. coli and inoculated onto Müller-Hinton agar plates (Oxoid, Basingstoke, UK).
The susceptibility pattern of the isolates was determined for a panel of ten (10) antibiotics
(Table 1). A standard culture of E. coli (ATCC 25922) was used as positive control culture
with each batch of antimicrobial susceptibility testing.

Table 1. List of antibiotics used in AST.

Antibiotics Class of Antibiotic Description Source *

Amoxicillin-clavulanate Penicillin + beta-lactamase inhibitor 20 µg Oxoid
Ampicillin Penicillin (Beta-lactam) 10 µg Oxoid
Cefotaxime Third Generation Cephalosporin (Beta-lactam) 30 µg Oxoid

Chloramphenicol Phenicols 30 µg Oxoid
Ciprofloxacin Fluoroquinolone 5 µg Oxoid
Gentamicin Aminoglycosides 10 µg Oxoid

Nalidixic acid Quinolones 30 µg Oxoid
Imipenem Carbapenems 10 µg Oxoid

Tetracycline Tetracycline 30 µg Oxoid
Trimethoprim-Sulphamethoxazole Folate Pathway Antagonist 25 µg Oxoid

* Source: Oxoid, Basingstoke, UK.

The plates were incubated for 16–18 h at 37 ◦C. The zones of inhibition were read using
a digital Vernier Calliper and interpreted as Susceptible (S), Intermediate (I), and Resistant
(R) based on the CLSI guidelines [46]. Multi-Drug Resistant (MDR), Extensively-Drug
Resistant (XDR), and Pan-Drug-Resistant (PDR) isolates were identified, with MDR defined
as non-susceptibility to at least one antibiotic in three antimicrobial classes tested; XDR as
non-susceptibility to at least one antibiotic in all but two or fewer antimicrobial classes (i.e.,
E. coli isolates remain susceptible to only one or two classes); PDR as non-susceptibility to
all antibiotics in all antimicrobial classes tested [47]. Since only one antimicrobial agent
was tested for each antimicrobial class, the concepts possible XDR and possible PDR were
used as per the international expert proposal for interim standard definitions for resistance
recommendations [47].

2.5. Data Analysis

The measured diameters of the zones of inhibition for AST were analysed using the
WHONET 2021® software. The resistance profile for all antibiotics was reported, and tables
and graphs were produced in WHONET. Epidemiological data and certain outputs from
WHONET® 2021 software were summarized and then entered into a database using Excel
2016®. Further statistical analyses were completed using Stata (StataCorp, College Station,
TX) version 16.0 for Windows.

Initially, descriptive statistics focused on describing the categorical variables from the
questionnaire focusing on demographic and hygienic factors, as shown in Tables 2 and 3.
The potential associations between the hypothesized categorical risk factors and the di-
chotomous outcomes (MDR, XDR, and PDR patterns displayed by E. coli) were assessed
using Chi-square analyses. A new variable was created as an ordinal outcome with
0 = AMR, 1 = ANY AMR, 2 = MDR, 3 = XDR, and 4 = PDR. Explanatory variables showing
a p-value < 0.20 from one of the outcome models were selected as candidate variables and
taken into the multivariable logistic and ordinal regression models. The multivariable mod-
els were built using a backward selection strategy, using a p-value of <0.05 of the likelihood
ratio test as inclusion criteria. The model fit was assessed using the Hosmer Lemeshow
test, lroc and lsens procedures in Stata for logistic models, and graphical methods for the
ordinal model. Finally, the potential effects of the random effect of Health Centres were
assessed for all models using the melogit procedure in Stata.
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Table 2. Socio-demographic characteristics of study participants.

Variables Categories N (1020) Percent

Health status Healthy 455 44.61
Diarrhoeic 565 55.39

Gender Female 499 48.92
Male 521 51.08

Age 0–5 months 322 31.57
6–11 months 239 23.43

12–35 months 359 58.92
36–59 months 100 9.80

Guardian’s level of education None 51 5.00
Primary 253 24.80

Secondary 601 30.29
Tertiary 115 11.27

Population density in the area of habitation Low density 36 3.53
Medium density 190 18.63

High density 794 77.84
Size of the household Below 5 people 422 41.37

Equal or above 5 people 598 58.63
Keeping animals at the household level No 864 84.71

Yes 156 15.29
Types of animals kept at household level * (N = 156) Livestock 11 7.05

Poultry 84 53.85
Pets 82 52.56

Other animals 8 5.13

* Variable with multiple responses.

