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Here we took several stimulus configurations that have the same
numerosity progression but vary considerably in their non-
numerical visual features. We collected responses to these stimuli
using ultra-high-field (7T) fMRI in a posterior parietal area that
responds to changes in these stimuli. We first quantify the rela-
tionships between numerosity and several non-numerical visual
features in each stimulus configuration. We then use population
receptive field (pRF) modeling to quantify how well responses to
each of these visual features predicts the observed responses to
each stimulus configuration, and observed responses to all sti-
mulus configurations together. We compare the predictive accu-
racy of responses to numerosity and to non-numerical visual
features in explaining the observed responses. This provides the
details of the analysis outcomes summarized in an accompanying
article (10.1016/j.neuroimage.2017.02.012, NIMG-16–1350).
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Subject area
 Biology, Psychology

ore specific
subject area
Cognitive neuroscience, Neuroimaging
ype of data
 Figures, tables of descriptive statistics and descriptive text

ow data was
acquired
Ultra-high-field functional MRI, using a Philips Achieva 7T scanner
ata format
 Analyzed

xperimental
factors
Functional MRI scanner outputs from several scanning sessions have been
motion corrected and interpolated to common anatomical models for each
subject. We examine data within a particular region of interest in the posterior
parietal lobe that is thought to respond to a particular stimulus feature,
numerosity.
xperimental
features
We use population receptive field (pRF) neural response models to capture
responses to stimuli that vary in numerosity. Changes in numerosity are
inevitably accompanied by changes in non-numerical visual features. We
compare outcomes of numerosity response models to outcomes of alternative
models of responses these non-numerical visual features.
ata source
location
Utrecht, Netherlands
ata accessibility
 Analyzed data is displayed within the article. Source data is too large to
practically distribute (4 100 GB) and is freely available on request from the
authors.
Value of the data

– Many studies of numerosity processing use the stimulus configurations examined here to
demonstrate behavioral discriminability or neural responses to numerosity do not reflect responses
to low-level visual features.

– We quantify how low-level visual features change with numerosity in these stimulus
configurations.

– This allows researchers to see where behavioral and neural responses are consistent with responses
to low-level visual features.

– The presented fMRI analyses distinguish in detail between recent hypotheses of responses to
numerosity or co-varying non-numerical visual features.

– Data were acquired with ultra-high-field 7T fMRI, a technology unavailable to most researchers.
1. Data description

We took five stimulus configurations that are commonly used to investigate numerosity percep-
tion and neural responses to numerosity [1–7]. These varied in non-numerical visual features, but had
identical progressions of numerosity. We took fMRI responses to these stimuli from the human
posterior parietal cortex [1,2,4], which varied between stimulus configurations. For each stimulus
configuration, we quantified how each visual feature changed with numerosity. We used the time
course of visual feature progressions to predict the responses that would be expected if the fMRI
recording sites were responding to these visual features, thus quantifying how well responses to each
visual feature predicted the responses seen. We compared the predictive accuracy of these visual
feature models with that of numerosity models. To clarify the patterns in the data that underlie the



B.M. Harvey, S.O. Dumoulin / Data in Brief 16 (2018) 193–205 195
analysis outcomes, we provide textual descriptions for each visual feature to show how these patterns
led to the observed outcomes.
2. Experimental design, materials and methods

