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Abstract

Unraveling molecular regulatory networks underlying disease progression is critically impor-

tant for understanding disease mechanisms and identifying drug targets. The existing meth-

ods for inferring gene regulatory networks (GRNs) rely mainly on time-course gene

expression data. However, most available omics data from cross-sectional studies of cancer

patients often lack sufficient temporal information, leading to a key challenge for GRN infer-

ence. Through quantifying the latent progression using random walks-based manifold dis-

tance, we propose a latent-temporal progression-based Bayesian method, PROB, for

inferring GRNs from the cross-sectional transcriptomic data of tumor samples. The robust-

ness of PROB to the measurement variabilities in the data is mathematically proved and

numerically verified. Performance evaluation on real data indicates that PROB outperforms

other methods in both pseudotime inference and GRN inference. Applications to bladder

cancer and breast cancer demonstrate that our method is effective to identify key regulators

of cancer progression or drug targets. The identified ACSS1 is experimentally validated to

promote epithelial-to-mesenchymal transition of bladder cancer cells, and the predicted

FOXM1-targets interactions are verified and are predictive of relapse in breast cancer. Our

study suggests new effective ways to clinical transcriptomic data modeling for characterizing

cancer progression and facilitates the translation of regulatory network-based approaches

into precision medicine.

Author summary

Reconstructing gene regulatory network (GRN) is an essential question in systems biol-

ogy. The lack of temporal information in sample-based transcriptomic data leads to a

major challenge for inferring GRN and its translation to precision medicine. To address

the above challenge, we propose to decode the latent temporal information underlying

cancer progression via ordering patient samples based on transcriptomic similarity, and
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design a latent-temporal progression-based Bayesian method to infer GRNs from sample-

based transcriptomic data of cancer patients. The advantages of our method include its

capability to infer causal GRNs (with directed and signed edges) and its robustness to the

measurement variability in the data. Performance evaluation using both simulated data

and real data demonstrate that our method outperforms other existing methods in both

pseudotime inference and GRN inference. Our method is then applied to reconstruct

EMT regulatory networks in bladder cancer and to identify key regulators underlying pro-

gression of breast cancer. Importantly, the predicted key regulators/interactions are exper-

imentally validated. Our study suggests that inferring dynamic progression trajectory

from static expression data of tumor samples helps to uncover regulatory mechanisms

underlying cancer progression and to discovery key regulators which may be used as can-

didate drug targets.

Introduction

Inferring gene regulatory networks (GRNs) from molecular profiling of large-scale patient

samples is of significance to identifying master regulators in disease at systems level [1].

Detecting the causal relationships between genes from biomedical big data, such as clinical

omics data, has recently emerged as an appealing yet unresolved task, particularly for clinical

purposes (e.g., diagnosis, prognosis and treatment) in the era of precision medicine [2].

Many methods have been developed for inferring GRNs from gene expression data [3]. The

GRN inference methods can be grouped into at least four categories: Boolean network meth-

ods [4], ordinary differential equation (ODE) model-based methods [5], Bayesian network

methods [6] and tree-based ensemble learning methods [7]. These methods mainly rely on

two types of gene expression data, i.e., gene perturbation experiments [8,9] or time-course

gene expression data [10]. Temporal changes in expressions, resulting from the interactions

between genes, could potentially imply causal regulations. Meanwhile, a wealth of time-course

transcriptomic data has been generated from the laboratory experiments. So temporal type of

expression data is one of the most common assumptions based on which many GRN inference

methods were designed [11].

However, the transcriptomic data of tumor samples often lack explicit temporal informa-

tion [12]. In fact, large samples of time-course data are rarely available in clinical situations, at

least for now, since longitudinal surveys are often challenging to conduct. In contrast, cross-

sectional studies (i.e., a snapshot of a particular group of people at a given point in time) based

on high-throughput molecular omics data are more prevalent due to their relative feasibility.

As such, for cross-sectional transcriptomic data at population-scale, most of the current meth-

ods, such as Pearson correlation coefficient (PCC)-based methods [13], mutual information

[14], regression methods [15] and machine learning methods [16], can only infer co-expres-

sions or associations between genes. Moreover, although some correlation network-based

methods have been used to identify disease-associated genes [17], it’s hard to tell the causal

drivers or regulatory roadmap underlying phenotypic abnormality in the absence of regulatory

network information [18]. Therefore, the lack of temporal information in clinical transcrip-

tomic data leads to a key challenge for inferring directed GRN and its translation to systems

medicine.

Decoding temporal information that traces the underlying biological process from the

cross-sectional data is intriguing and enlightening to address the above challenge. The sample

similarity-based approach has shown great promise in recovering evolutionary dynamics in
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information of the breast cancer patients used for

network prediction were downloaded from the

NCBI GEO database (GSE7390). The microarray

and ChIP-seq data used for network validation

were downloaded from the NCBI GEO database

(GSE40766, GSE40762, GSE62425, GSE2222,

GSE58626 and GSE27830). The clinical gene

expression data used for survival analysis were

downloaded from the NCBI GEO database

(GSE2990, GSE12093, GSE5327, GSE1456,

GSE2034, GSE3494, GSE6532 and GSE9195). The

gene expression RNAseq and phenotype

information associated with the TCGA COAD

dataset were downloaded from the UCSC Xena

website (https://xena.ucsc.edu/) via the following

links: https://tcga-xena-hub.s3.us-east-1.

amazonaws.com/latest/TCGA.COAD.sampleMap/

HiSeqV2.gz and https://tcga-xena-hub.s3.us-east-

1.amazonaws.com/latest/TCGA.COAD.sampleMap/

COAD_clinicalMatrix; The gene expression RNAseq

and phenotype information associated with the

TCGA SKCM dataset were also downloaded from

the UCSC Xena website (https://xena.ucsc.edu/) via

the following links: https://tcga-xena-hub.s3.us-

east-1.amazonaws.com/latest/TCGA.SKCM.

sampleMap/HiSeqV2.gz and https://tcga-xena-hub.

s3.us-east-1.amazonaws.com/latest/TCGA.SKCM.

sampleMap/SKCM_clinicalMatrix. A recent re-

quantification of the LPS scRNA-seq dataset

(GSE48968) was downloaded from the conquer

database (http://imlspenticton.uzh.ch:3838/

conquer/). The code for PROB is available at

https://github.com/SunXQlab/PROB. The numerical

data underlying graphs in the manuscript is

available at S1_Data.xlsx in the Supporting

Information.
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evolution and genetics studies [19], for instance, phylogenetic trees based on microarray data

[20] and genetic linkage maps based on genetic markers [21]. To this end, we propose that the

latent temporal order of cancer progression status (i.e., latent-temporal progression) could be

estimated from the cross-sectional data based on transcriptomic similarity between patient

samples. Leveraging the latent-temporal ordering, we could represent the GRN as a nonlinear

dynamical system. What’s more, however, considering the technical variability or measure-

ment error in the RNA-sequencing or microarray data (e.g., variations in sample preparation,

sequencing depth and measurement noise and bias) [22,23], it’s indispensably important to

guarantee the robustness of the GRN inference.

In this study, we present PROB, a latent-temporal progression-based Bayesian method of

GRN inference designed for population-scale transcriptomic data. To estimate the temporal

order of cancer progression from the cross-sectional transcriptomic data, we develop a staging

information-guided random walk approach to efficiently measure manifold distance between

patients in a large cohort. In this way, the cross-sectional data could be reordered to be analo-

gous to time-course data. This transformation enables us to formulate the GRN inference as

an inverse problem of progression-dependent dynamic model of gene interactions, which is

solved using a Bayesian method. The robustness of the estimates of regulatory coefficients is

justified through mathematical analysis and simulations. Furthermore, applications to real

data not only demonstrate better performance of PROB than other existing methods but also

show good capacity of PROB in identifying key regulators of cancer progression or potential

drug targets. The identified ACSS1 in bladder cancer and predicted FOXM1-targets interac-

tions in breast cancer are both validated. In addition, we also discuss potential clinical applica-

tions of our method.

