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Prediction of complex trait phenotypes in the presence of unknown gene action is an
ongoing challenge in animals, plants, and humans. Development of flexible predictive
models that perform well irrespective of genetic and environmental architectures is
desirable. Methods that can address non-additive variation in a non-explicit manner are
gaining attention for this purpose and, in particular, semi-parametric kernel-based methods
have been applied to diverse datasets, mostly providing encouraging results. On the
other hand, the gains obtained from these methods have been smaller when smoothed
values such as estimated breeding value (EBV) have been used as response variables.
However, less emphasis has been placed on the choice of phenotypes to be used in
kernel-based whole-genome prediction. This study aimed to evaluate differences between
semi-parametric and parametric approaches using two types of response variables and
molecular markers as inputs. Pre-corrected phenotypes (PCP) and EBV obtained for
dairy cow health traits were used for this comparison. We observed that non-additive
genetic variances were major contributors to total genetic variances in PCP, whereas
additivity was the largest contributor to variability of EBV, as expected. Within the kernels
evaluated, non-parametric methods yielded slightly better predictive performance across
traits relative to their additive counterparts regardless of the type of response variable
used. This reinforces the view that non-parametric kernels aiming to capture non-linear
relationships between a panel of SNPs and phenotypes are appealing for complex trait
prediction. However, like past studies, the gain in predictive correlation was not large for
either PCP or EBV. We conclude that capturing non-additive genetic variation, especially
epistatic variation, in a cross-validation framework remains a significant challenge even
when it is important, as seems to be the case for health traits in dairy cows.
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INTRODUCTION
In animal breeding, a main goal is to attain genetic gain for
economically important traits in subsequent generations. In
the genomic era, dense molecular genetic markers disseminated
across the entire genome can be combined with extant informa-
tion, such as pedigrees, to obtain more accurate predictions of
the genetic values of candidate animals and to make selection
decisions. Whole-genome prediction methods that incorporate
all available DNA marker information have been proposed for this
purpose (Meuwissen et al., 2001; Gianola et al., 2003), and these
are now extensively used in animal breeding (e.g., de los Campos
et al., 2013a) and deemed as a promising tool in plant breeding
(e.g., Nakaya and Isobe, 2012), preventive medicine, and clinical
decision making (e.g., de los Campos et al., 2010a; Vazquez et al.,
2012).

The main rationale behind whole-genome approaches is
to capture signal via markers irrespective of the statistical

significance of individual markers. There is increasing evidence
that complex traits are the product of synergistic forces spanned
by large numbers of genetic polymorphisms within the genome
(e.g., Huang et al., 2012). This reaffirms the view that genetic
interaction is important and that genotypes and phenotypes may
be linked in a non-linear manner that may not be amenable to
parametric modeling. The issue is particularly pertinent to the
animal and plant breeding domains, which have been dealing
with complex trait genetics scientifically since the beginning of
the 20th century (Fisher, 1918; Wright, 2010). While breeding
exploits additive inheritance, developing flexible phenotypic pre-
diction machines that perform well regardless of the underlying
genetic makeup is desirable. Further, accomodating non-additive
effects in a model may enhance predictive ability of breeding
values.

Gianola et al. (2006); Gianola and van Kaam (2008);
Gianola et al. (2010) have laid groundwork for semi-parametric
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whole-genome regression methods that address non-additive
variation, albeit in a non-explicit manner. Bayesian kernel
ridge regression [a form of reproducing kernel Hilbert spaces
(RKHS) regression] and Bayesian neural networks are two major
smoothers that have been used to date. The semi-parametric
methods have resulted in a somewhat greater predictive abil-
ity than that delivered by linear additive smoothers in real data,
including Jersey cows (Gianola et al., 2011), heterogeneous mice
(Okut et al., 2011), broiler chickens (González-Recio et al., 2008,
2009; Long et al., 2010), and wheat (Long et al., 2011a; Pérez-
Rodríguez et al., 2012). In RKHS, typically a Gaussian kernel is
employed as a basis function, to estimate conditional expecta-
tions. Its essence is to condense hundreds of thousands of genetic
markers into a positive (semi) definite kernel matrix of order
n × n (n is the number of phenotypes) by creating genetic relat-
edness in terms of “spatial” distance on a certain metric space.
Although pedigree and genomic relationship matrices, A and G,
respectively, are valid kernels in RKHS, further smoothing of the
relatedness conveyed by A and G may enable better prediction
under complex gene action.

On the other hand, the gain obtained from semi-parametric
methods has been smaller when predicted transmitting abil-
ity (PTA) or estimated breeding value (EBV) was used as the
response variable (Long et al., 2011a; Morota et al., 2013). Thus,
further research is needed to fully exploit the theoretical advan-
tage of semi-parametric whole-genome regression. The choice
of target phenotypes has been discussed in conventional genetic
evaluation schemes (VanRaden and Wiggans, 1991), genome-
enabled selection (Garrick et al., 2009; Guo et al., 2010; Ostersen
et al., 2011; Boddhireddy et al., 2014) and quantitative trait loci
(QTL) mapping (Thomsen et al., 2001), but mostly in the context
of additive genetic effects. This is particularly relevant to dairy
cattle breeding for milk where bulls do not posses milk records
and heavy use is made of artificial insemination and progeny tests.
For example, the EBV of a bull is a smoothed weighted average of
records from all available relatives assuming additive inheritance
(the transmission rule is encoded in matrix A) and a daughter
yield deviation (DYD) is the average of a bull’s daughter perfor-
mance adjusted for systematic effects, as well as for genetic effects
of the daughter’s dams. A de-regressed proof (DRP) is similar to
DYD and can be derived from EBV; it removes parent average
effects and eliminates shrinkage inherent to EBV.