A complete description of our methods is included in our recent article [2]. Here we summarize
important details for interpreting the presented data. We collected ultra-high-field (7T) fMRI data
from eight normal subjects while presenting several stimulus configurations that each varied in
numerosity identically over time. Experiments were undertaken with the informed written consent of
each subject. All experimental procedures were cleared by the ethics committee of University Medical
Center Utrecht. Different stimulus configurations (Fig. 1 of [2]) were designed to keep specific visual
features (individual item size, total item area, or total item perimeter) constant across all numer-
osities, to group items more densely, or to use various shapes as items. For every stimulus config-
uration and numerosity, we quantified several visual features of the presented stimuli. This revealed
how each visual feature changed over time in each stimulus configuration. The resulting time course
of each visual feature allowed us to fit population receptive field (pRF) neural response models for
each visual feature at each fMRI recording site (voxel) in a right posterior parietal area that responds
to changes in these stimuli. For each visual feature, a forward model predicted neural responses at
each stimulus time point depending on the displayed visual feature quantity. The neural response
model described a Gaussian tuned response to the candidate visual feature, characterized by a pre-
ferred feature quantity (mean of the Gaussian distribution) and tuning width (standard deviation of
the Gaussian). The overlap of the displayed visual feature quantity at each time point with this neural
response model predicts the neuronal response time course. Convolving this with a hemodynamic
response function (HRF), predicts the fMRI time course. FMRI time courses were predicted for a large
range of preferred visual feature quantity and tuning width parameter combinations. For each
recording site and each visual feature, the parameters were chosen from the prediction that best fit
the data by minimizing the sum of squared errors (and so maximizing R2) between the predicted and
observed fMRI time courses.

This R2 quantified the amount of variance in each recording site's response that was explained by
each neural response model for each visual feature (‘variance explained’). We determined the dis-
tribution of variance explained by every neural response model in every stimulus configuration
(configuration-specific models). As neural response functions are unlikely to change between sti-
mulus configurations, we also constrained neural response models to use the same preferred visual
feature quantity and tuning width parameters to predict responses to all stimulus configurations
(constrained models). To determine whether neural tuning for a particular visual feature explained
responses better than tuning for numerosity, we performed Wilcoxon signed rank tests, comparing
the variance explained by the numerosity response models in each recording site to that explained by
visual feature response models at the same site.
3. Data

3.1. Individual item area, individual item perimeter, total item area and total item perimeter

Responses to these features made identical predictions to responses to individual item luminance,
individual item radius, and total item luminance and total item radius respectively. As the high
density configuration used the same item sizes as the constant area configuration, some visual fea-
tures had identical magnitudes in both these configurations. Similarly, items had a constant size
across numerosities in the constant size and variable features configurations, so some visual features
had very similar magnitudes in both these configurations.

Individual item area and perimeter models explained responses well only for the constant area,
constant perimeter and high density stimulus configurations, where item size co-varied with numer-
osity (Fig. 1A–F, Table 1). Nonlinear changes in individual item area and perimeter within the constant
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Table 1
Differences between stimulus features in mean, standard deviation, and correlation with numerosity.

Feature and stimulus configuration Mean Standard deviation Standard
deviation/mean

Correlation with
log(numerosity) (R)

Feature: log(Numerosity)
Any configuration 0.761 0.445 0.585 1

Feature: Individual item area
Constant area 0.018 deg2 0.019 deg2 1.064 −0.890
Constant item size 0.021 deg2 0 deg2 0 0
Constant perimeter 0.200 deg2 0.405 deg2 2.023 −0.741
High density 0.018 deg2 0.019 deg2 1.064 −0.890
Variable features 0.013 deg2 0 deg2 0 0
All configurations 0.054 deg2 0.189 deg2 3.503 −0.338
All except constant 0.078 deg2 0.242 deg2 2.693 −0.442

Feature: Individual item perimeter
Constant area 0.419 deg 0.220 deg 0.525 −0.969
Constant item size 0.516 deg 0 deg 0 0
Constant perimeter 1.115 deg 1.187 deg 1.064 −0.890
High density 0.419 deg 0.220 deg 0.525 −0.969
Variable features 0.410 deg 0 deg 0 0
All configurations 0.576 deg 0.594 deg 1.030 −0.479
All except constant 0.651 deg 0.761 deg 1.168 −0.627

Feature: Total item area
Constant area 0.064 deg2 0 deg2 0 0
Constant item size 0.187 deg2 0.168 deg2 0.901 0.934
Constant perimeter 0.361 deg2 0.384 deg2 1.064 −0.890
High density 0.064 deg2 0 deg2 0 0
Variable features 0.118 deg2 0.106 deg2 0.901 0.934
All configurations 0.159 deg2 0.217 deg2 1.366 −0.076
All except constant 0.222 deg2 0.263 deg2 1.183 −0.105