Methods

Ethics statement

The tumor tissues in this study were received from the operative resection of bladder cancer

patients. The patients/participants provided their written informed consent to participate in

this study. The studies involving human participants were reviewed and approved by the Eth-

ics Committee of Sun Yat-sen University Cancer Center (approval no. GZR2018-131).

Latent-temporal progression-based Bayesian (PROB) method to infer GRN

Overview of PROB. PROB consists of two major components. First, to infer the latent

temporal information of cancer progression from the cross-sectional data, a graph-based ran-

dom walk approach was developed to quantitatively order patient samples (Fig 1A and 1B).

More specifically, we defined a manifold distance between patients by analytically summing

the transition probabilities over all random walk lengths to quantify temporal progression and

the root of the progression trajectory was automatically identified with the aid of staging infor-

mation. The quantitative reordering of the samples led to the recovery of the temporal dynam-

ics of gene expression (Fig 1C). Second, a progression-dependent dynamic model was

proposed to mechanistically describe the gene regulation dynamics during the above estimated

temporal progression. To ultimately infer the GRN, the inverse problem in terms of parameter

estimation of the dynamic model was transformed to a linear regression model which was

solved using a Bayesian Lasso method (Fig 1D). Compared to the existing correlational net-

work methods, PROB can infer causal GRNs with directed and signed edges from cross-sec-

tional transcriptomic data.

Temporal progression inference for cancer samples. We employ a similarity graph-

based random walk approach to order patients along with the progression and to estimate the
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progression score for each patient, given the hypothesis that the similarity between patients

can be measured by the patients’ gene expression profiles and pathology information.

We first define a Gaussian similarity function for two patients, x and y, as

Sðx; yÞ ¼ expð� gkTx � Tyk
2
Þ ð1Þ

Fig 1. Illustration of the PROB framework for inferring the causal gene regulatory network from cross-sectional transcriptomic data. (a) Illustration of cross-

sectional transcriptomic data, taking three genes (i.e., A, B, and C) as an example. Each sample was labeled with staging information (e.g., S1, S2, S3, and S4). (b) Similarity

graph-based random walk approach for cancer progression inference. A scale-free temporal progression distance (TPD) is defined by analytically summing the transition

probability between patients over all random walk lengths. Patients are thus ordered according to the TPD with respect to the root identified with the aid of staging

information. (c) The expression dynamics of each gene according to the latent-temporal progression are then recovered. (d) A Bayesian Lasso method is developed to infer

the causal GRN based on the temporal data of gene expression. Besides edge directions, PROB can also infer signs of the interactions (activation or inhibition), compared

to the existing correlational network methods.

https://doi.org/10.1371/journal.pcbi.1008379.g001
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Where Tx and Ty are vectors used to represent the transcriptomic expression profiles of the

respective patients and kTx−Tyk is the L2 norm of Tx−Ty. The parameter γ is determined as

g ¼
oxy

ε2
x þ ε2

y

ð2Þ

where ωxy is a weight coefficient given by pathology information such as stage or grade, which

is defined in this study as ωxy = 1+|Gx−Gy|, with Gx and Gy representing grading or staging

information (taking values of, for instance, 1, 2, 3, or 4) of the two patients x and y, respec-

tively. The parameter Ex is adaptive for each patient x and is set as the patient’s distance to the

κ-th nearest neighbor. S can be viewed as a stage-weighted and locally scaled Gaussian kernel.

To eliminate the effect of sampling density, we subsequently remold the above rotation-

invariant kernel S(x, y) into an anisotropic kernel H(x, y),

Hxy ¼
Sðx; yÞ

DðxÞDðyÞ
; ð3Þ

by normalizing S with a proxy for the sampling density of the data points,

DðxÞ ¼
X

y2O
Sðx; yÞ: ð4Þ

We next define a transition probability matrix P whose elements are defined as

Pxy ¼ EðxÞ�
1
2HxyEðyÞ

� 1
2; ð5Þ

where E(x) is the row normalization of H, that is,

EðxÞ ¼
X

y2O
Hxy: ð6Þ

P is a symmetric transition matrix [24,25]. Pxy can be interpreted as the probability of tran-

sitioning from x to y (or from y to x). The eigenvectors of P can be referred to as diffusion

components, and taken together, they constitute a modified version of the diffusion map

[24,25], which extracts the topological structure of the high-dimensional data.

We then measure the transitions on all length scales between patients. The accumulated

transition probability (Qxy) of visiting y from x over random walk paths of all lengths is analyti-

cally calculated as

Q ¼
X1

t¼1

~Pt ¼ ðI � ~PÞy � I ð7Þ

where ~P ¼ P � c0c0

T
, and ψ0 is the first eigenvector of P (corresponding to eigenvalue 1).

Since ψ0 is associated with the steady state and contains no dynamic information [26], we sub-

tract the stationary component ψ0ψ0
T from P, resulting in ~P. In this way, all the eigenvalues of

~P are smaller than 1; hence, the above sum of infinite series is convergent. ðI � ~PÞy is the gen-

eralized inverse (or Moore-Penrose inverse) of I � ~P [27].

We use Q(x,�) to represent the accumulated transition probability of visiting all points from

x. Thus, Q(x,�) is a row in Q and can be viewed as a feature representation for patient x. There-

fore, we define a temporal progression distance (TPD) between two patients as

TPDðx; yÞ ¼ kQðx; �Þ � Qðy; �ÞkL2 ; ð8Þ

where k�k stands for the L2 norm. We remark that TPD is a scale-free manifold distance and is

computationally efficient due to the closed form expression of Q.
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Given a patient x, the progression score with respect to the trajectory’s root x0 is s = TPD
(x0, x). Therefore, it is critical to determine the root sample in a large cohort for ordering the

patients. We fulfill this task with the aid of the staging information of the patients: among all

patients, the root of the trajectory should have the largest TPD to a patient with maximal stage

(e.g., stage 4). That is, the root sample x0 can be identified according to the following formula:

x0 ¼ argmax
x2fxming

TPDðx; xref Þ; ð9Þ

where xref is a randomly selected patient from the maximal grade subpopulation. The selection

of x0 was limited among patients with the smallest grade (i.e., {xmin}) to eliminate potential

influence of a few outliers in the data. The ordering of the progression scores quantifies the rel-

ative progression status and maps the patients into a smoothed temporal trajectory.

We remark that the incorporation of staging information into the Gaussian kernel and root

identification could significantly improve the accuracy of temporal progression inference (see

S1 Fig and Discussion section).

Dynamical systems modeling. Based on the mass action kinetics [28], the temporal regu-

lation of gene expressions can be modeled using the following dynamical system,

dXiðsÞ
ds
¼
X

j6¼i
aijXiðsÞ � XjðsÞ � diXi sð Þ; i ¼ 1; . . . ; nð Þ ð10Þ

where Xi(s) represents the expression level of gene i (i = 1,. . .,n) in cancer with progression sta-

tus s. aij is the regulatory coefficient from gene j to gene i (i = 1,. . .,n; j6¼i), and di is the self-

degradation rate of gene i. The details of model assumption and derivation are provided in S1

Text.

