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Previous studies have shown that mutations in the tumor suppressor gene von Hippel-Lindau (VHL) can result in the
overproduction of reactive oxygen species (ROS) and chronic inflammation and are a significant predisposing factor for the
development of clear-cell renal cell carcinoma (ccRCC). To study VHL’s role in ccRCC formation, we previously developed a
novel conditional knockout mouse model that mimicked the features of kidney inflammation and fibrosis that lead to cyst
formation and hyperplasia. However, due to VHL’s complex cellular functions, the mechanism of this phenomenon remains
unclear. Here, we used the HK-2 cells and mouse primary renal tubule cells (mRTCs) carrying VHL mutations as models to
study the effects and underlying molecular mechanisms of ROS accumulation. We also studied the role of lipocalin 2 (LCN2) in
regulating macrophage recruitment by HK-2 cells. We measured the level of ROS in HK-2 cells in the presence or absence of
LCN2 knockdown and found that the VHL mutation caused ROS overproduction, but an LCN2 knockdown could attenuate the
process. VHL was also found to mediate the in vitro and in vivo expression and secretion of LCN2. Thus, VHL likely affects
ROS production in an LCN2-dependent manner. Our findings also suggest that LCN2 sensitizes the inflammatory response of
HK-2 cells and the chemotactic abilities of macrophage RAW264.7 cells. By demonstrating that the loss of function of von
Hippel-Lindau triggers lipocalin 2-dependent inflammatory responses in cultured and primary renal tubular cells, our results
offer novel insights into a potential therapeutic approach for interfering with the development of ccRCC.

1. Introduction

Mutations in von Hippel-Lindau (VHL) play a critical role in
developing clear-cell renal cell carcinoma (ccRCC) [1, 2].
Our previous study showed that, in the kidney lesions in
Vhl knockout mice, there was a marked increase in inflam-
mation and fibrosis with substantial collagen fiber deposition

accumulated within clusters of distorted tubules [3]. We have
previously demonstrated that the inflammation and fibrosis
in Vhl knockout mouse lesions can be alleviated after treat-
ment with an inhibitor of serine/threonine protein kina-
se/endoribonuclease (IREla) [4]. Inflammation may be
caused by changes in proteostasis due to the overproduction
of inflammatory cytokines [5, 6]. Notably, it has been
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Ficure 1: Effect of VHL on ROS production in HK-2 cells. HK-2 cells were transfected with a vector expressing a scrambled shRNA (SC) or
shRNA specific for VHL (shVHLI) (V1) (4) by electroporation with the Gemini X2 System and incubated for 48 hours. (a) After transfection,
the intracellular ROS levels were determined using DCFDA. (b) The fluorescence intensity was detected using FACSCalibur analysis. All data
were presented as the mean + SD. *p < 0.05 as compared to the scrambled vector.

hypothesized that inflammation plays a critical role in carci-
nogenesis [7], and VHL mutation-associated ccRCC likely
results from chronic inflammation [3, 8].

Also, VHL is known to regulate many other genes
involved in the inflammatory response. For example, VHL
regulates the expression of MKI67, a HIFIA target gene [9],
and the marker of ccRCC [10], CA9, whose expression in kid-
ney lesions may also be involved in the pathogenesis of ccRCC.

We further elucidated the inflammatory response in the
Vhl knockout kidney by performing a microarray to profile
the genes in the whole-kidney extract (Gene Expression
Omnibus accession number GSE116326). We used the
whole-kidney extract instead of the isolated tubule cell
extract to examine the changes in the reactive microenviron-
ment in the VAl mutant cells. The microarray data showed
that one of the candidate genes, LCN2, which encoded lipo-
calin 2, was highly overexpressed in the Vil mutant kidney.

Lipocalin 2, also known as neutrophil gelatinase-
associated lipocalin (NGAL), oncogene 24p3, uterocalin, or
siderocalin, is a 24 kDa secreted glycoprotein initially purified
from mouse kidney cells infected with simian virus 40 (SV-40)
[11]. LCN2 mediates several cellular processes, including apo-
ptosis, proliferation, epithelial-to-mesenchymal differentia-
tion, and matrix metalloproteinase 9 stabilization [12]. High
levels of LCN2 expression have been observed in renal, breast,
ovary, colon, and brain cancer cells [13-15]. In addition,
LCN2 is a member of the lipocalin superfamily of proteins that
transport hydrophobic molecules, such as retinoids, fatty
acids, and organic iron chelators [16]. There is also growing
evidence that LCN2 exhibits a cellular protective effect by
ameliorating oxidative stress-mediated toxicity under harmful
conditions, such as ROS accumulation [17-19].

This study sought to investigate the potential role of
LCN2 in mediating inflammatory response in VHL-mutated

HK-2 cells. Furthermore, we tested the hypothesis that LCN2
was related to VHL mutation-sensitized macrophage migra-
tion and mediated inflammation via LCN2-ROS-dependent
pathways.

2. Materials and Methods

2.1. Reagents. Liproxstatin-1 (Sigma, MO, USA) and 4',6-
diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific,
MA, USA) were purchased.

2.2. Cell Culture. HK-2 (human renal proximal tubular epi-
thelial) and HEK293 (human cell line of kidney origin) cells
(Bioresource Collection and Research Center, Taiwan) were
cultured in T75 flasks (Corning, NY, USA) in DMEM/Ham’s
F12 (Gibco, NY, USA) supplemented with 10% fetal bovine
serum, 25 mM D-glucose, 2mM L-glutamine, 1 mM sodium
pyruvate, and penicillin-streptomycin (50 U/mL; Sigma, MO,
USA) at 37°C in a 5% CO,/95% air incubator. The fresh cul-
ture medium was replaced every other day. Once the cells
reached 60-70% confluence, they were trypsinized for the
following experiments.