Feature: log(Total item perimeter)
Constant area 0.332 deg 0.223 deg 0.671 1
Constant item size 0.474 deg 0.445 deg 0.940 1
Constant perimeter 0.609 deg 0 deg 0 0
High density 0.332 deg 0.223 deg 0.671 1
Variable features 0.485 deg 0.444 deg 0.916 1
All configurations 0.446 deg 0.320 deg 0.716 0.801
All except constant 0.406 deg 0.346 deg 0.853 0.926

Fig. 1. Models of responses to individual item area, individual item perimeter, total item area and total item perimeter pre-
dicted less response variance than models of responses to numerosity did. (A, D, G and J) In some stimulus configurations, areas
and perimeters co-varied approximately linearly with numerosity. In others, they varied nonlinearly with numerosity or did
not vary. As such, numerosity models and area or perimeter models made different predictions that explained response var-
iance to different extents. Colored points and lines show the areas and perimeters for each numerosity in each stimulus
configuration. Where areas and perimeters had different values on different presentations, colored points show the mean
magnitude and error bars show the standard deviation. (B, E, H and K) In stimulus configurations where areas and perimeters
co-varied approximately linearly with numerosity, area and perimeter models predicted responses approximately as well as
numerosity models did. Where they varied nonlinearly with numerosity, area and perimeter models consistently predicted less
responses variance than numerosity models did. Where areas and perimeters were constant for all numerosities within a
stimulus configuration, they predicted no response variance. Over all stimulus configurations, numerosity models predicted
responses far better than area or perimeter models did. (C, F, I and L) When all response models were constrained to use
identical parameters to predict responses to all stimulus configurations, area and perimeter models predicted less response
variance than separate models fit to individual stimulus configurations (shown in B, E, H and K) did, particularly when visual
features in different stimulus configurations co-varied with numerosity over different ranges or in different directions. Bars
show the mean variance explained in responses at many recording sites, and error bars show the standard deviation. Black
lines show the mean response variance explained by numerosity models in each stimulus configuration, and gray boxes
represent the standard deviation, taken from Fig. 2 of [2].
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perimeter configuration (Fig. 1A and D) did not predict responses as well as numerosity (Fig. 1B and E).
Furthermore, different ranges of individual item area and perimeter in different stimulus configurations
did not predict responses well in constrained models. Explained variance fell particularly in the con-
stant perimeter stimulus configuration (Fig. 1C and F), which covered a different range from the other
configurations (Fig. 1A and D). As individual item area and perimeter did not vary in the constant item
size and variable features stimulus configurations, these visual feature models explained no variance
here. Whether using configuration-specific (Fig. 1B and E) or constrained (Fig. 1C and F) models,
responses to individual item area or perimeter explained far less response variance than numerosity
models did, when considered across all stimulus configurations (Wilcoxon signed-rank tests: po10–16

in all cases). If only considering stimulus configurations where individual item area and perimeter
varied with numerosity, responses to individual item area or perimeter still explained far less response
variance than numerosity models did (po10–11 in both cases).

Similarly, total item area models explained responses to the constant item size and variable fea-
tures stimulus configurations well (Fig. 1H). Total item area co-varied approximately linearly with
numerosity in both configurations (Fig. 1G), so changes in total item area followed changes in
numerosity here. Total item area varied nonlinearly with numerosity in the constant perimeter sti-
mulus configuration (Fig. 1G), predicting responses less well than numerosity. Constrained response
models explained little variance in the constant perimeter configuration (Fig. 1I) because total item
area and numerosity correlated negatively in this stimulus configuration, but positively in the con-
stant item size and variable features configurations (Table 1). As total item area did not vary in the
constant area and high density stimulus configurations, total item area models explained no variance
here. Whether using configuration-specific (Fig. 1H) or constrained (Fig. 1I) response models, the total
item area model explained far less response variance than the numerosity model did, when con-
sidered across all stimulus configurations (po10–16 in both cases). If only considering stimulus
configurations where total item area varied with numerosity, total item area models still explained far
less response variance than numerosity models did (po10–16).