Parameter estimation using Bayesian Lasso method. Take m+1 points Si = s(ri) from the

smoothed progression trajectory s(r), where ri = i/m, i = 0,1,� � �,m. We approximate

dXi

ds
skð Þ �

Xiðskþ1Þ � XiðskÞ
skþ1 � sk

and denote

Yik ¼
Xiðskþ1Þ � XiðskÞ

skþ1 � sk
;

where sk+1−sk is sufficiently small (since m could be chosen large enough). Therefore, the

above continuous model (i.e., Eq (10)) can be discretized and rewritten as

Yik �
Xn

j¼1
aijXiðskÞ � XjðskÞ � diXiðskÞ; ðk ¼ 0; 1; � � � ;mÞ: ð11Þ

We then denote

Yi ¼ ðYi0; � � � ;Yik; � � � ;YimÞ1�ðmþ1Þ
ð12Þ

Ai ¼ ðai1; ai2; � � � ; ain; � diÞ1�ðnþ1Þ
; ð13Þ
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and

XðiÞ ¼

X1ðs0ÞXiðs0Þ X1ðs1ÞXiðs1Þ � � � X1ðsmÞXiðsmÞ

X2ðs0ÞXiðs0Þ X2ðs1ÞXiðs1Þ � � � X2ðsmÞXiðsmÞ

� � � � � � � � � � � �

Xnðs0ÞXiðs0Þ Xnðs1ÞXiðs1Þ � � � XnðsmÞXiðsmÞ

Xiðs0Þ Xiðs1Þ � � � XiðsmÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ðnþ1Þ�ðmþ1Þ

ð14Þ

Consequently, Eq (11) can be transformed into the following linear regression model:

Yi ¼ AiX
ðiÞ þ εi; ði ¼ 1; 2; � � � ; nÞ; ð15Þ

where εi ¼ ðεi0; εi1; � � � ; εimÞ
T

are the random effects with each εik � Nð0; s2
i Þ, (k = 0,1,� � �,m).

We then use an adapted Bayesian Lasso method to infer the posterior distribution over the

coefficients in each Ai. We assume that the conditional prior distribution of Aijs
2
i ; li is the

Laplace (double exponential) distribution with a mean of 0 and scale
si
li

, that is,

pðAijs
2

i ; liÞ ¼ Lap 0;
si

li

� �

; ð16Þ

where λi is the fixed lasso shrinkage parameter, which is set to 1. The prior distribution of

si
2; pðs2

i Þ, is usually assumed to be an inverse gamma, with the probability distribution function

f x;A;Bð Þ ¼
x� A� I�e� 1=xB

ðGðAÞBAÞ
ð17Þ

where A and B determine the shape and scale, respectively, of the inverse gamma distribution.

Using Bayes’ rule, we formulate the joint posterior distribution of Ai and s2
i as follows:

pðAi; s
2

i jYi;X
ðiÞÞ / pðAijs

2

i ; liÞ � pðs
2

i Þ � ‘ðAi; s
2

i jYi;X
ðiÞÞ; ð18Þ

with ‘ðAi; s
2
i jYi;XðiÞÞ, the data likelihood, given by

‘ðAi; s
2

i jYi;X
ðiÞÞ ¼

Qm
k¼0
�ðYik;AiX

ðiÞ
k ; s

2

i Þ; ð19Þ

where XðiÞk is the (k+1)-th column of X(i), (k = 0,1,� � �,m), and �ðYik;AiX
ðiÞ
k ; s

2
i Þ is the Gaussian

probability density with mean AiX
ðiÞ
k and variance s2

i evaluated at Yik.

The Markov chain Monte Carlo (MCMC) algorithm with Gibbs sampling updates is

employed to estimate the marginal distribution of each parameter. A directed edge from gene j
to gene i could be determined to be present if the 95% credible interval (CI) of the parameter

estimates of aij does not contain zero, otherwise absent.

Mathematical analysis. Considering the technical variability or measurement error in the

transcriptomic data [22,23], it is important to examine the robustness of the method with respect

to the perturbation in latent-temporal progression. To this end, we present the following theorem.

Theorem 1. Assume there are two trajectories of latent-temporal progression s(r) and ~sðrÞ
with the same root, r2I = [0,1]. Define k~s � skL2 ¼ ð

R

Ij~s � sj2drÞ1=2
. If (Xi(s), aij) and

ðXið~sÞ; ~aijÞ both satisfy the equations of progression-dependent dynamic model, i.e.,

dXiðsÞ
ds
¼
X

j6¼i
aijXiðsÞ � XjðsÞ � diXi sð Þ; i ¼ 1; � � � ; n;
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dXið~sÞ
d~s
¼
X

j6¼i
~aijXið~sÞ � Xjð~sÞ � ~diXi ~sð Þ; i ¼ 1; � � � ; n;

then we have

lim
k~s � sk!0

Xn

i;j¼1
j~aij � aijj

2
¼ 0:

The proof of the above theorem is provided in S2 Text.

Based on the spectral graph theory [24,25], the above manifold distance (TPD) is noise-

resistant, so the variation in the progression trajectory (i.e., ~s � s) should be small given mod-

erate perturbations (as illustrated below). Consequently, Theorem 1 then implies that the cor-

responding estimates of [aij]n×n should vary minimally. Therefore, the above theorem

theoretically guarantees the consistency and robustness of the estimates of the regulatory coef-

ficients. In addition, the Bayesian Lasso method adopted by PROB further ensures a robust

implementation of GRN inference.

A corollary of the above theorem is that the mapping s7![aij(s)]n×n defined by Eq (10) is

continuous under certain appropriate metric. More specifically, for two trajectories s and ~s, if

the difference between the two inferred regulatory coefficients [aij(s)]n×n and ½aijð~sÞ�n�n is sig-

nificantly larger than 0, then the difference between s and ~s should not be arbitrarily small.

This implies that if the inferred regulatory networks for two progressions are largely different,

then the two progressions should have different trajectories and thus distinct clinical out-

comes. Hence, Theorem 1 also suggests that GRN-based signatures may be used for predicting

or controlling cancer progression.

Computational algorithm. The algorithm to infer progression trajectory and GRN is pre-

sented below. The implementation of PROB is described in S3 Text.

Algorithm 1. pseudo-code of PROB

1: Input: data = [T, G]. T, transcriptomic expression matrix; G, stage vector.

2: Stage-weighted Gaussian kernel: S(x, y) = exp(−gkTx−Tyk
2) and g ¼

1þjGx � Gy j

ε2
xþε

2
y

.

3: Normalization of S : Hxy ¼
Sðx;yÞ

DðxÞDðyÞ.

4: Transition probability: Pxy ¼ E
�
x
�� 1

2HxyE
�
y
�� 1

2.

5: Accumulated transition probability: Q ¼ ðI � ðP � c0c
T
0
ÞÞ
y
� I;

ψ0 is the first eigenvector of P.

6: TPD function: TPDðx; yÞ ¼ kQðx; �Þ � Qðy; �ÞkL2 .

7: Trajectory root: x0 ¼ argmax
x2fxming

TPDðx; xref Þ; xref2{x: Gx = max(G)}.

8: Progression score: s = TPD(x, x0).

9: For i = 1 to n do

Yik≜
Xiðskþ1Þ� XiðskÞ

skþ1 � sk

AiXðiÞ≜
Xn

j¼1

aijXi � Xj � diXi

Ai ¼ BayesianLassoðXðiÞ;YiÞ

End

10: Output: posterior distributions of aij, confidence matrix CM.

https://doi.org/10.1371/journal.pcbi.1008379.t001
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Benchmarking PROB with alternative methods of GRN inference

For tumor sample-based gene expression data, several methods have been developed to infer

gene networks. Pearson correlation (PCOR) is often used to quantify gene coexpression.

Mutual information (MI) measures non-linear dependency between genes and thus provides a

natural generalization of the correlation. MI-based methods for GRN inference include ARA-

CNe [29], CLR [30], and MRNET [31]. Another commonly used method for GRN inference

based on gene expression data is multiple linear regression LASSO method [32], which

assumes sparse network structure and is feasible for high-dimensional data. Ensemble learning

methods, such as GENIE3 (a tree-based ensemble learning method [16]), have been developed

to infer gene regulatory relationships by viewing GRN reconstruction as a classification prob-

lem. In addition, we also included some GRN inference methods recently developed for

scRNA-seq data into benchmarking analysis, since scRNA-seq data is also cross-sectional type.