It is conceivable that the type of response variables used
to regress on kernels influences predictive performance. For
instance, EBV mainly encodes additive genetic effects and
depends on the narrow sense heritability of a target trait.
Variation in EBV, especially if it has a high reliability, is expected
to reflect mostly additive genetic components, whereas pre-
corrected phenotypes (PCP) may be affected by other sources of
variation, both environmental and genetic.

One concern is that the pre-processing of phenotypes by fitting
linear mixed models prior to conducting a genome-enabled pre-
diction may break underlying genotype-phenotype maps. It may
be that kernel methods are relatively better than their parametric
counterparts when applied to PCP than when used with EBV as
response variable. After all, predicting an average (such as EBV)
is easier than predicting a phenotype, so one might expect larger

differences among prediction machines when applied to PCP. The
objective of this study was to quantify the type and amount of
genetic variance in complex traits and to investigate differences
between predictive performance of non-parametric and paramet-
ric kernels when applied to two types of response variables: PCP
and EBV, both derived from raw phenotypes.

MATERIALS AND METHODS
DATA
The full dataset included 4482 dairy cows genotyped with 54,609
whole-genome SNPs on the Illumina BovineSNP50 BeadChip.
EBV and PCP were available for six health traits: ketosis (KET),
displaced abomasum (DA), retained placenta (RP), lameness
(LAME), metritis (METR), and clinical mastitis (CM). We chose
EBV because a recent study (Boddhireddy et al., 2014) found
that predictive correlations obtained using EBV were consistently
greater than those obtained using deregressed EBV. The same
study demonstrated that the predictive correlations dropped even
more when accuracies of estimated EBVs are low, which was
the case for the health traits we analyzed in this paper. Further,
Guo et al. (2010) reported that deregressed EBV yielded slightly
lower reliabilities on simulated data. PCP was obtained by fit-
ting a least squares model to raw binary phenotypes (presence or
absence) using parity, herd, year, and season effects as explanatory
variables. Similarly, EBV was predicted via best linear unbiased
prediction (BLUP) using an A matrix considering 14,685 ani-
mals, dating back 10 generations on average. The number of
animals with both genotypes and phenotypes available varied
across traits. All animals had EBV for every trait, while only 2886,
4227, and 3622 animals with PCP were available for KET, DA,
and RP, respectively. Average values of reliabilities associated for
these EBV were 0.21, 0.35, 0.24, 0.28, 0.49, and 0.23 for KET, DA,
RP, LAME, METR, and CM, respectively. Monomorphic markers
were not considered and SNPs that had a minor allele frequency
(MAF) less than 0.05, resulting in 41,266 markers used for the
analysis. Missing genotypes were replaced locus by locus by sam-
pling alleles from a Bernoulli distribution with the marginal allele
frequency used as the parameter. A study in pine has shown that
predictions are stable with respect to various imputation methods
(Zapata-Valenzuela et al., 2013).

CHOICE OF KERNELS
We aimed to capture signal from genotypes to phenotypes
through construction of a kernel matrix K. Three non-
parametric and three parametric kernels were considered. The
non-parametric Gaussian kernel (GK) can be constructed by
embedding a vector of SNPs into the Euclidean metric space.
The spatial genetic distance between two individuals with corre-
sponding vectors of genotypes xi and xj is given by the squared
Euclidean norm k(xi, xj) = exp(−θ ||xi − xj||2), where a positive
bandwidth parameter θ controls overall smoothness of the func-
tion. This kernel is known to approximate a diffusion kernel well,
with the latter defined on a discrete non-Euclidean metric space
(Morota et al., 2013). We built two types of Gaussian kernels that
differed with respect to allele coding (Long et al., 2011b). An addi-
tive Gaussian kernel, hereinafter denoted as GKA, was based on
coding marker genotypes in an additive manner, such as “aa” →
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0, “Aa” → 1, “AA” → 2. Similarly, coding genotypes “aa”, “Aa”
and “AA” as -0.5, 0.5, and -0.5, respectively, leads to a dominance
Gaussian kernel (GKD). The third non-parametric kernel, aimed
to capture additive by dominance epistasis, was constructed by
taking the Hadamard (element by element) product of matrices,
that is, GKA#GKD, following Henderson (1985). This parameter-
ization assumes no linkage and linkage equilibrium (LE). With
respect to the parametric kernels, the first approach was an addi-
tive genomic relationship matrix G (VanRaden, 2008) based on
the additive genotype matrix (XA). Subsequently, its dominance
counterpart D was derived by constructing a dominance con-
trast between marker genotypes (XD). Under dominance and
Hardy-Weinberg equilibrium, the expectation and variance of
genotypes at a locus (xi) are given by 2pi(1 − pi) and 2pi(1 −
pi)[1 − 2pi(1 − pi)], respectively, where pi is the allele frequency
of a reference allele (Su et al., 2012). Using the same logic as
above, the parametric version of an additive by dominance epis-
tasis kernel is given by G#D. The first three kernels (GKA, GKD,
and GKA#GKD) incorporate markers into the regression equation
non-parametrically in a non-linear manner, whereas the other
three kernels possess a parametric interpretation and are linear
on additive or dominance relationships.