As total item perimeter co-varied approximately linearly with numerosity in all except the con-
stant perimeter condition (Fig. 1J), configuration-specific total item perimeter models gave similar
results to numerosity models in all of these conditions (Fig. 1K). However, the relationship between
numerosity and total item perimeter differed between these conditions, and constrained total item
perimeter models predicted responses less well than constrained numerosity models did (Fig. 1L).
Critically, as total item perimeter did not vary in the constant perimeter stimulus configuration, these
models explained no variance here. Responses to the constant perimeter configuration varied simi-
larly to responses to other stimulus configurations. Whether using configuration-specific (Fig. 1K) or
constrained (Fig. 1L) models, total item perimeter models explained far less response variance than
numerosity models did, when considered across all stimulus configurations (po10–20 in both cases).
Even if all responses to the constant perimeter configuration were excluded from these analyses,
constrained total item perimeter models still explained significantly less response variance than
constrained numerosity models did (po10-6).

3.2. Convex hull perimeter and convex hull area

The convex hull is the smallest convex line that surrounds all items of the set. This can be
visualized as a rubber band stretched around the set. We quantified the length of this line (convex
hull perimeter), and the area within it (convex hull area). Both had similar relationships to numer-
osity, but neither was geometrically related to numerosity as both depend on random item
placement.

Both convex hull perimeter and area typically increased with increasing numerosity, but followed
complex nonlinear relationships in all stimulus configurations (Fig. 2A and D, Table 2). Responses to
these visual features predicted some response variance in every stimulus configuration, but always
less than numerosity response models did (Fig. 2B and E). Convex hull perimeter and area were far
lower in the high-density configuration than in other configurations (Fig. 2A and D, Table 2), and
constrained models predicted these responses particularly poorly (Fig. 2C and F). Whether using
configuration-specific (Fig. 2B and E) or constrained (Fig. 2C and F) models, convex hull perimeter and



Fig. 2. Models of responses to convex hull perimeter and convex hull area predicted less response variance than models of
responses to numerosity did. (A and D) Convex hull extent varied nonlinearly with numerosity in all stimulus configurations.
(B and E) Convex hull extent models consistently predicted less response variance than numerosity models did, due to these
nonlinear relationships. Over all stimulus configurations, numerosity models predicted responses far better than convex hull
perimeter or area models did. (C and F) When all response models were constrained to use identical parameters to predict
responses to all stimulus configurations, convex hull extent models predicted less response variance than separate models fit to
individual stimulus configurations (shown in B and E) did, particularly for the high density stimulus configuration, where
convex hull extents had very different ranges to the other stimulus configurations (Table 2).

Table 2
Differences between stimulus features in mean, standard deviation, and correlation with numerosity.

Feature and stimulus configuration Mean Standard deviation Standard
deviation/mean

Correlation with
log(numerosity) (R)

Feature: log(Numerosity)
Any configuration 0.761 0.445 0.585 1

Feature: log(Convex hull area)
Constant area 0.511 deg 0.204 deg 0.400 0.775
Constant item size 0.493 deg 0.282 deg 0.573 0.756
Constant perimeter 0.598 deg 0.028 deg 0.046 0.671
High density 0.257 deg 0.115 deg 0.448 0.842
Variable features 0.493 deg 0.282 deg 0.573 0.756
All configurations 0.470 deg 0.229 deg 0.488 0.585

Feature: log(Convex hull perimeter)
Constant area −0.176 deg2 0.419 deg2 −2.383 0.865
Constant item size −0.211 deg2 0.576 deg2 −2.731 0.839
Constant perimeter 0.047 deg2 0.076 deg2 1.598 0.532
High density −0.647 deg2 0.235 deg2 −0.363 0.922
Variable features −0.211 deg2 0.576 deg2 −2.731 0.839
All configurations −0.239 deg2 0.466 deg2 −1.946 0.652
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Fig. 3. Models of responses to luminance density, edge density and numerical density predicted less response variance than
models of responses to numerosity did. (A, D and G) Densities varied nonlinearly with numerosity in all stimulus configura-
tions. (B, E and H) Density models consistently explained less response variance than numerosity models, due to these non-
linear relationships. Over all stimulus configurations, numerosity models predicted responses far better than density models
did. (C, F and I) When all response models were constrained to use identical parameters to predict responses to all stimulus
configurations, these models predicted less response variance than separate models fit to individual stimulus configurations
(shown in B, E and H) did.
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area models explained far less response variance than numerosity models did, when considered
across all stimulus configurations (po10–16 in all cases).