Such methods include SCODE [33] that uses ordinary differential equations model and LEAP

[34] that constructs gene co-expression networks by using the time delay involved in the esti-

mated pseudotime of the cells. SINCERITIES [35] is designed for time-stamped scRNA-seq

data but requires at least 5 time points, so it is not applicable for the following benchmarking

dataset as well as the tumor sample-based transcriptomic data.

In this study, we compared the accuracy of PROB with that of PCOR, ARACNe, CLR,

MRNET, Lasso, GENIE3, SCODE and LEAP based on a real scRNA-seq data of dendritic cells

(DCs) (GSE41265 [36]). The cells were stimulated with LPS and sequenced at 1, 2, 4, and 6h

after stimulation. Only wild type cells (n = 479) without Stat1 and Ifnar1 knockout were cho-

sen for analysis. We choose this DC dataset for benchmarking because regulatory potential

between 23 TFs in the DCs has been determined via a high-throughput Chromatin Immuno-

Precipitation (HT-ChIP) method [37]. The AUC of ROC was used to assess and compare the

prediction accuracies of the above methods.

In addition, we collected a set of known regulators and targets [38] to test whether PROB

could correctly distinguish outgoing regulations of different genes. To this end, we defined an

outgoing causality score (OCS) for gene i in cell k as follows: OCSki ¼
Pn

j¼1
mjiXk

j X
k
i , where mji

is the absolute value of mean of the posterior distributions of aji; Xk
i is the expression level of

gene i in cell k. The OCS is defined in accordance of the Eq (10) based on the mass action kinet-

ics and quantifies the outgoing regulatory potential of a give gene. We then compared the distri-

butions of OCS values of 6 regulators and that of 28 targets using the above DC dataset. The

Wilcoxon rank-sum test (one-tailed) p value was calculated to assess statistical significance.

Application to a dataset of bladder cancer

We applied PROB to a dataset of bladder cancer patients that includes 84 cases of conventional

UCs and 28 cases of SARCs which were profiled by Illumina HumanHT-12 DASL Expression

BeadChips (GSE128192 [39]). The temporal progression inference was performed to quantita-

tively order samples based on the whole gene expression profile with UC samples and SARC

samples labeled by 1 and 2 respectively. To reconstruct epithelial-to-mesenchymal transition

(EMT) regulatory networks, we collected 44 representative genes of TGFB1 pathway, RhoA

pathway, p53 pathway, p63 pathway and EMT transcriptional regulators (S1 Table) [39]. The

UC network and SARC network were reconstructed based on the ordered expression data of

the above 44 genes in UC samples and SARC samples respectively. The UC-specific network

and SARC-specific network were then constructed by extracting edges that were unique to UC

network and SARC network respectively. The out-degree values for each node in the two net-

works were calculated to prioritize key regulator genes.
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Application to a dataset of breast cancer

We applied PROB to a microarray dataset of breast cancer (GSE7390 [40]) to identify key reg-

ulator genes with prognostic role in cancer progression. We identified the hub gene in the

GRN based on an eigenvector centrality measure according to singular value decomposition

method [41]. Denote the mean of the posterior distributions of aij as mij, and M = (mij)n×n. We

subject M to singular value decomposition. We calculated the principal eigenvector of M�MT

and denoted it H = (h1, h2,. . .,hn). The hub score of node i was defined as hi. The gene with

greatest hub score was identified as a hub gene for further analysis and validation.

Validation of the role of ACSS1 in bladder cancer

Antibodies and reagents. Anti-β-actin Mouse mAb (1:1000, 0101ES10, Yeasen), anti-E-Cad-

herin Mouse mAb (1:1000, #14472, CST), anti-ACSS1 Rabbit mAb (1:1000, 17138-1-AP, Pro-

teintech), Goat Anti-Rabbit IgG (H+L) (1:10000, 33101ES60, Yeasen), Goat Anti-Mouse IgG

(H+L) (1:10000, 33201ES60, Yeasen), Anti-Rabbit IgG-HRP kit (SV0002, Boster).

Over-expression plasmids and siRNA transfection. 5637 cells were placed in 24 wells plate

and transfected with the lentiviral vectors pTSB-CMV-puro and SiRNA against ACSS1 reach-

ing 70%-80% confluence using Lipofectamine 2000 (Thermo Scientific) according to the man-

ufacturer instructions. The SiRNA sequence used in this study are listed in S2 Table.

RNA extraction and qPCR. Total RNA was extracted by HiPure Total RNA Mini Kit

(R4111-03, Magen) and the concentration was detected by ultramicrospectrophotometer

(NanoDrop 2000, Thermo Fisher Scientific). RT-PCR was performed using PrimeScript RT

Master Mix (DRR036A, TakaRa) and qPCR was performed by qPCR SYBR Green Master Mix

(11198ES03, Yeasen) in Real-time quantitative PCR instrument (Q1000+, Long Gene). All the

relative mRNA expression was normalized to GAPDH. The qRT-PCR primer sequence used

in this study are listed in S3 Table.

Western blotting. Total protein was extracted by RIPA lysis buffer (JC-PL001, Genshare)

with PMSF (1:100, 20104ES03, Yeasen). Standard western blot protocols were adopted. The

band intensity of western blots was detected by BLT GelView 6000M. All the relative protein

expression was normalized to β-actin.

Immunohistochemistry: All the tumor tissues were received from the operative resection of

patients. The patients/participants provided their written informed consent to participate in

this study. The studies involving human participants were reviewed and approved by the

Ethics Committee of Sun Yat-sen University Cancer Center (approval no. GZR2018-131).

The immunohistochemical analysis of the two markers including ACSS1 and E-Cadherin

was performed. All the pathological sections were produced, scanned and analyzed by Leica

Biosystems.

Validation of the FOXM1 sub-network predictions

We validated the regulation of FOXM1 (a hub gene, see Results section) on the predicted tar-

geted genes using multiple sets of gene expression data and ChIP-seq data that are publicly

available.

To validate the expression changes of the predicted targeted genes following FOXM1 per-

turbation, we analyzed microarray gene expression data in MCF-7 cells that were treated with

DMSO (control) or Thiostrepton (FOXM1 inhibitor) for 6 hours (GSE40762 [42]). The differ-

ential expression of the above 8 genes between control condition and FOXM1 inhibition con-

dition was examined to test whether they were down-regulated after FOXM1 inhibition. The

statistical significance was assessed using Wilcoxon rank sum test (one-tailed) p values.
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To test whether FOXM1 binds to some of the predicted targeted genes, we used ChIP-seq

data in both MCF-7 cell line (ER+) and MDA-MB-231 cell line (ER-) (GSE40762 [42]) to ana-

lyze binding of FOXM1. A standard procedure of the ChIP-seq analysis was performed for

peak calling (S7 Text).

Results

Testing PROB with a synthetic dataset

To illustrate the function of PROB, we generated a set of synthetic cross-sectional expression

data (S4 Text). For visualization purpose, we considered 6 genes in 100 cancer patients (S2A

and S2B Fig). We first used PROB to infer temporal progression from the randomized sample-

based data. The inferred latent-temporal progression was compared against the true progres-

sion (S2C Fig), showing that PROB faithfully recovered the true ordering of the samples

(Spearman’s rho = 0.9991). The gene expression dynamics along with latent-temporal progres-

sion (S2D Fig) exhibited a very similar profile to the original data (S2A Fig). Based on the

inferred temporal data, PROB inferred a GRN using the Bayesian Lasso method (S2E Fig). The

posterior distributions of the regulatory parameters against their true values show that the esti-

mation was rather reliable (S3 Fig). An edge was determined by examining whether the 95%

credible interval (CI) of the parameter estimates did not contain zero (S4 Text). S2F Fig fur-

ther demonstrates the accuracy of PROB in terms of GRN inference. The area under curve

(AUC) of receiver operating characteristic (ROC) could be calculated for the inferred network

compared with the ground-truth network based on the k% CI that contained zero or not.