Table 3. Hygienic and child feeding characteristics of study participants.

Variables Categories N (1020) Percent

Source of water for drinking * Pipe borne (council water) 859 84.22
Borehole 147 14.41

River/Pond/Dam 18 1.76
Sachet/Bottled/Filtered 11 1.08

Treatment of drinking water No 366 35.88
Sometimes 215 21.08

Yes 439 43.04

Washing hands before cooking and feeding the child No 51 5.00
Sometimes 241 23.63

Yes 728 71.37

Washing hands after disposing of the child’s faeces No 55 5.39
Sometimes 182 17.84

Yes 783 76.76
Types of toilets * Flush toilet 495 48.53

Pit latrine 536 52.55
Disposing of solid waste * Bin 749 73.43

Pit 238 23.33
Roadside 36 3.53

Storage of prepared food for the child No 284 27.84
Yes 736 72.16

Storage methods of prepared food for the child (N = 736) At room temperature 331 44.97
In a cold chain 83 11.28

In a warmer 322 43.75
Exclusive breastfeeding No 92 9.02

Partially 737 72.25
Exclusively 191 18.73

Child feeding methods * Spoon 736 72.16
Fingers/hands 623 61.08
Bottle feeding 3 0.29

* Variable with multiple responses.
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2.6. Ethical Consideration

The study was approved by the Zambian ERES Converge Institutional Review Board (Ref.
No. 2020-Aug-006) and the National Health Research Authority (NHRA00010/3/09/2020).
Further, the Provincial and District Health Offices were informed about the study. Informed
consent was obtained before the study, and only the under-five-year-old children, as defined
above, whose guardians consented to participate in the study were included.

3. Results
3.1. Characteristics of Study Participants

In total, 1020 children were included in this study, of which 565 (55.39%) were diar-
rhoeic and 455 (44.61%) healthy. Boys were slightly more represented than girls (n = 521,
51.08%). The median age (IQR) of study participants was 10 (4–21) months, with the
minimum and maximum age range between one and 59 months, respectively. Most of the
study participants lived in high-density population areas (77.84%), and 58.92% of their
guardians had attained up to a secondary level of education. Further, more than half, 598
(58.62%), of the households had five or more members (Table 2).

With regards to the variables connected to hygiene and behavioural characteristics,
859 (84.22%) households used council water (pipe-borne), and 439 (43.04%) further treated
water intended for drinking. Most guardians, 728 (71.37%) and 783 (76.76%) reported
washing their hands before cooking or feeding the child and after disposing of the child’s
faeces, respectively. The pit latrine was used slightly more (52.55%) than the flush toilet,
while the bin (73.43%) was the commonly used disposal method of solid waste. Only
191 (18.73%) of the participant’s guardians complied with the exclusive breastfeeding of
children below six months. Most guardians, 736 (72.16%), stored prepared food for children
for further use, mostly at room temperature (44.97%) or in a warmer (43.75%), and the
spoon (72.16%) was commonly used to feed children (Table 3).

The knowledge and characteristics of antibiotics, AMR, and diarrhoea are summarized
in Table 4. Most guardians, 531 (77.75%), perceived the consumption of contaminated
food as the cause of their children’s diarrhoea. Diarrhoea with mucus 301/565 (53.46%)
and fever 347/565 (61.63%) were the most frequently reported symptoms in children with
diarrhoea. Further, most guardians reported that they lacked knowledge of antibiotics and
AMR. Of these, 110/175 and 26/37 correctly understood antibiotics and AMR, respectively.

Table 4. Children’s guardians’ knowledge of antibiotics and characteristics of diarrhoea.