3.3. Luminance density, edge density and numerical density

Because the total possible stimulus area was the same for all stimuli, luminance density, edge
density and numerical density within the total stimulus area were proportional to total item area,
total perimeter, and numerosity respectively. This yielded the same predictive accuracy in general
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linear models. Therefore, we quantified luminance density, edge density and numerical density
within the convex hull.

Luminance density decreased monotonically but nonlinearly with increasing numerosity in the
constant perimeter and high density stimulus configuration (Fig. 3A, Table 3). This nonlinearity
predicted less response variance than numerosity models did (Fig. 3B). For the other stimulus con-
figurations, luminance density decreased rapidly with increasing numerosities up to three, then
either decreased much more slowly, or increased, with increasing numerosity (Fig. 3A). The lumi-
nance densities of these stimulus configurations predicted far less response variance in single sti-
mulus configurations than their numerosities did (Fig. 3B). Furthermore, luminance densities covered
very different ranges between stimulus configurations (Table 3), and constrained models fit to all
stimulus configurations captured response variance poorly because responses did not follow the
different resulting predictions (Fig. 3C). Whether using configuration-specific (Fig. 3B) or constrained
(Fig. 3C) response models, luminance density models explained far less response variance than
numerosity models did, when considered across all stimulus configurations (po10–16 in both cases).

Except in the constant perimeter configuration, edge density and numerical density decreased
rapidly with increasing numerosities up to three, then either changed little, or increased slightly with
increasing numerosity (Fig. 3D and G). These non-linear progressions predicted little of the response
variance in single stimulus configurations (Fig. 3E and H). In the constant perimeter configuration,
edge density and numerical density co-varied approximately linearly with numerosity over most (or
all) of the numerosity range (Fig. 3D and G). Therefore, edge density and numerical density models
predicted response variance well for this stimulus configuration, though less well than numerosity
models did (Fig. 3E and H). Both edge density and numerical density differed widely between sti-
mulus configurations, and constrained models incorporating these differences predicted responses
poorly (Fig. 3F and I). Uniquely, constrained edge density models predicted responses to the constant
perimeter configuration better than constrained numerosity models did. Numerosity model para-
meters changed to capture variance in responses to other stimulus configurations, while edge density
Table 3
Differences between stimulus features in mean, standard deviation, and correlation with numerosity.

Feature and stimulus configuration Mean Standard deviation Standard
deviation/mean

Correlation with
log(numerosity) (R)

Feature: log(Numerosity)
Any configurations 0.761 0.445 0.585 1

Feature: Luminance density
Constant area 0.178 0.296 1.660 −0.709
Constant item size 0.267 0.271 1.016 −0.391
Constant perimeter 0.339 0.330 0.973 −0.936
High density 0.334 0.251 0.753 −0.816
Variable features 0.167 0.168 1.005 −0.388
All configurations 0.257 0.268 1.043 −0.640

Feature: log(Edge density)
Constant area 0.508 deg−1 0.252 deg−1 0.470 −0.554
Constant item size 0.685 deg−1 0.316 deg−1 0.461 −0.121
Constant perimeter 0.562 deg−1 0.076 deg−1 0.135 −0.532
High density 0.979 deg−1 0.091 deg−1 0.093 0.064
Variable features 0.696 deg−1 0.317 deg−1 0.455 −0.122
All configurations 0.686 deg−1 0.280 deg−1 0.408 −0.172

Feature: Numerical density
Constant area 9.789 deg−2 4.952 deg−2 0.506 0.375
Constant item size 12.560 deg−2 12.756 deg−2 1.016 −0.391
Constant perimeter 7.264 deg−2 5.708 deg−2 0.786 0.951
High density 29.951 deg−2 18.499 deg−2 0.618 0.899
Variable features 12.560 deg−2 12.756 deg−2 1.016 −0.391
All configurations 14.425 deg−2 14.092 deg−2 0.977 0.189