BAYESIAN KERNEL RIDGE REGRESSION
The procedure is as in Morota et al. (2013). A standard quantita-
tive genetics model attempts to separate observed values (y) into
genetic (g) and residual (ε) components by setting up an equation
y = g + ε. The residual term ε may contain model misspecifi-
cation and environmental effects not considered in the analysis.
The genetic signal is regarded as an unknown conditional expec-
tation function taking the form g = Kα under the representer
theorem (e.g., de los Campos et al., 2010b). Here, K is one of the
kernels discussed above and the coefficient α is the solution that
optimizes �(α|λ) = (y − Kα)′(y − Kα) + λα′Kα. This is equiv-
alent to fitting y = Kα + ε, with α and ε following independent
N(0, K−1σ 2

α) and N(0, Iσ 2
ε ) distributions, respectively; λ is the

ratio of variance components, σ 2
ε /σ 2

α . Thus, within the frame-
work of this particular RKHS regression model, the response and
the kernel are linked in a linear fashion, while the SNP covari-
ates enter either linearly or non-linearly into the kernels. The
prediction of genetic values is given by the estimated conditional
expectation function ĝ = Kα̂.

All unknown terms, including the variance components, can
be inferred from a posterior distribution using Gibbs sampling.
Scaled inverse chi-squared distributions with degrees of freedom
equal to 5 and a scale parameter proportional to the phenotypic
variance times 0.5 were used as priors for the two variance param-
eters. We employed a Markov chain of 50,000 iterations, with the
first 20,000 discarded as burn-in. Thinning rate was 10, yielding
3000 samples for posterior inference of each parameter of inter-
est. For EBV, reliabilities associated with those EBV were used as
weights.

WEIGHTS OF KERNELS
The contribution of each kernel was evaluated through “kernel
averaging” (i.e., multiple kernel learning) as proposed in de los
Campos et al. (2010b). The three parametric kernels G, D, and

G#D were used to quantify the amount of variance that can be
attributed to marked additive, dominance, and additive by dom-
inance epistasis as in standard variance component estimation.

Here, the “average” kernel K takes the form K = G
σ 2

G

σ̃ 2
K

+ D
σ 2

D

σ̃ 2
K

+
(G#D)

σ 2
GD

σ̃ 2
K

, where σ 2
G, σ 2

D, σ 2
GD are variance components linked

to kernels G, D, and GD, respectively, and σ̃ 2
K = σ 2

G + σ 2
D + σ 2

GD.
Thus, σ 2

G/σ̃ 2
K, σ 2

D/σ̃ 2
K, σ 2

GD/σ̃ 2
K can be viewed as the relative con-

tributions of the kernels to the marked genetic variation in the
population. The larger the corresponding weights are, the larger
the contribution of a specific type of genetic variance to over-
all variation. We also quantified weights by fitting only additive
and dominance kernels, to evaluate potential bias due to model
misspecification.

The bandwidth parameter (θ) attached to a Gaussian ker-
nel can be either inferred within a Bayesian MCMC sampling
framework or evaluated over a grid of values of θ . The approach
adopted here was to use the kernel averaging described earlier in
an MCMC context. Two non-parametric kernels of the same type
were created using “extreme” values of bandwidth parameters so
that the means of the average off-diagonal elements of the cor-
responding kernels were 0.12 and 0.90, respectively. Thus, any of
the three kernels created was based on both local (0.12) and global
(0.90) similarities among individuals. Parametric kernels do not
involve this bandwidth parameter.

The RKHS regression models were fitted using functions
obtained from the R package BGLR (bglr.r-forge.r-project.org).

ASSESSMENT OF PREDICTIVE ABILITY
The predictive ability of the models was assessed using a 10-fold
cross-validation (CV) by splitting the data randomly into 10 dis-
joint sets of about equal size. Nine sets were used as training data
to predict masked phenotypes of animals in the remaining set
(testing). Predictive performance was measured as Pearson’s cor-
relation between predicted and observed values in the testing set.
To smooth variability of the CV distribution, the average of five
10-fold CV was calculated. The predictive performance of three
combinations of non-parametric kernels (GKA, GKD, and GKA +
GKD + GKA#GKD) and one combination of parametric kernels
(G + D + G#D) was compared against the benchmark kernel G,
which is equivalent to genomic best linear unbiased prediction.

RESULTS
Pair-wise correlations among the 12 response variables are dis-
played as a heatmap in Figure 1. Correlations among the 6
PCP, the 6 EBV, and the 6 pairs of PCP and EBV on the same
traits ranged between −0.03 and 0.21, −0.19 and 0.51, and 0.41
and 0.78, respectively. A hierarchical clustering, joined the two
response variables of the same trait as expected, and six traits were
clustered into two large groups: (1) METR, RP, and DA, and (2)
LAME, CM, and KET.