Variables Categories N Percent

Knowledge of antibiotics (N = 1020) No 845 82.84
Yes 175 17.16

Correct knowledge of antibiotics by
examples (N = 175)

No 65 37.14
Yes 110 62.86

Awareness of AMR (N = 1020) No 983 96.37
Yes 37 3.63

Correct awareness of AMR by the concept
definition (N = 37)

No 11 29.73
Yes 26 70.27

Use of antibiotics suggested by
unauthorized personnel

No 740 72.55
Sometimes 135 13.24

Yes 145 14.22
Knowledge of causes of diarrhoea (N = 1020) No 337 33.04

Yes 683 66.96
Perceived causes of diarrhoea * (N = 683) Poor hygiene 261 38.21

Food likely to be contaminated 531 77.75
Teething 134 19.62

Undercooked food 18 2.64
Complimentary food before six months 33 4.83

Change of diet 5 0.73
Germs 13 1.90
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Table 4. Cont.

Variables Categories N Percent

Others 26 3.81
Symptoms of diarrhoeic children * (N = 565) Bloody diarrhoea 33 5.86

Diarrhoea with mucus 301 53.46
Fever 347 61.63

Vomiting 269 47.78

* Variable with multiple responses.

3.2. Antimicrobial Susceptibility Patterns

The identification of isolates using standard biochemical tests was reliable since
their confirmation using MALDI-TOF MS showed 98.8% accuracy. All E. coli isolates
were subjected to AST using the above-mentioned panel of antibiotics (Table 1). Most
E. coli were resistant to at least one antibiotic (988/1020), nearly equally distributed
between healthy and diarrhoeic children with 95.4% (434/455) and 98.1% (554/565),
respectively (S1). The E. coli isolates displayed the highest resistance against ampicillin
(78.0%), trimethoprim-sulfamethoxazole (70.4%), and tetracycline (62.8%), while they
were more susceptible to chloramphenicol (83.8%) and gentamicin (80.1%) (Figure 2a).
This trend was the same in both healthy and diarrhoeic children, although at different
percentage levels. However, a significant difference in the susceptibility and resistance
profiles of the isolates to imipenem was observed between the healthy and diarrhoeic
children. Nearly 62% and 24% of isolates from healthy and diarrhoeic children were
resistant to imipenem, respectively (Figure 2b).

Of the 1020 E. coli isolates, 82.8% (845) were MDR, with 136 and 9 isolates being possible
XDR and possible PDR, respectively. The MDR profiles were grouped in 251 different
patterns consisting of 208 MDR patterns (resistance to at least one antibiotic in three
antimicrobial classes tested), 41 possible XDR patterns (resistance to at least one antibiotic
in all, except in one or two, antimicrobial classes tested) and two possible PDR patterns
(resistance to all antibiotics in all antimicrobial classes tested) (Tables S1–S3). The five most
frequent MDR and possible XDR patterns occurred differently between both groups, with
patterns A and D being significant for MDR (Figure 3a). The frequency of the five possible
XDR patterns was significantly different between the groups (Figure 3b), while possible
PDR E. coli were isolated from healthy children only.

3.3. Potential Risk Factors Associated with AMR

The dichotomous outcome variables MDR, possible XDR, and possible PDR were first
analysed individually and merged into a single ordinal outcome variable called Levels
of AMR (LAMR). Each outcome variable was analysed into three categories, diarrhoeic,
healthy, and all children. In the univariable analysis, all variables with a p < 0.20 (Table 5)
were selected to build the multivariable logistic regression and ordered logistic regres-
sion models.

Results from the standard multivariable logistic regression analysis are shown in
Table 5. Different sets of variables emerged in the different models, and many variables were
removed when adjusting for the random effect of health centres. All the logistic regression
models adequately fit the data (Hosmer and Lemeshow test), but with limited explanatory
power, with ROC areas around 0.60 (a ROC area of 0.50 indicated no explanatory power).
Substantial model improvements were observed for the random effect (LR test, p < 0.001).

In the MDR-adjusted models, only storing prepared food for the child was significantly
linked to MDR in all children, while gender and guardians’ awareness of antibiotics
remained in the healthy children model. For XDR, after adjusting for the effect of health
centres, five variables were removed, while age groups 6 to 11 and 12 to 35 months became
significantly associated with possible XDR isolates (Table 5). For PDR, the only variable
remaining for healthy children was awareness of AMR.
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Table 6 shows results for LAMR, the combined ordinal variable. While several factors
were identified in the standard multivariable model, adjusting for clustering removed most
variables from the model. Only feeding a child with stored prepared food remained.
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Table 5. Standard multivariable logistic regression and adjusted for health centres (HC) models for
risk factors associated with MDR, possible XDR, and possible PDR in children.