To verify the robustness of PROB to the measurement variability, we further tested PROB

for datasets at different levels of variabilities (Fig 2). The gene expressions were randomly per-

turbed by using multiplicative Gaussian noises to simulate different levels of measurement var-

iabilities in the data, resulting in a series of coefficient of variations (CVs) (i.e., 0%, 5%, 10%

and 15% respectively) (Fig 2A). The IDs of the samples were randomized to mimic sample-

based snapshots of gene expression data, but the staging information was retained for each

patient. PROB was applied to infer the GRN for each dataset. The accuracy of GRN inference

was evaluated using the AUC of the ROC, showing that PROB could strongly reduce bias in

gene expression measurements (Fig 2B and 2C) and robustly reconstructed the GRNs (Fig

2D). Additional evaluation metrics were employed to verify the robustness of PROB against a

series of variations in the data (with CVs ranging from 0% to 30%). The root mean square

error (RMSE) and Spearman correlation coefficients were used to evaluate the accuracy of the

temporal progression inference (S4A and S4B Fig). The accuracy, positive predictive value

(PPV) and Matthews correlation coefficient (MCC) were used to evaluate the robustness of the

GRN reconstruction (S4C–S4F Fig). In addition to the above Gaussian noises, we also tested

the robustness of PROB against perturbations of multiplicative exponential noises generated

from the exponential distribution with mean ranging from 0 to 0.3 (S5 Fig). The findings are

consistent with the above results (Fig 2).

Benchmarking PROB with other existing methods

We used a set of single cell RNA-seq (scRNA-seq) data (GSE48968 [36]) for benchmarking of

GRN inference methods since our method can be naturally applied to stage-stamped or time-

course scRNA-seq data and the ground-truth of the GRN is available in this case as described

in the Methods section. The LPS-stimulated dendritic cells (DCs) were sequenced at 1, 2, 4,

and 6h after stimulation. The capture time in the data was treated as an analogy to ‘staging’

information when using PROB. The estimated latent-temporal progression recapitulated the

physical progression of cells with a high correlation to the capture times (R2 = 0.851) (Fig 3A).
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We compared PROB with other pseudotime inference methods (Slice, Slicer, PhenoPath,

Wishbone, PAGA, Monocole2, DPT, Tscan). PROB estimation achieved a highest correlation

with the original physical capture times among all methods tested, evaluated using both Ken-

dall Tau rank correlation coefficient (Fig 3B) and coefficient of determination R2 (S6 Fig).

We next compared the accuracy of PROB with other existing GRN inference methods (e.g.,

PCOR, ARACNe, CLR, MRNET, Lasso, GENIE3, SCODE and LEAP) for cross-sectional data.

A previous study measured binding region coverage scores for 23 TFs and thus quantified

Fig 2. Demonstrating robustness of PROB using synthetic datasets at different levels of variabilities. A set of expression data for 6 genes in 100 cancer patients

was simulated. Different levels of technical variabilities (with coefficient of variations (CVs) = 0%, 5%, 10% and 15% respectively) were introduced into the

progression-dependent gene expression dynamics. (a) Simulated cross-sectional gene expression data. The sample IDs of the synthetic data were randomized and the

staging information was retained. (b) Comparison of the inferred latent-temporal progression with the true progression in the synthetic dataset, evaluated using

Spearman’s rank correlation coefficient (rho). (c) Recovered gene expression dynamics according to inferred progression trajectory. (d) Accuracy of the GRN

inference evaluated using the areas under curve (AUCs) of the ROCs.

https://doi.org/10.1371/journal.pcbi.1008379.g002
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Fig 3. Comparison of PROB with other existing pseudotime inference methods and GRN inference methods using a real dataset. We employed a set

of scRNA-seq data of dendritic cells (DCs) for benchmarking since the gold standard in this situation is available. The cells were sequenced at 1, 2, 4 and
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their regulatory potential in the DCs using a high-throughput Chromatin ImmunoPrecipita-

tion (HT-ChIP) method [37]. A TF network was defined where an edge was viewed to be pres-

ent if the coverage score between two TFs was greater than 0.3. We employed this network as a

benchmark to compare the prediction accuracy of the network topologies inferred by PROB

(Fig 3C) and other methods based on the above scRNA-seq data of DCs. The AUC values (Fig

3D) indicated that PROB outperformed the other existing methods.

Furthermore, we collected a set of known regulators and targets [38] to test whether PROB

could correctly reveal the regulatory causality. To this end, we applied PROB to infer a GRN

for 6 regulators and 28 targets based on the above DC scRNA-seq data and defined outgoing

causality score (OCS) for each gene in the inferred network (see definition of OCS in the

Methods section). The OCS values of regulators were much higher than that of targets (Fig

3E), suggesting that PROB faithfully revealed the ordering of the OCS values for the known

regulators and targets on the analyzed dataset.

In addition, we summarized and compared the capabilities of the above methods in predict-

ing gene regulatory links, directions, signs and expression dynamics (Fig 3F). Only PROB can

simultaneously fulfill those four tasks in GRN inference.

Reconstructing EMT regulatory networks during bladder cancer

progression

Sarcomatoid urothelial bladder cancer (SARC) is a highly lethal variant of bladder cancer and

has been reported to be evolved by the progression of the conventional urothelial carcinoma

(UC) [39]. It has been demonstrated that the dysregulation of genes involved in the epithelial-

to-mesenchymal transition (EMT) drives the progression of UC to SARC. To elucidate the

dynamic change of the EMT regulatory network during the progression, here, we applied

PROB to an expression dataset of bladder cancer containing 84 UC samples and 28 SARC

samples (GSE128192). We collected 44 representative genes involved in several typical EMT-

regulating pathways (S1 Table). The expression patterns of these genes were recovered along

with the inferred temporal progression (Fig 4A).

We then applied PROB to reconstruct GRNs for UCs and SARCs, respectively, based on

the ordered expression data of the above 44 genes. Fig 4B and Fig 4C show the UC-specific

network and the SARC-specific network, respectively, suggesting rewiring of the EMT regula-

tory network during the progression of UC to SARC. The two networks were enriched with

crosstalks between different pathways, indicating cooperative regulation of EMT by those

pathways. PTPN12 and ACSS1 were found to have largest out-degree values in UC-specific

network and SARC-specific network, respectively (S1 Table). Temporal dynamics of gene

expression (Fig 4D) showed that ACSS1 and PTPN12 oscillated synchronously with CDH1

(coding gene of epithelial marker protein E-cadherin) at the early stage of UC development.

However, at a later stage before transition to SARC, ACSS1 dramatically increased and

PTPN12 decreased. Meanwhile, the decrease of CDH1 later on indicated a transition from epi-

thelial to mesenchymal phenotype in SRACs, in consistent with changes in EMT score values

(Fig 4E).

6h after stimulation of LPS. (a) The estimated latent-temporal progression of cells recapitulated the real progression with R2 = 0.851 to the capture times.

(b) Benchmarking PROB with other pseudotime inference methods (Slice, Slicer, PhenoPath, Wishbone, PAGA, Monocole2, DPT, Tscan) evaluated by

Kendall Tau and R2 (S4 Fig). (c) a TF network inferred by PROB. (d) Benchmarking PROB with eight existing GRN inference methods (PCOR, LASSO,

GENIE3, ARACNe, CLR, MRNET, SCODE and LEAP) based on an experimentally-defined TF network [37] evaluated by AUC of ROC. (e) PROB

correctly revealed the ordering of the outgoing causality scores (on a log10 scale) for the known regulators and targets [38] on the DC scRNA-seq dataset.