A summary of the estimated variance components is shown in
Table 1. Here, VG, VD, VGD, and VK represent marked additive
(σ 2

G), marked dominance (σ 2
D), marked additive by dominance

(σ 2
GD), and total marked genetic variance (σ̃ 2

K = σ 2
G + σ 2

D +
σ 2

GD), respectively, and H2 is estimated broad sense heritability.
Narrow sense heritability estimates of PCP (VG/VP) ranged
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from 0.05 (RP) to 0.09 for KET. This is consistent with literature
reports for health traits (e.g., Heringstad et al., 2005; Heringstad,
2010; Koeck et al., 2012). We observed that non-additive genetic
variances were major sources of genetic variation in PCP, whereas

FIGURE 1 | Correlations among six health traits: ketosis (KET),

displaced abomasum (DA), retained placenta (RP), lameness (LAME),

metritis (METR), and clinical mastitis (CM). Variable names followed by
"_ebv" denote estimated breeding values (EBV).

additivity had the largest contribution to variability of EBV as
one would expect. Additive by dominance epistasis followed by
dominance had the largest contribution to variation in health
PCP, which is in agreement with pedigree-based analyses (e.g.,
Hoeschele, 1991; Palucci et al., 2007) suggesting the hypothesis
that non-additive genetic variances are important for fitness
related traits (e.g., fertility). For all PCP traits, the amount of
non-additive genetic variance was greater than the additive
variance. Unexpectedly, a sizeable amount of epistatic variances
was also captured for EBV of DA, LAME, METR, and CM, which
is believed to be embedding solely additive variability. On the
other hand, the contribution of epistasis for EBV of KET and RP
was negligible. A reason is that the interpretation of variances
from marker-based models should not be the same as that of
variance estimates from pedigree data. Also, these EBV were for
health traits having low narrow sense heritability and, hence, low
reliability. A third reason is that the variance partition applies
to averages, producing a much larger contribution of genetic
variances than when the partition is for single records. Estimates
of broad sense heritability ranged from 0.33 to 0.52 for PCP and
0.29 to 0.78 for EBV. As mentioned above, the variance among
EBV was small, because these are averages. The phenotypic
variances among EBV for the six traits ranged between 0.0057
and 0.0157. Hence, this magnifies the contribution of genetic
variances compared to decompositions obtained with PCP.

Values in parentheses in Table 1 are the estimated weights
(contribution to total variance) when only additive and domi-
nance kernels were fitted. All dominance kernel weights so esti-
mated were slightly higher or equal for both PCP and EBV than
under the full model. On the other hand, estimated weights in
the two kernels model for PCP were higher, whereas for EBV, the

Table 1 | Estimated ratios of variance components (weights) for ketosis (KET), displaced abomasum (DA), retained placenta (RP), lameness

(LAME), metritis (METR), and clinical mastitis (CM) using parametric multiple-kernel learning.

Traits Types Variance components

V G/V P V D/V P V GD/V P H2 V G/V K V D/V K V GD/V K

KET PCP 0.09 (0.10) 0.13 (0.14) 0.14 0.35 (0.24) 0.24 0.36 0.40
EBV 0.25 (0.24) 0.03 (0.04) 0.01 0.29 (0.28) 0.84 0.12 0.04

DA PCP 0.06 (0.08) 0.09 (0.10) 0.25 0.40 (0.18) 0.16 0.22 0.62
EBV 0.39 (0.30) 0.04 (0.05) 0.30 0.73 (0.36) 0.53 0.05 0.41

RP PCP 0.05 (0.07) 0.09 (0.11) 0.35 0.50 (0.18) 0.11 0.18 0.71
EBV 0.27 (0.23) 0.03 (0.03) 0.07 0.37 (0.26) 0.73 0.07 0.20

LAME PCP 0.06 (0.07) 0.07 (0.09) 0.39 0.52 (0.16) 0.12 0.14 0.75
EBV 0.39 (0.30) 0.03 (0.08) 0.27 0.70 (0.38) 0.56 0.05 0.39

METR PCP 0.06 (0.07) 0.07 (0.08) 0.21 0.33 (0.15) 0.17 0.21 0.62
EBV 0.31 (0.26) 0.05 (0.07) 0.42 0.78 (0.34) 0.39 0.07 0.54

CM PCP 0.06 (0.07) 0.07 (0.09) 0.26 0.39 (0.16) 0.15 0.18 0.66
EBV 0.36 (0.29) 0.02 (0.05) 0.16 0.54 (0.34) 0.66 0.04 0.29

The epistatic kernel was created from the Hadamard product of additive and dominance kernels. Pre-corrected phenotype (PCP) and estimated breeding value (EBV)

were used as phenotypes. VG, VD, VGD, and VK represent marked additive (σ 2
G), marked dominance (σ 2

D), marked additive by dominance (σ 2
GD), and total marked

genetic variance (σ̃ 2
K = σ 2

G + σ 2
D + σ 2

GD), respectively, H2 is estimated marked broad sense heritability. Values in parentheses are estimated weights when kernels

were fitted separately.
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opposite trend was observed. By comparing the full with reduced
models, we noted that most epistatic signal come from the resid-
ual variances. This suggests that the models were not able to
separate additive by dominance from residual variances, proba-
bly because most off-diagonal elements in G#D are zero, which
is close to an identity matrix. In our data set, averages of abso-
lute values of off-diagonals were 0.02, 0.01, and 0.0003 for G, D,
and GD, respectively. Figure 2 depicts scatter plots of relation-
ships among G, D, and GD that are taken from four randomly
sampled animals. We see that the vast majority of off-diagonal
components of GD are concentrated around zero. One approach
to mitigate this problem is to use more strongly related animals,
so that off-diagonals of G#D would be further away from zero.