MDR OR (95% C.I) p > |z| OR Adjusted for HC (95% C.I) p > |z|

All children
Household in a high-density area 0.13 (0.02–0.99) 0.050

Storing prepared food for the child 0.65 (0.44–0.96) 0.031 0.65 (0.43–0.98) 0.040
Disposing of solid waste in a pit 1.60 (1.04–2.45) 0.033

Disposing of solid waste on the roadside 8.80 (1.19–64.96) 0.033

Diarrhoeic children
Disposing of solid waste in a bin 0.46 (0.27–0.79) 0.006

Knowledge of antibiotics 1.96 (1.00–3.83) 0.049

Healthy children
Gender 0.51 (0.31–0.86) 0.011 0.57 (0.32–0.98) 0.041

Storing prepared food for the child 0.60 (0.37–0.98) 0.046
Knowledge of antibiotics 0.53 (0.28–1.02) 0.057 0.48 (0.23–0.99) 0.049

Possible XDR OR (95% C.I) p > |z| OR adjusted for HC (95% C.I) p > |z|

All children
Age group 6–11 months 0.77 (0.44–1.34) 0.365 0.47 (0.28–0.79) 0.005

Age group 12–35 months 1.02 (0.63–1.65) 0.918 0.55 (0.35–0.88) 0.013
Age group 36–59 months 0.28 (0.11–0.74) 0.010 0.14 (0.05–0.39) 0.000

Child feeding with a spoon 0.61 (0.39–0.95) 0.028
Size of the household 1.57 (1.08–2.29) 0.019

Diarrhoeic children
Child feeding with fingers/hands 2.47 (1.02–5.95) 0.044 2.90 (1.16–7.19) 0.022

Keeping poultry at the household level 2.67 (1.18–6.01) 0.018 2.54 (1.09–5.87) 0.029
Using ATB given by non-professional 1.36 (0.98–1.88) 0.058

Healthy children
Storing prepared food in a warmer 0.48 (0.23–0.99) 0.049

Keeping pets at household 0.28 (0.08–0.93) 0.038 0.19 (0.05–0.71) 0.013
Treatment of drinking water 1.26 (0.95–1.66) 0.107

Possible PDR OR (95% C.I) p > |z| OR adjusted for HC (95% C.I) p > |z|

Healthy children
Awareness of AMR 10.33 (1.93–55.04) 0.006 9.06 (1.48–55.45) 0.017

Table 6. Ordered logistic regression model for risk factors associated with LAMR in children.

Variables OR (95% C.I) p > |z| OR Adjusted for HC (95% C.I) p > |z|

All children
Age group 36–59 months 0.58 (0.34–0.98 0.041

Household in a medium-density area 0.47 (0.22–0.99) 0.049
Household in a high-density area 0.48 (0.24–0.98) 0.045

Storing prepared food for the child 0.61 (0.42–0.87) 0.007 0.65 (0.43–0.98) 0.040
Disposing solid waste in a bin 0.66 (0.48–0.89) 0.006

Diarrhoeic children
Disposing solid waste in a bin 0.57 (0.38–0.85) 0.006

Keeping poultry in the household 2.37 (1.17–4.80) 0.016
Knowledge of antibiotics 1.70 (1.06–2.72) 0.026

Healthy children
Storing prepared food for the child 0.62 (0.42–0.91) 0.015

SWH after disposing of the child’s faeces 0.26 (0.08–0.81) 0.021

SHW: Sometimes Hands washing.
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4. Discussion