(f) Comparing properties of different methods in their capabilities of predicting network links, regulatory directions and signs as well as gene expression

dynamics.

https://doi.org/10.1371/journal.pcbi.1008379.g003
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Validation of the role of ACSS1 in EMT

The decrease in PTPN12 expression during the progression is consistent with the previous

finding that the loss of PTPN12 promotes EMT process and cell migration [43]. Furthermore,

our result suggests that the up-regulation of ACSS1 might play a crucial role in the bladder

cancer progression by promoting EMT program. We managed to validate the role of ACSS1 in

EMT during bladder cancer progression, which has not been reported previously. The overex-

pression of ACSS1 in the 5637 cell line resulted in a significant decrease in CDH1 expression

level (Fig 5A), and ACSS1 knockdown by small interfering RNA leaded to significant increase

in CDH1 expression level (Fig 5B). The consistent changes in CDH1 protein levels following

ACSS1 overexpression and knockdown were also observed (Fig 5C and 5D). The numerical

values of qPCR data and quantification of western blots were provided in S1 Data. These

results confirmed that ACSS1 promoted EMT in bladder cancer cells. Furthermore, the

Fig 4. Reconstructing EMT regulatory networks during bladder cancer progression. (a) Expression patterns of the EMT regulatory genes along with the inferred

latent-temporal progression of conventional urothelial carcinoma (UC) to aggressive sarcomatoid urothelial bladder cancer (SARC). (b) UC-specific network with

edges unique to the UC network. (c) SARC-specific network with edges unique to the SARC network. Different colors of nodes in the network denote genes in

different pathways (S1 Table). (d) Reconstructed expression dynamics of ACSS1, PTPN12 and CDH1. ACSS1 and PTPN12 have largest out-degree values in the UC-

specific network and SARC-specific network, respectively. CDH1 is a marker gene of epithelial state during EMT. (e) A decrease in EMT score indicated a transition

from epithelial to mesenchymal state during the progression of UC to SARC. The EMT score for each tumor sample was calculated as weighted sum of expression

levels of 73 EMT-signature genes as introduced in [39]. Positive EMT score corresponds to the epithelial phenotype while negative score to mesenchymal phenotype.

Wilcoxon rank sum test (one-tailed) p value was calculated to assess the statistical significance.

https://doi.org/10.1371/journal.pcbi.1008379.g004
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Fig 5. Experimental validation of the predicted role of ACSS1 in EMT of bladder cancer. (a-b) Expression levels of ACSS1 and CDH1 in 5637 cells when ACSS1 was

overexpressed (a) and inhibited (b), measured by q-PCR. (c) Protein expression levels of ACSS1 and CDH1 in 5637 cells when ACSS1 was overexpressed or inhibited,

measured by Western-blotting. (d) Quantification of the relative protein expressions. (e) Examples of immunohistochemical expression of ACSS1 and E-cadherin in
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immunohistochemical staining of patient samples (Fig 5E) revealed that conventional UC

tumors showed focal retention of epithelial marker protein E-cadherin while SARC tumors

showed focal retention of ACSS1, supporting the above estimated dynamics of ACSS1 and

CDH1 during bladder cancer progression.

Identifying key gene regulators underlying breast cancer progression

To test whether our approach could be used to identify key genes underlying cancer progres-

sion, we applied PROB to a set of microarray data of breast cancer patients (n = 196) with clin-

ical information (GSE7390) (see details in S5 Text) [40]. Based on the expression data

reordered by PROB, we investigated which genes were upregulated or downregulated over

progression by using a trend analysis technique. Such genes are referred to as temporally

changing genes (TCGs) in this study. The one hundred top TCGs were selected. A heatmap

with hierarchical clustering (Fig 6A) showed that these 100 genes were clearly clustered into

two groups: a descending group (purple) and an ascending group (blue). We investigated the

enriched gene sets for the two groups of genes using GSEA software [44,45]. The descending

genes were enriched in locomotion and movement of cell or subcellular component (Fig 6B,

upper panel), and the ascending genes were mainly enriched in cell cycle and cell division pro-

cesses (Fig 6B, lower panel).

We then inferred the regulatory network of the above 100 top genes (Fig 6C). Based on an

eigenvector centrality measure (S5 Text), FOXM1 was identified as a most influential gene in

the network. We verified significant associations between FOXM1 and the distant metastasis-

free survival (DMFS), relapse-free survival (RFS) and overall survival (OS) (Fig 6D–6G) and

therapeutic responses (S7 Fig) in breast cancer patients (see details in S6 Text), in consistent

with previous clinical studies [46]. Moreover, both in vitro and in vivo experiments [47,48]

have validated that FOXM1 plays important roles in breast cancer progression through pro-

moting cell proliferation and cell cycle. Furthermore, FOXM1 has been used as a key drug tar-

get in breast cancer [49,50], and several drugs (e.g., daunorubicin, doxorubicin, epirubicin,

and tamoxifen [51]) developed to target or inhibit FOXM1 have been tested in clinical trials

(https://clinicaltrials.gov/). These evidences suggest that our network inference and analysis

approach is effective to identify key genes of cancer progression or candidate drug targets.

Validation of the FOXM1 subnetwork

A subnetwork was reconstructed for FOXM1, which predicted that FOXM1 could positively

regulate ASPM, CDCA8, KIF2C, MCM10, MELK, NCAPG, SHCBP1 and STIL (Fig 7A). Pre-

liminary investigation indicated that, except for STIL, the other 7 genes were functionally asso-

ciated with FOXM1 according to String (https://string-db.org/), a database of functional

protein-protein interaction networks (S8 Fig). We proceeded to validate the expression

changes of these predicted target genes using microarray data of MCF-7 cells that were treated

with DMSO (control) or thiostrepton (a FOXM1 inhibitor) for 6 hours (GSE40766 [42]). We

found that, except for SCCBP1 and STIL, the other 6 genes were significantly downregulated

after FOXM1 inhibition (Fig 7B). The statistical significance was assessed using Wilcoxon

rank-sum test (one-tailed) p values. These results suggest that PROB well predicted both the

directions and signs of the edges in the FOXM1 subnetwork.

conventional UC and SARC. Statistical significance was assessed by student’s t test. ��P<0.01; ���P<0.001; ����P<0.0001. OE-ACSS1: overexpression of ACSS1; si-NC:

small interfering RNA negative control; si-ACSS1: small interfering RNA targeting ACSS1.

https://doi.org/10.1371/journal.pcbi.1008379.g005

PLOS COMPUTATIONAL BIOLOGY Cancer progression and GRN inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008379 March 5, 2021 17 / 28

https://clinicaltrials.gov/
https://string-db.org/
https://doi.org/10.1371/journal.pcbi.1008379.g005
https://doi.org/10.1371/journal.pcbi.1008379


Moreover, we used ChIP-seq data (GSE40762 [42]) to analyze the binding of FOXM1 to the

predicted targeted genes (S7 Text). Both estrogen-dependent ER (+) MCF-7 and estrogen-

independent ER (-) MDA-MB-231 human breast cancer cell lines were used for analysis. The

analysis showed that FOXM1 binds ASPM, CDCA8 and KIF2C in both cell lines (Fig 7C–7H).

We note that the above three targets of FOXM1 were not previously reported by the widely

used databases of transcriptional factor targets (e.g., TRANSFAC [52] and TRRUST v2 [53]).