We observed a small dominance contribution for EBV and
found that the correlation between corresponding elements of G

and D was 0.70. This dependency is also highlighted in the first
row of Figure 2. We found that when a larger number of SNPs
was used to construct D, the off-diagonal elements of this kernel
became more strongly correlated with those of G. This is illus-
trated in Figure 3, where additive and dominance kernels were
created from randomly sampled genotypes from this study, where
average adjacent linkage disequilibrium (LD) was 0.18 when
using the r2 metric. Genotypes under a LE scenario were cre-
ated via computer simulation with an average MAF of 0.35. The
number of animals was fixed as in this study (n = 4,482), while
varying the number of markers from 150 to 40,000. Under LD, the
two kernels became more similar as the number of SNP increase,
suggesting that a partition of marked variance into additive and
dominance components may be difficult to attain, producing mis-
leading results unless the kernel takes somehow into account the

FIGURE 2 | Scatter plots of relationships among additive (G), dominance (D), and additive by dominance (GD) taken from four randomly sampled

animals.
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FIGURE 3 | Correlations between off-diagonal elements of the additive

genomic relationship matrix G and of the dominance relationship

matrix D as a function of the number of SNPs. Genotypes were both
randomly sampled from the present study (Level = LD) and via a computer
simulation locus by locus (Level = LE) with an average minor allele
frequency equal to 0.35. The averages of the r2 linkage disequilibrium (LD)
statistic between adjacent markers were 0.18 and 0.008 for the real and
simulated datasets, respectively.

ratio p/n when the number of markers is much larger than the
number of animals, p >> n. On the other hand, correlations
between off-diagonal elements of the additive and dominance
relationship matrices remained constant at small values when LD
was absent.

Table 2 shows predictive correlations for the kernels employed.
The non-parametric kernels GKA and GKALL yielded slightly bet-
ter predictive performance than the additive genomic-BLUP (G)
for all traits regardless of the type of response variable used.
Fitting the three parametric kernels (G, D, and G#D) together
gave a slightly better predictive performance than G alone in
most cases. Overall, either the Gaussian additive kernel alone,
or the three non-parametric kernels (Gaussian additive, domi-
nance, and additive by dominance) fitted jointly delivered the best
performance. The Gaussian kernel derived from the dominance
contrasts did not perform well unless the Gaussian additive ker-
nel was fitted together. These results indicate presence of marked
non-additive genetic variation in PCP, and that kernels that make
use of non-additive sources of information may deliver better
predictions. Non-parametric kernels performed better than para-
metric counterparts for EBV. However, the gain in predictive
ability from the use of non-parametric kernels was similar for
PCP and EBV, at least as measured by correlation. This gain was
marginal and varied between 0.01 and 0.03 over traits, indicating
that the non-parametric kernels were unable to exploit presence
of non-additive genetic variation for PCP effectively, at least for

Table 2 | Predictive correlation for ketosis (KET), displaced abomasum

(DA), retained placenta (RP), lameness (LAME), metritis (METR), and

clinical mastitis (CM) using various kernels and the average of five

10-fold cross-validation.

Traits Types Kernels

G GKA GKD GKALL ALL

KET PCP 0.16 0.18 0.16 0.19 0.18

EBV 0.85 0.86 0.84 0.87 0.86

DA PCP 0.07 0.08 0.07 0.08 0.07

EBV 0.59 0.61 0.53 0.59 0.60

RP PCP 0.03 0.05 0.05 0.06 0.05

EBV 0.65 0.67 0.60 0.66 0.65

LAME PCP 0.07 0.08 0.04 0.07 0.05

EBV 0.64 0.66 0.58 0.65 0.64

METR PCP 0.05 0.07 0.04 0.05 0.05

EBV 0.48 0.52 0.43 0.50 0.49

CM PCP 0.07 0.08 0.05 0.07 0.07

EBV 0.72 0.74 0.68 0.73 0.73

Pre-corrected phenotype (PCP) and estimated breeding value (EBV) were target

phenotypes. Kernels were: additive genomic relationship kernel (G), Gaussian

additive kernel (GKA), Gaussian dominance kernel (GKD), multiple kernel learn-

ing using Gaussian additive, Gaussian dominance, and Gaussian additive by

dominance kernels (GKALL), and fitting three parametric kernels (G, D, and G#D)

simultaneously (ALL). The best prediction within trait and type of phenotype is

italicized.