This study investigated the occurrence and patterns of AMR—E. coli in healthy and di-
arrhoeic children and established risk factors for AMR in children below five years. Nearly
all E. coli (96.9%) were resistant to at least one antimicrobial tested, slightly above the 83%
reported in Nigeria [48], and resistant E. coli were equally common among healthy and
diarrhoeic children. This near absence of susceptible E. coli is an alarming sign, foreshad-
owing a future public health crisis. Indeed, AMR is frequently observed in many low- and
middle-income countries, as reported in Ethiopia [49], Bolivia, Peru [50], and Vietnam [51],
including in children’s commensal E. coli in Kenya [52]. Some studies on commensal E. coli
isolated from children from Asia found a lower occurrence of resistance [51,53]. However,
these studies were conducted in rural areas, which could explain their lower reporting
rates of AMR as access to and therefore misuse of antibiotics are more prominent in urban
areas [54,55]. Equally, resistant E. coli isolated from diarrhoeic children were common in
Burkina Faso [56], South Africa [5], and Ethiopia [57] corroborating our findings, while
relatively different trends were observed in Taiwan [58] and Pakistan [59]. The difference
in the setting of these two studies could justify this disparity.

Several studies have reported high resistance to commonly used antibiotics, e.g.,
ampicillin, trimethoprim-sulfamethoxazole, and tetracycline, against enteric bacterial infec-
tions [49,58–60]. The easy accessibility and affordability of these drugs have led to their
overuse by the population [29,33] but also in the animal production chain, as evidenced
by recent studies completed in Zambia [22,23,61]. Further, in countries with a high preva-
lence of HIV infection, like Zambia [62], trimethoprim-sulfamethoxazole has been heavily
used for the past decades as prophylaxis against opportunistic infections in HIV-infected
and/or exposed individuals [63,64]. The above factors could explain the maintenance of
this resistance through selection pressure.

We found that most E. coli were susceptible to chloramphenicol and gentamicin.
An earlier study from Zambia [65] also found a low prevalence of chloramphenicol and
gentamicin-resistant E. coli isolates. This observation implies that the strains have not
developed more resistance against these two drugs since the last study in Zambia by
Chiyangi [65]. However, increased resistance to antibiotics recommended in the Zambia
standard treatment guidelines for infectious diseases in children, including diarrhoeal
diseases [66], limits treatment options.

There were few observable differences in resistance patterns between E. coli in healthy
and diarrhoeic children. Surprisingly, E. coli from healthy children were more frequently
resistant to commonly used antimicrobial like amoxicillin-clavulanic acid, ciprofloxacin,
and gentamicin compared to diarrhoeic children. This points to the community-level circu-
lation of resistance as opposed to hospital-acquired resistance or resistance associated with
disease management. Of special worry was the high percentage of imipenem-resistant iso-
lates observed in healthy children; imipenem-resistant E. coli were almost three times more
commonly isolated from healthy compared to diarrhoeic children. The high prevalence of
resistant strains against imipenem is not unique to this study [5]. It is especially worrisome
as the drug is a last resort classified as critically important and a high-priority antimicrobial
agent to treat severe bacterial infections in humans [67]. This scenario supports previous
postulates that healthy children carrying commensal E. coli could serve as reservoirs of
resistance genes with a possible transmission, if plasmid-mediated, to more virulent bacte-
ria [37,39]. Therefore, future infections in these children could be more challenging to treat
if the AMR in commensal E. coli is transferred to pathogenic bacteria.

Many of the E. coli were MDR, including possible XDR and PDR. This contrast earlier
studies from Taiwan [58], China [68], Nigeria [69], and India [53]. The robustness of our
study in terms of its considerable sample size and heterogeneous population could have
allowed the capture of rare patterns of MDR as compared to the above-mentioned studies.
The indicative significant difference in the patterns of MDR and possible XDR between the
isolates from diarrhoeic and healthy children is of great public health concern considering
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the recent report implicating commensal E. coli in the maintenance and transfer of XDR
plasmid to Shigella sonnei which could increase disease morbidity [41].

Importantly, the presence of all possible PDR E. coli in healthy children signals a public
health threat since the commensal flora is a highly populated ecosystem which may be
harbouring bacterial resistant genes and transfer these to other members of the microbiota,
including pathogens [70]. This may result in an increased probability of acquiring clinical
infections with AMR pathogens.