Fig. 4. Models of responses to display RMS contrast and convex hull RMS contrast predicted less response variance than
models of responses to numerosity. (A, B and C) As Fig. 3 of [2]. (D) Convex hull RMS contrast varied nonlinearly with
numerosity in all stimulus configurations. (E) Convex hull RMS contrast models consistently explained less response variance
than numerosity models did, due to these nonlinear relationships. Over all stimulus configurations, numerosity models pre-
dicted responses far better than convex hull RMS contrast models did. (F) When all response models were constrained to use
identical parameters to predict responses to all stimulus configurations, these models predicted far less response variance than
separate models fit to individual stimulus configurations (shown in E), because convex hull RMS contrast co-varied with
numerosity over different ranges in different stimulus configurations (Table 4).

Table 4
Differences between stimulus features in mean, standard deviation, and correlation with numerosity.

Feature and stimulus configuration Mean Standard deviation Standard
deviation/mean

Correlation with
log (numerosity) (R)

Feature: log(Numerosity)
Any configuration 0.761 0.445 0.585 1

Feature: Display RMS contrast
Constant area 0.186 0 0 0
Constant item size 0.272 0.118 0.434 0.987
Constant perimeter 0.330 0.110 0.336 −0.954
High density 0.186 0 0 0
Variable features 0.222 0.102 0.458 0.983
All configurations 0.239 0.099 0.413 0.216
All except constant 0.275 0.115 0.419 0.311

Feature: Convex hull RMS contrast
Constant area 0.239 0.107 0.447 0.069
Constant item size 0.336 0.135 0.402 0.794
Constant perimeter 0.323 0.155 0.480 −0.058
High density 0.384 0.140 0.365 0.365
Variable features 0.325 0.077 0.238 0.089
All configurations 0.321 0.130 0.403 0.242
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models could capture little variance in other configurations so optimized their parameters for the
constant perimeter configuration. Despite good prediction of responses to this single stimulus con-
figuration, both edge density and numerical density models explained far less response variance than
numerosity models did, when considered across all stimulus configurations, whether using config-
uration-specific (Fig. 3E and H) or constrained (Fig. 3F and I) models (po10–16 in all cases).

3.4. Display RMS contrast and convex hull RMS contrast

Display RMS contrast summarizes the distribution of luminance intensities in the entire display
area. Convex hull RMS contrast summarizes this distribution within the convex hull, which depended
on the random placement of the items and reflected changes in convex hull area with numerosity.

Much like total item area, display RMS contrast models only explained responses to the constant
item size, constant perimeter and variable features stimulus configurations, where display RMS
contrast co-varied approximately linearly with numerosity (Fig. 4A and B, Table 4). However, con-
strained response models explained little variance in the constant perimeter configuration because
display RMS contrast and numerosity correlated negatively in this stimulus configuration, but posi-
tively in the constant item size and variable features stimulus configurations (Fig. 4C, Table 4). As
display RMS contrast did not vary in the constant area and high density stimulus configurations, these
models explained no variance here. Whether using configuration-specific (Fig. 4B) or constrained
(Fig. 4C) models, display RMS contrast models explained far less response variance than numerosity
models did, when considered across all stimulus configurations (po10–16 in both cases). If only
considering stimulus configurations where display RMS contrast varied with numerosity, display RMS
contrast models still explained far less response variance than numerosity models did (po10–16).