these traits. Our observation is congruent with a recent study
in pigs, where additive and non-additive genetic variances were
obtained and prediction was made using parametric kernels (Su
et al., 2012). Although these authors reported large non-additive
genetic variances, use of genomic BLUP accommodating additive,
dominance, and additive by additive epistasis yielded a marginal
gain compared to the additive genomic relationship kernel alone.
As stated previously, additive and dominance kernels are corre-
lated by construction and these two kernels were also strongly
correlated with additive by dominance kernels. These observa-
tions indicate that the LE assumption of Kempthorne (1954) is
violated and suggest that use of a single Gaussian kernel aimed
to capture total genetic variation may be preferred for prediction
purposes compared to parameterizing into three genetic compo-
nents. Perhaps the variance component estimates reported in Su
et al. (2012) and the values obtained in our study are unstable
or are biased upwards because of lack of orthogonality among
parametric kernels and, if this is the case, a significant gain would
not be achieved with prediction models aiming to capture non-
additive genetic variation using naively structured kernels. The
possibility of having unstable estimates may be excluded for our
case as the posterior density of the ratios of variance components
for EBV were unimodal (Figure 4). Genomic relationship ker-
nels that are “orthogonal” to each other could enhance prediction
ability but such kernels are not straightforward to construct.
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FIGURE 4 | Posterior density plots of the ratios of variance components for ketosis (KET), displaced abomasum (DA), retained placenta (RP),

lameness (LAME), metritis (METR), and clinical mastitis (CM). Estimated breeding value was used as phenotype.
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DISCUSSION
Recovering non-additive genetic variation in a validation dataset
seems to be a challenge even when it is present, as appears to be
the case for health traits in dairy cows. We observed that non-
parametric kernels performed better irrespective of trait, but the
predictive gain achieved over and above that from an additive
genomic relationship kernel was small. Although mappings from
genotypes to phenotypes may be captured more accurately with
non-parametric kernels, recovering non-additive variance in CV
remains an ongoing challenge in quantitative genetics. Arguably,
use of environmental information, together with genomic data,
may enhance predictive ability, especially of individual phe-
notypes such as PCP. This is an important topic for future
research.

Quantifying non-additive genetic variances precisely requires
setting up orthogonal additive, dominance, and additive by dom-
inance epistasis kernels (Cockerham, 1954) and the assumption
of no linkage and LE (Kempthorne, 1954). However, this is not
feasible under linkage disequilibrium and selection. Therefore,
the genetic variance decomposition obtained in this study via
the three kernels should be taken as an approximation, because
we cannot rule out the possibility that a single kernel captures
multiple sources of genetic information.

In theory, non-additive genetic effects are of little relevance
in genome-enabled selection, at least for most livestock species.
Recently, Hansen (2013) argued from an evolutionary perspec-
tive that functional epistasis plays an important role in selec-
tion response, challenging the mainstream view of Hill et al.
(2008). While additive genetic effects are expected to drive selec-
tion response based on Fisher’s fundamental theorem under
idealized conditions (Fisher, 1930; Crow, 2002), modeling non-
additive effects explicitly might be required for proper estimation
of breeding values and correct ranking of candidate parents
for the next generation. Constructing four positive (semi) defi-
nite matrices (G, D, GD, and I) that are identifiable from one
another seems indispensable to apportion genetic signals prop-
erly. An alternative approach is to construct GD = XADX

′
AD,

where XAD is the additive by dominance genotype matrix,
but this requires intensive computation for p ≈ 50, 000 (Xu,
2013).

It is important to note that Gaussian kernels pose a non-linear
relationship between the kernel and SNP codes. If such a relation-
ship holds, as may be the case for mean grain yield in wheat (e.g.,
Long et al., 2011a; Morota et al., 2013), an advantage should be
detected. In this scenario, an upper bound for the squared pre-
dictive correlation obtained from non-parametric kernels would
be broad sense heritability, as opposed to narrow sense heritabil-
ity when an additive genomic relationship kernel is used (de los
Campos et al., 2013b).

It is well known that there is no universal prediction machine
that performs best on all cases and that the method of choice
depends on the species, target trait, and possibly environmen-
tal circumstances. Nonetheless, this is a first report on the
use of semi-parametric approaches for estimating marker-based
non-additive genetic variances and predicting dairy cow health
traits.

ACKNOWLEDGMENTS
Gota Morota and Daniel Gianola thank the Wisconsin
Agriculture Experiment Station and a Hatch grant from the
United States Department of Agriculture.

REFERENCES
Boddhireddy, P., Kelly, M. J., Northcutt, S., Prayaga, K. C., Rumph, J., and Denise,

S. (2014). Genomic predictions in angus cattle: comparisons of sample size,
response variables, and clustering methods for cross-validation. J. Anim. Sci.
92, 485–497. doi: 10.2527/jas.2013-6757

Cockerham, C. C. (1954). An extension of the concept of partitioning hereditary
variance for analysis of covariances among relatives when epistasis is present.
Genetics 39, 859–882.

Crow, J. F. (2002). Perspective: here’s to fisher, additive genetic variance, and
the fundamental theorem of natural selection. Evolution 56, 1313–1316. doi:
10.1554/0014-3820(2002)056

de los Campos, G., Gianola, D., and Allison, D. B. (2010a). Predicting genetic pre-
disposition in humans: the promise of whole-genome markers. Nat. Genet. Rev.
11, 880–886. doi: 10.1038/nrg2898

de los Campos, G., Gianola, D., Rosa, G. J., Weigel, K. A., and Crossa, J. (2010b).
Semi-parametric genomic-enabled prediction of genetic values using repro-
ducing kernel Hilbert spaces methods. Genet. Res. (Camb.) 92, 295–308. doi:
10.1017/S0016672310000285

de los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D., and Calus,
M. P. (2013a). Whole-genome regression and prediction methods applied to
plant and animal breeding. Genetics 193, 327–345. doi: 10.1534/genetics.112.
143313

de los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., and Sorensen,
D. (2013b). Prediction of complex human traits using the genomic best linear
unbiased predictor. PLoS Genet. 9:e1003608. doi: 10.1371/journal.pgen.1003608

Fisher, R. A. (1918). The correlation between relatives on the supposi-
tion of Mendelian inheritance. Trans. R. Soc. Edin. 52, 399–433. doi:
10.1017/S0080456800012163

Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon
Press.