Interestingly, in another human mammary epithelial cell line (HMEC) (GSE62425 [54]) (S9

Fig), the binding of FOXM1 to CDCA8 was absent, suggesting the emerging binding of

FOXM1 to certain genes during the formation of breast cancer. In addition, we confirmed that

Fig 6. FOXM1 was revealed as a key gene underlying breast cancer progression by PROB. The gene expression data of 196 patients with clinical information (e.g.,

grade) were extracted from the GEO database (GSE7390 [40]). (a) Heatmap showing the expression profile of 100 selected genes that were most sustainably ascending

(blue group) or descending (purple group) during cancer progression. (b) Gene set enrichment analysis for the descending genes (upper panel) and ascending genes

(lower panel). The descending genes were enriched in local movement processes, and the ascending genes were mainly enriched in cell cycle and cell division

processes. (c) The inferred GRN for the 100 genes. FOXM1 was found to be a hub gene in the network. (d-f) Clinical relevance of FOXM1 for breast cancer patients

with respect to distant metastasis-free survival (DMFS) (d), relapse-free survival (RFS) (e) and overall survival (OS) (f). (g) Significance test of the prognostic power of

FOXM1 using a bootstrapping approach. The p value from the permutation test was 0.0146, verifying the statistical significance of the prognostic power of FOXM1.

https://doi.org/10.1371/journal.pcbi.1008379.g006
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the expression levels of the above three genes, ASPM, CDCA8 and KIF2C, were significantly

reduced following the knockdown or silencing of FOXM1 based on both microarray data in

BT-20 breast cancer cells (GSE2222 [55]) (S10A–S10C Fig) and RNA-seq data in MCF-7 breast

cancer cells (GSE58626 [56]) (S10D–S10F Fig). These findings suggest that FOXM1 not only

positively regulates the expression of but also directly binds to some of the predicted genes.

Discussion

PROB provides a novel tool for inferring cancer progression and GRNs from cross-sectional

data. Our approach is based on a dynamical systems representation of gene interactions during

cancer progression. The inverse problem with respect to GRN reconstruction was solved by

combining latent progression estimation and Bayesian inference for high-dimensional

dynamic systems. PROB can be used to generate experimentally testable hypotheses on the

molecular regulatory mechanisms of gene regulation during cancer progression and to identify

network-based gene biomarkers for predicting cancer prognosis and treatment response.

Besides cross-sectional bulk transcriptomic data, our method can be naturally applied to

time-course scRNA-seq data (Fig 3). Although scRNA-seq data can be used to infer GRNs

during cell differentiation or development, it is currently not feasible to use scRNA-seq to

investigate long term cancer progression due to patient heterogeneity, difficulty in acquisition

of massive samples and expensive cost. In view of this, clinical transcriptomic data of cancer

patients provide an alternative way to infer GRNs underlying cancer progression. The novelty

and superiority of PROB can be first attributed to the successful ordering of tumor samples by

using both gene expression data and staging information. Our proposed stage-weighted

Gaussian kernel allows construction of diffusion-like random walks to quantify the temporal

progression distance (TPD) between two patients (Eq (8)). The diffusion map, as a manifold-

based nonlinear dimension reduction method, has been recently applied to scRNA-seq data

analysis [26,57–59]. One major difficulty in applying diffusion maps for inferring pseudo tra-

jectories lies in identifying the rooting point when using scRNA-seq data itself, and it often

needs additional biological knowledge. An advantage of clinical transcriptomic data is that

staging or grading information is usually available for samples as well, allowing development

of an algorithm that automatically identifies the rooting point (Eq (9)). We demonstrated that

incorporating staging information into the temporal progression inference significantly

improved its accuracy (S1 Fig) and that our method significantly outperformed existing pseu-

dotime inference methods (Figs 3B and S6).

Considering technical variabilities in the sample-based transcriptomic data, it is important

to have good robustness of the interaction coefficients in the GRN model with respect to the

perturbation of the temporal progression. In addition to proving such property mathemati-

cally, through simulations we found that PROB inference of both the progression trajectory

and the gene network structure are rather robust to noise in the data (Figs 2, S4 and S5). In

addition, PROB is computationally efficient for GRN inference, which could be completed

within 1 minute on the three real datasets analyzed in this study (S4 Table).

For clinical applications, our method can be used to identify key genes for early detection of

cancer progression and design of therapeutic targets. By recovering the temporal dynamics of

gene expression in terms of the disease progression, PROB provides insights into exploiting

Fig 7. Validation of the predicted FOXM1 subnetwork. (a) The subnetwork of FOXM1 with predicted target genes. (b) Validation of the expression changes of the

predicted target genes of FOXM1 with perturbation experiments. MCF-7 cells were treated with DMSO (control) or thiostrepton (a FOXM1 inhibitor) for 48 hours.

Except for SCCBP1 and STIL, the other 6 genes were significantly down-regulated after FOXM1 inhibition. (c-e) ChIP-seq analysis of FOXM1 in the MCF-7 cell line

with four biological replicates, showing that FOXM1 binds ASPM, CDCA8 and KIF2C. (f-h) ChIP-seq analysis of FOXM1 in the MDA-MB-231 cell line with two

biological replicates, showing that FOXM1 binds ASPM, CDCA8 and KIF2C.

https://doi.org/10.1371/journal.pcbi.1008379.g007
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kinetic features of functionally important genes that may be used as predictive biomarkers or

drug targets. In the case study of bladder cancer progression, we have demonstrated that

ACSS1 and PTNT12 played important roles in EMT during bladder cancer progression from

UC to SARC and their expressions dynamically changed over the progression (Figs 4 and 5).

Therefore, we hypothesized that the temporal dynamics of EMT regulatory genes (e.g., ACSS1

or PTPN12) could be exploited to predict cancer progression. To this end, a logistic regression

model was developed to predict EMT states or histological subtypes (UC vs. SARC) of bladder

cancer based on the expression levels of ACSS1 and PTPN12, which showed good predictive

accuracy (S11 Fig). As such, the early changes in expressions of ACSS1 and PTPN12 during

the progression of UC to SARC may be relevant for the early detection of SARC.

In another case study of breast cancer, FOXM1, a drugable target, was identified as a key

regulator underlying breast cancer progression (Fig 6) and, importantly, the predicted

FOXM1-target regulations were validated (Fig 7). Furthermore, here, we propose a GRN

kinetic signature (S8 Text) based on FOXM1-targeted gene interactions to prognosticate

relapse in breast cancer. Kaplan-Meier (K-M) survival curves were plotted for the high-risk

group (green) and low-risk group (red) of patients with respect to relapse-free survival (RFS)

(S12A–S12C Fig). The log-rank test p values for all three datasets were less than 1e-4. More-

over, we tested the statistical significance of the FOXM1-targets interactions in predicting

relapse in breast cancer using a bootstrapping approach (S8 Text). We compared the prognos-

tic power (Wald test p value) of the FOXM1-predicted targets with that of 10000 sets of 8 ran-

domly selected genes. The permutation test p values for all three datasets were less than 0.05

(S12D–S12F Fig), verifying the non-randomness of the predicted targeted genes of FOXM1.

These results demonstrated that the predicted FOXM1-target interactions could be used as a

biomarker for prognosticating relapse in breast cancer. The latent-temporal progression–

based casual network reconstruction method proposed in this study will likely innovate other

network-based methodologies, such as those in system genetics [60,61], network pharmacol-

ogy [62,63], and network medicine [64,65].

Our method has several limitations that could be improved in future studies. For example,

in the current method, only gene expression profiles and staging information from patient

samples have been used for latent-temporal progression modeling. Other covariates, for exam-

ple, age, genetic mutation, and molecular subtypes, might also be useful for progression infer-

ence [66]. Statistical models that integrate multiple aspects of clinical information will provide

better inference of disease progression.

In summary, we have developed a novel latent-temporal progression-based Bayesian Lasso

method, PROB, to infer directed and signed gene networks from prevalent cross-sectional

transcriptomic data. PROB provides a dynamic and systems perspective for characterizing and

understanding cancer progression based on patients’ data. Our study also sheds light on facili-

tating the regulatory network-based approach to identifying key genes or therapeutic targets

for the prognosis or treatment of cancers.