Convex hull RMS contrast followed a complex pattern of increases and decreases with changing
numerosity in all stimulus configurations (Fig. 4D). Convex hull RMS contrast models predicted
responses to all stimulus configurations poorly, though better for the constant perimeter and high
Fig. 5. Models of responses to high spatial frequency contrast energy predicted less response variance than models of
responses to numerosity did. (A) High spatial frequency contrast energy increased approximately linearly with numerosity [8,9]
when items did not change size with numerosity, in the constant item size and variable features stimulus configurations.
However, high spatial frequency contrast energy decreased with increasing numerosity in the constant perimeter stimulus
configuration, and first decreased slightly then increased slightly with increasing numerosity in the remaining stimulus con-
figurations. (B) In stimulus configurations where high spatial frequency contrast energy increased or decreased approximately
linearly with numerosity, high spatial frequency contrast energy models predicted responses approximately as well as
numerosity models did. Where high spatial frequency contrast energy varied nonlinearly with numerosity, high spatial fre-
quency contrast energy models consistently predicted less response variance than numerosity models did. Over all stimulus
configurations, numerosity models predicted responses far better than high spatial frequency contrast energy models.
(C) When all response models were constrained to use identical parameters to predict responses to all stimulus configurations,
these models predicted far less response variance than separate models fit to individual stimulus configurations (shown in B),
because high spatial frequency contrast energy increased with numerosity in some stimulus configurations, and decreased
with numerosity in others (Table 5).



Table 5
Differences between stimulus features in mean, standard deviation, and correlation with numerosity.

Feature and stimulus configuration Mean Standard deviation Standard
deviation/mean

Correlation with
log(numerosity) (R)

Feature: log(Numerosity)
Any configuration 0.761 0.445 0.585 1

Feature: log(High frequency contrast energy)
Constant area 1.472 0.024 0.016 -0.560
Constant item size 1.514 0.056 0.038 0.989
Constant perimeter 1.560 0.075 0.048 -0.991
High density 1.520 0.012 0.008 0.561
Variable features 1.492 0.060 0.040 0.993
All configurations 1.512 0.057 0.038 0.118
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density configurations (Fig. 4E), where convex hull RMS contrast decreased approximately linearly
with increasing numerosities above two (Fig. 4D). The range of convex hull RMS contrast differed
considerably between stimulus configurations (Table 4), and these differences did not predict
responses well in constrained models (Fig. 4F). Whether using configuration-specific (Fig. 4E) or
constrained (Fig. 4F) models, convex hull RMS contrast models explained far less response variance
than numerosity models did, when considered across all stimulus configurations (po10–16 in both
cases).
3.5. High spatial frequency contrast energy

Spatial frequency distributions can be described by many variables: we did not test all possible
spatial frequency analyses here. We tested a specific analysis proposed by previous studies [8,9]. This
used the contrast energy at high spatial frequencies to perform numerosity discriminations. In those
experiments, all items had the same size, like our constant item size configuration. The range of
spatial frequencies involved depended on display parameters, and we used all spatial frequencies
above 4 cycles/degree.

High spatial frequency contrast energy increased approximately linearly with numerosity in the
constant item size stimulus configuration (Fig. 5A, Table 5), confirming previous results [8,9]. High
spatial frequency contrast energy models predicted responses to this stimulus configuration as well as
numerosity models did (Fig. 5B). As items also kept the same size for all numerosities in the variable
features configuration, high spatial frequency contrast energy again increased approximately linearly
with numerosity here (Fig. 5A). Again, high spatial frequency contrast energy models predicted
responses well (Fig. 5B).

High spatial frequency contrast energy decreased with increasing numerosity in the constant
perimeter configuration (Fig. 5A). Models fit to this stimulus configuration alone also predicted
responses well (Fig. 5B). However, in the constant area and high-density stimulus configurations, high
spatial frequency contrast energy increased and decreased across the numerosity range (Fig. 5A).
These changes predicted responses to these stimulus configurations poorly (Fig. 5B).

High spatial frequency contrast energy increased with increasing numerosity in some stimulus
configurations, decreased in others, and had a large range between stimulus configurations (Table 5).
These differences are not reflected in responses to these stimulus configurations: constrained models
predicted responses to all stimulus configurations poorly (Fig. 5F). Indeed, high spatial frequency
contrast energy only predicted responses slightly better than total item area or display RMS contrast,
which had similar relationships to numerosity. Whether using configuration-specific (Fig. 5B) or
constrained (Fig. 5C) response models, high spatial frequency contrast energy models explained far
less response variance than numerosity models did, when considered across all stimulus configura-
tions (po10–16 in both cases).
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