Garrick, D. J., Taylor, J. F., and Fernando, R. L. (2009). Deregressing estimated
breeding values and weighting information for genomic regression analyses.
Genet. Sel. Evol. 41, 55. doi: 10.1186/1297-9686-41-55

Gianola, D., de los Campos, G., González-Recio, O., Long, N., Okut, H., Rosa, G.
J. M., et al. (2010). “Statistical learning methods for genome-based analysis of
quantitative traits,” in Proceedings of the 9th World Congress on Genetics Applied
to Livestock production, Leipzig, CD–ROM Communication 0014.

Gianola, D., Fernando, R. L., and Stella, A. (2006). Genomic-assisted prediction
of genetic value with semiparametric procedures. Genetics 173, 1761–1776. doi:
10.1534/genetics.105.049510

Gianola, D., Okut, H., Weigel, K. A., and Rosa, G. J. M. (2011). Predicting complex
quantitative traits with Bayesian neural networks: a case study with jersey cows
and wheat. BMC Genet. 12:87. doi: 10.1186/1471-2156-12-87

Gianola, D., Perez-Enciso, M., and Toro, M. A. (2003). On marker-assisted predic-
tion of genetic value: beyond the ridge. Genetics 163, 347–365.

Gianola, D., and van Kaam, J. B. (2008). Reproducing kernel Hilbert spaces regres-
sion methods for genomic assisted prediction of quantitative traits. Genetics 178,
2289–2303. doi: 10.1534/genetics.107.084285

González-Recio, O., Gianola, D., Long, N., Weigel, K. A., Rosa, G. J., and Avendaño,
S. (2008). Nonparametric methods for incorporating genomic information into
genetic evaluations: an application to mortality in broilers. Genetics 178, 2305–
2313. doi: 10.1534/genetics.107.084293

González-Recio, O., Gianola, D., Rosa, G. J., Weigel, K. A., and Kranis, A. (2009).
Genome-assisted prediction of a quantitative trait measured in parents and
progeny: application to food conversion rate in chickens. Genet. Sel. Evol. 41,
3. doi: 10.1186/1297-9686-41-3

Guo, G., Lund, M. S., Zhang, Y., and Su, G. (2010). Comparison between genomic
predictions using daughter yield deviation and conventional estimated breed-
ing value as reponse variables. J. Anim. Breed. Genet. 127, 423–432. doi:
10.1111/j.1439-0388.2010.00878.x

Hansen, T. F. (2013). Why epistasis is important for selection and adaptation.
Evolution 67, 3501–3511. doi: 10.1111/evo.12214

Frontiers in Genetics | Livestock Genomics March 2014 | Volume 5 | Article 56 | 8

http://www.frontiersin.org/Livestock_Genomics
http://www.frontiersin.org/Livestock_Genomics
http://www.frontiersin.org/Livestock_Genomics/archive


Morota et al. Kernel-based analysis for health traits

Henderson, C. R. (1985). Best linear unbiased prediction of nonadditive genetic
merits in noninbred populations. J. Anim. Sci. 60, 111–117.

Heringstad, B. (2010). Genetic analysis of fertility-related diseases and disorders in
Norwegian red cows. J. Dairy Sci. 93, 2751–2756. doi: 10.3168/jds.2009-2879

Heringstad, B., Chang, Y. M., Gianola, D., and Klemetsdal, G. (2005). Genetic
analysis of clinical mastitis, milk fever, ketosis, and retained placenta in
three lactations of Norwegian red cows. J. Dairy Sci. 88, 3273–3281. doi:
10.3168/jds.S0022-0302(05)73010-1

Hill, W. G., Goddard, M. E., and Visscher, P. M. (2008). Data and theory point to
mainly additive genetic variance for complex traits. PLoS Genet. 4:e100008. doi:
10.1371/journal.pgen.1000008

Hoeschele, I. (1991). Additive and nonadditive genetic variance in female fertility of
Holsteins. J. Dairy Sci. 74, 1743–1752. doi: 10.3168/jds.S0022-0302(91)78337-9

Huang, W., Richards, S., Carbone, M. A., Zhu, D., Anholt, R. R., Ayroles,
J. F., et al. (2012). Epistasis dominates the genetic architecture of Drosophila
quantitative traits. Proc. Natl. Acad. Sci. U.S.A. 109, 15553–15559. doi:
10.1073/pnas.1213423109

Kempthorne, O. (1954). The correlation between relatives in a random mat-
ing population. Proc. R. Soc. Lond. B Biol. Sci. 143, 103–113. doi:
10.1098/rspb.1954.0056

Koeck, A., Miglior, F., Kelton, D. F., and Schenkel, F. S. (2012). Health recording in
Canadian Holsteins: data and genetic parameters. J. Dairy Sci. 95, 4099–4108.
doi: 10.3168/jds.2011-5127

Long, N., Gianola, D., Rosa, G. J., and Weigel, K. A. (2011a). Application of support
vector regression to genome-assisted prediction of quantitative traits. Theor.
Appl. Genet. 123, 1065–1074. doi: 10.1007/s00122-011-1648-y

Long, N., Gianola, D., Rosa, G. J., and Weigel, K. A. (2011b). Marker-
assisted prediction of non-additive genetic values. Genetica 139, 843–854. doi:
10.1007/s10709-011-9588-7

Long, N., Gianola, D., Rosa, G. J., Weigel, K. A., Kranis, A., and González-
Recio, O. (2010). Radial basis function regression methods for predicting
quantitative traits using SNP markers. Genet. Res. (Camb.) 92, 209–225. doi:
10.1017/S0016672310000157

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total
genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.