Supporting information

S1 Fig. Incorporation of staging information significantly improved the accuracy of latent-

temporal progression inference. We compared PROB with its several variants: ‘ωxy = 1’ repre-

sents setting the weight coefficient ωxy in Eq (2) to be 1; ‘xref = random’ represents randomly

assigning the reference point (Eq (9)) to identify the rooting point as the previous pseudotime

inference methods usually did; ‘No stage’ represents leaving out the stage information, i.e.,

both ‘ωxy = 1’ and ‘xref = random’. Kendall tau correlation coefficient or determinant coeffi-

cient (R2) between the inferred temporal progression and the staging data (or the capture time
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in scRNA-seq data) was calculated for each method. (a) Kendall tau for the TCGA COAD

dataset. (b) R2 for the TCGA COAD dataset. (c) Kendall tau for the TCGA SKCM dataset. (d)

R2 for the TCGA SKCM dataset. (e) Kendall tau for the GSE7390 dataset. (f) R2 for the

GSE7390 dataset. (g) Kendall tau for the LPS scRNA-seq dataset. (h) R2 for the LPS scRNA-

seq dataset.

(TIF)

S2 Fig. Illustration of PROB using a synthetic dataset. (a) A set of synthetic gene expression

data of 100 cancer patients along with true progression. For illustration and visualization pur-

pose, only 6 genes were tested. (b) Simulated tumor sample-based gene expression data by ran-

domizing sample IDs of data in (a) but retaining staging information, which was used as input

for PROB. (c) Comparison of inferred temporal progression with true progression in the syn-

thetic dataset. (d) Recovered gene expression dynamics along with temporal progression. (e)

The inferred GRN using Bayesian LASSO method based on data in (d). (f) Accuracy of GRN

inference evaluated using area under curve (AUC) of ROC for the inferred network compared

to the ground-truth network (AUC = 0.8395).

(TIF)

S3 Fig. Posterior distribution of regulatory parameters associated with GRN inference in

S1 Fig. The sub-figure located in i-th row and j-th column represents the posterior distribution

of the regulatory coefficient from gene j (Gj) to gene i (Gi). The red lines represent the parame-

ter values of aij used for generating the ground-truth network as in Equation (S22). An interac-

tion was viewed present if the k% credible interval for corresponding regulatory coefficient aij
did not contain zero, otherwise absence.

(TIF)

S4 Fig. Evaluation indexes for temporal progression inference and GRN inference under

different variability levels in the synthetic datasets. The levels of measurement variabilities

in the synthetic data were quantified using the coefficient of variations (CVs) (from 0% to

30%). (a-b) Root of mean squared error (RMSE) and Spearman correlation used for evaluating

the accuracy of the temporal progression inference. (c-f) AUC, accuracy rate, positive predic-

tive rate (PPV) and Matthews correlation coefficient (MCC) used for evaluating the robustness

of the GRN inference.

(TIF)

S5 Fig. Testing the robustness of PROB against exponential noises. The noises were gener-

ated from the exponential distribution with mean ranging from 0 to 0.3. (a) Kendall correla-

tion for evaluating the accuracy of the temporal progression inference. (b) AUC for evaluating

the robustness of the GRN inference.

(TIF)

S6 Fig. Benchmarking PROB with other existing pseudotime inference methods. A set of

scRNA-seq data of dendritic cells stimulated with LPS was used for benchmarking. The cells

were sequenced at 1, 2, 4 and 6h after stimulation of LPS. We compared PROB with other

pseudotime inference methods (Slice, Slicer, PhenoPath, Wishbone, PAGA, Monocole2, DPT,

Tscan) in cell ordering. The coefficient of determination (i.e., R2) between the estimated pseu-

dotime and the capture time of cells was used for evaluation. PROB outperformed the other

existing methods.

(TIF)

S7 Fig. FOXM1 expression was associated with the therapeutic responses of breast cancer

patients. Breast cancer patients who received endocrine therapy (a) or chemotherapy (b) were
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included into the K-M survival analysis. Kaplan-Meier Plotter (http://kmplot.com) [67] was

employed to perform analysis. Log-rank test p-value was used to assess the prognostic signifi-

cance.

(TIF)

S8 Fig. The functional interaction network of FOXM1 extracted from String database. The

network shows the co-expression or regulation between FOXM1 and the predicted targeted

genes. Among 8 targeted genes of FOXM1 predicted from PROB, 7 genes (including KIF2C,

SHCBP1, CDCA8, NCAPG, ASPM, MELK and MCM10) were supported by the database

information.

(TIF)

S9 Fig. ChIP-seq analysis of FOXM1 in human mammary epithelial cells (HMEC). ChIP-

seq data were downloaded from GEO database (GSE62425) [54]. The analysis results showed

FOXM1 binds ASPM and KIF2C.

(TIF)

S10 Fig. Another validation for the predicted regulation of KIF2C, ASPM and CDCA8 by

FOXM1. Microarray data and RNA-seq data on two breast cancer cell lines (BT-20 and MCF-

7, respectively) were used for analyses. (a-c) The expression levels of the above three genes in

BT-20 breast cancer cells under FOXM1 siRNA or control (mock transfection and GFP

siRNA) conditions were analyzed using a set of microarray data (GSE2222) [55] (d-f) RNA-

seq data (GSE58626) [56] of MCF-7 breast cancer cells was used to analyze the differential

expressions of the above three genes after FOXM1 inhibition by using small molecule com-

pound IB that specifically inhibits FOXM1 [56]. The knockdown or silence of FOXM1 signifi-

cantly reduced the expressions of the above three genes. Wilcoxon rank sum test (one-tailed) p

value was calculated to assess the statistical significance.

(TIF)

S11 Fig. ACSS1 and PTPN12 are predictive of EMT and progression of UC to SARC. A

logistic regression model was developed to predict (a) EMT states or (b) histological subtypes

(UC vs. SARC) of bladder cancer based on the expression levels of ACSS1 and PTPN12. The

samples were randomly divided into training set (n = 56) and test set (n = 56). The AUCs for

the EMT phenotype prediction and subtype prediction are 0.8054 and 0.9405, respectively.

(TIF)

S12 Fig. A GRN kinetic signature predicts relapse in breast cancer. The kinetic features of

the FOXM1-target interactions were formulated as a risk score to predict relapse for breast

cancer patients in multiple independent cohorts. (a-c) Prognostic significance of the FOXM1--

target interactions with respect to predicting relapse-free survival (RFS) in breast cancer evalu-

ated on different datasets (GSE2990 [68], GSE12093 [69] and GSE5327 [70]). The log-rank test

p value was used to assess the statistical significance of the difference between the Kaplan-

Meier (K-M) survival curves of the high-risk group (green) and the low-risk group (red) of

patients. (d-f) Nonrandomness test of the FOXM1-target interactions in predicting relapse in

breast cancer using a bootstrapping approach (Text S6). The permutation test p values for all

three datasets (0.0073, 0.0401 and 0.006, respectively) were less than 0.05, verifying the statisti-

cal significance of the prognostic power of the FOXM1-target interactions.

(TIF)

S1 Table. Out-degree values of the genes in the UC-specific and SARC-specific networks.

(DOCX)
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S2 Table. The siRNA sequence used in this study.

(DOCX)

S3 Table. The specific primers used in this study.

(DOCX)

S4 Table. Runtime of PROB on different datasets.

(DOCX)

S1 Text. Progression-dependent dynamic modeling of the GRN.

(DOCX)

S2 Text. Proof of the Theorem 1.

(DOCX)

S3 Text. Implementation of PROB.

(DOCX)

S4 Text. Simulation study.

(DOCX)

S5 Text. PROB applied to real datasets.

(DOCX)

S6 Text. Clinical relevance of FOXM1 to breast cancer.

(DOCX)

S7 Text. Validation of the predicted FOXM1-targets interactions.

(DOCX)

S8 Text. GRN kinetic signature.

(DOCX)

S1 Data. Numerical data underlying graphics.

(XLSX)
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