Performing risk factor analysis for AMR has been challenging because its occurrence is
a complex phenomenon linked to many factors [26,71–73]. Some authors have considered
analysing only one antimicrobial agent at a time in univariable and rarely on multivariable
models [51,74]. The interpretation of such models might not reflect the true situation
in which an isolate might have multiple resistance and would not potentially capture
the multiple effects of epidemiological factors on the occurrence of AMR. Analysing the
association between potential risk factors for AMR must be completed carefully, considering
a broad view of the combination of different patterns observed. A multiple resistance
patterns approach in a multivariable model is therefore preferable. One of the drawbacks
observed in the literature is that many authors discuss results from univariable statistical
analyses. In principle, these estimates of Odds Ratio (OR) are unreliable, and more elaborate
models need to be developed.

In the present study, we found a strong communal effect shown through the improved
explanatory power of the random-effect models used. The multivariable risk factors analy-
sis revealed an inconsistent association between the multiple resistance patterns outcomes
(MDR, possible XDR, possible PDR, and LAMR) and the independent variables. Further,
within the subgroups (all children, diarrhoeic and healthy children) of each outcome, no
single variable could consistently predict AMR. This variability shows the complexity and
heterogeneity of risk factors linked to AMR in the community [11,75,76]. It further implies
that the significant variables retained in the final multivariable logistic and ordinal regres-
sion models could be a result of random chance and would vary in other communities
based on their socio-demographic, economic, behavioural, and environmental character-
istics. For instance, four variables in this study, namely residence in a high-density area,
feeding the child with stored prepared food, disposing of the solid waste in a pit and by
the roadside, predicted the occurrence of MDR in all children in the multivariable logistic
model. However, when split between diarrhoeic and healthy children’s subgroups, two
different variables (disposing of solid waste in a bin and knowledge of antibiotics) and none
of the four from the main model predicted the occurrence of MDR in diarrhoeic children.
Equally, one other variable (gender of the child) and only one of the four from the main
model predicted the outcome in healthy children.

Further, after adjusting for the effect of the health centres, which are proxy measures of
the residential areas of the study participants, only feeding the child with stored prepared
food (adjusted OR: 0.65; p = 0.040) remained significantly associated with MDR occurrence
in all children. Furthermore, all variables in the diarrhoeic children were insignificant,
while gender (adjusted OR: 0.57; p = 0.041) and the guardians’ knowledge of antibiotics
(adjusted OR: 0.48; p = 0.049) remained in the healthy children model. Interestingly, in the
ordinal logistic regression model, the level of AMR after adjusting for the effect of the health
centres was only significantly influenced by feeding the child with stored prepared food for
all children, while in the subgroups, all variables became none-significant. A multivariable
analysis and interpretation as shown in this study give a holistic understanding of the
interdependence and multiple effects of predictors of the AMR in the community.

Although the large sample size and many antimicrobial agents were used in this
study to assess different patterns of AMR, we only used one isolate and one colony from
each child’s sample. There is a possibility that some resistant or susceptible colonies were
missed, under- or overestimating the true prevalence of resistant E. coli and/or certain
resistance patterns. Further, linking the potential epidemiological drivers and patterns
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of AMR to the geographical location of each community should be explored to enable
effective surveillance.

5. Conclusions

This study has revealed a high occurrence of MDR in healthy and diarrhoeic children
with several distinct patterns involving classified antibiotics that are critically important and
high-priority antimicrobials for treating serious bacterial infections in humans. It further
identified possible PDR—E. coli carriage in healthy children, highlighting the role that this
group could play in harbouring and transferring resistant genes to other pathogens.

The limited explanatory power of all logistic models (ROC around 0.60), the different
factors popping up in different models, and the strong random effect visualised in the final
model point toward a situation where the spread of AMR is linked to the widespread use
of antibiotics in the communities involved and cannot be attributed to special exposures.
This is also a warning for society, as AMR profiles strongly linked to specific risk factors
would be possible to control by focusing on specific hygienic measures within the family
unit. If AMR is a community-based problem, interventions also need to be communal—a
more fundamental challenge. The considerable sample size of the study should indicate
that the patterns observed are representative of the study provinces of Zambia.

Supplementary Materials: The following supporting information can be downloaded at: https://
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Diarrhoeic children AMR E. coli patterns.
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