Morota, G., Koyama, M., Rosa, G. J. M., Weigel, K. A., and Gianola, D. (2013).
Predicting complex traits using a diffusion kernel on genetic markers with
an application to dairy cattle and wheat data. Genet. Sel. Evol. 45, 17. doi:
10.1186/1297-9686-45-17

Nakaya, A., and Isobe, S. N. (2012). Will genomic selection be a practical method
for plant breeding? Ann. Bot. 110, 1303–1316. doi: 10.1093/aob/mcs109

Okut, H., Gianola, D., Rosa, G. J. M., and Weigel, K. A. (2011). Prediction of body
mass index in mice using dense molecular markers and a regularized neural
network. Genet. Res. (Camb). 93, 189–201. doi: 10.1017/S0016672310000662

Ostersen, T., Christensen, O. F., Henryon, M., Nielsen, B., Su, G., and Madsen, P.
(2011). Deregressed EBV as the response variable yield more reliable genomic
predictions than traditional EBV in purebred pigs. Genet. Sel. Evol. 43, 38. doi:
10.1186/1297-9686-43-38

Palucci, V., Schaeffer, L. R., Miglior, F., and Osborne, V. (2007). Non-additive
genetic effects for fertility traits in Canadian Holstein cattle. Genet. Sel. Evol.
39, 181–193. doi: 10.1186/1297-9686-39-2-181

Pérez-Rodríguez, P., Gianola, D., González-Camacho, J. M., Crossa, J., Manès, Y.,
and Dreisiqacker, S. (2012). Comparison between linear and non-parametric
regression models for genome-enabled prediction in wheat. G3 (Bethesda) 2,
1595–1605. doi: 10.1534/g3.112.003665

Su, G., Christensen, O. F., Ostersen, T., Henryon, M., and Lund, M. S.
(2012). Estimating additive and non-additive genetic variances and
predicting genetic merits using genome-wide dense single nucleotide
polymorphism markers. PLoS ONE 7:e45293. doi: 10.1371/journal.pone.
0045293

Thomsen, H., Reinsch, N., Xu, N., Looft, C., Grupe, S., C K uhn, G.
A. B., et al. (2001). Comparison of estimated breeding values, daughter
yield deviations and de-regressed proofs within a whole genome scan for
QTL. J. Anim. Breed. Genet. 118, 357–370. doi: 10.1046/j.1439-0388.2001.
00302.x

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J.
Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

VanRaden, P. M., and Wiggans, G. R. (1991). Derivation, calculation, and use
of national animal model information. J. Dairy Sci. 74, 2737–2746. doi:
10.3168/jds.S0022-0302(91)78453-1

Vazquez, A. I., de los Campos, G., Klimentidis, Y. C., Rosa, G. J., Gianola, D., Yi,
N., et al. (2012). A comprehensive genetic approach for improving prediction
of skin cancer risk in humans. Genetics 192, 1493–1502. doi: 10.1534/genet-
ics.112.141705

Wright, S. (2010). Principles of Livestock Breeding (1920). Montana: Kessinger
Publishing Whitefish.

Xu, S. (2013). Mapping quantitative trait loci by controlling polygenic background
effects. Genetics 195, 1209–1222. doi: 10.1534/genetics.113.157032

Zapata-Valenzuela, J., Whetten, R. W., Neale, D., Mckeand, S., and Isik, F. (2013).
Genomic estimated breeding values using genomic relationship matrices
in a cloned population of loblolly pine. G3 (Bethesda) 3, 909–916. doi:
10.1534/g3.113.005975

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 14 November 2013; paper pending published: 07 January 2014; accepted: 04
March 2014; published online: 24 March 2014.
Citation: Morota G, Boddhireddy P, Vukasinovic N, Gianola D and DeNise S (2014)
Kernel-based variance component estimation and whole-genome prediction of pre-
corrected phenotypes and progeny tests for dairy cow health traits. Front. Genet. 5:56.
doi: 10.3389/fgene.2014.00056
This article was submitted to Livestock Genomics, a section of the journal Frontiers in
Genetics.
Copyright © 2014 Morota, Boddhireddy, Vukasinovic, Gianola and DeNise. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the orig-
inal publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org March 2014 | Volume 5 | Article 56 | 9

http://dx.doi.org/10.3389/fgene.2014.00056
http://dx.doi.org/10.3389/fgene.2014.00056
http://dx.doi.org/10.3389/fgene.2014.00056
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Livestock_Genomics/archive

	Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits
	Introduction
	Materials and Methods
	Data
	Choice of Kernels
	Bayesian Kernel Ridge Regression
	Weights of Kernels
	Assessment of Predictive Ability

	Results
	Discussion
	Acknowledgments
	References