The murine monocyte/macrophage cell line RAW264.7
(Bioresource Collection and Research Center, Taiwan) was
cultured in T75 flasks in Dulbecco’s Modified Eagle’s
Medium (DMEM, Gibco, NY, USA) supplemented with
10% fetal bovine serum, 4 mM L-glutamine, 4500 mg/L glu-
cose, 1 mM sodium pyruvate, 1500 mg/L sodium bicarbon-
ate, and penicillin-streptomycin (50 U/mL; Sigma, MO,
USA) at 37°C in a 5% CO, incubator. The fresh culture
medium was replaced every other day. Once the cells reached
50-60% confluence, they were trypsinized for the following
experiments.
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FiGURE 2: VHL knockdown induced LCN2 secretion in HK-2 cells. HK-2 cells were transfected with a vector expressing a scrambled shRNA
(SC) or an shRNA specific for VHL: shVHL1 (V1) or shVHL3 (V3), as described in a previous study (4) by electroporation (Gemini X2
System) and incubated for 48 hours. (a) The Western blot analysis of LCN2 using an anti-LCN2 antibody at 50 ug of protein/lane in the
conditioned medium under the indicated conditions in the HK-2 cells. (b) The level of LCN2 was quantified using Image]. (c) The cell
lysates were subject to Western blot analysis with the anti-LCN2 antibody. (d) An equal volume of 10 yL of urine samples from the wild-
type and Vhl conditional knockout mice was analyzed by Western blot analysis using the anti-LCN2 antibody. The lower panel shows the
level of LCN2 was quantified by Image]. All data are presented as the mean + SD. *p < 0.05 and **p < 0.01.
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F1GURE 3: LCN2 was increased in Vil mutant mRTCs. (a) Primary mouse renal tubule cells (mRTCs) were isolated from the wild-type Hoxb?7-
Cre-GFP/+ (W) or the mutant Hoxb7-Cre-GFP/+; V™" (M) mice. The cell lysate was subject to Western blot analysis with the indicated
antibodies. B-Actin was used as a loading control. The knockout of Vhl was confirmed by assaying the level of VHL (top). (b) The level of
LCN2 was quantified using Image]J. All data are presented as the mean + SD. **p < 0.01.

2.3. Culture of Primary Renal Tubular Epithelial Cells. Mouse
primary proximal tubule cells (mRTCs) were isolated from
wild-type Hoxb7-Cre-GFP/+ (W) or mutant Hoxb7-Cre-
GFP/+; VR (M) mice using a previously described method
[20-22], with some modifications. Briefly, mice were sacri-
ficed by cervical dislocation. The kidneys were immediately

removed and placed in 15mL conical tubes with ice-cold
Hank’s balanced salt solution (Biological Industries, CT,
USA). The renal capsule, cortex, and excess fat were
removed, and the remaining cortical tissue was added into
the dunce using two razors. Next, the plunger was pushed
down to the bottom of the glass five times to break up the
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FIGURE 4: LCN2 knockdown attenuated the increase in ROS production in VHL knockdown HK-2 cells. (a) The change in the level of cellular
ROS in HK-2 cells transfected with a vector expressing one scrambled shRNA (SC), two scrambled shRNAs (SC+SC), the scrambled shRNA
(SC) and shRNA specific for LCN2 (L1) (SC+L1), the shRNA specific for VHL (V3) and scrambled shRNA (SC) (V3+SC), or the shRNA
specific for VHL (V3) and shRNA specific for LCN2 (L1) (V3+L1). (b) ROS generation was expressed as mean fluorescence intensity. (c)
The change in the level of cellular ROS in HK-2 cells transfected with a vector expressing the shRNA specific for VHL (V1) and
scrambled shRNA (SC) (V1+SC) or shRNA specific for VHL (V1) and shRNA specific for LCN2 (L1) (V1+L1). (d) ROS generation was
expressed as mean fluorescence intensity. All data are presented as the mean + SD. **p < 0.01.

tissue. Then, the tissues were transferred into a 50 mL conical
tube on ice. The tubular tissues were centrifuged in a swing-
ing bucket rotor at 500 rpm and 4°C for 2 minutes. Then, the
supernatant was aspirated and discarded while leaving the
pelleted tissue intact.

Afterward, the tube was filled with warm digestion
medium containing Collagenase I (Worthington, NJ, USA)
at 140units/mL and 15mg Soybean Trypsin Inhibitor
(Sigma, MO, USA) in 20mL HBSS and incubated on an
orbital shaker at 70 rpm for 15 minutes at 37°C. The tubule
suspension was mixed with a 10 mL pipet and returned to
the incubator every 5 minutes. After digestion, the tubule
suspension was incubated with 20 mL of cold horse serum

to inactivate the enzymes and enrich the tubules; the tube
was inverted until the suspension became uniform. Then,
the tubules were allowed to settle for one minute. The super-
natant containing the proximal tubules was transferred to a
50mL conical tube and centrifuged for 2 minutes at 500
rpm in a swinging bucket rotor. The tubules were washed
with 10mL of HBSS and centrifuged at 500rpm for 2
minutes. A volume of 1-2mL of culture medium was added
to mix gently with the pellet using a sterile pipet. The cortical
tubule suspension was gently layered onto a preformed 40%
Percoll/60% culture medium gradient. Then, the tubules
were centrifuged at 400 x g for 10 min at 4°C. The proximal
renal tubules in the largest band were transferred to a 50
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F1GurEe 5: VHL loss of function exhibited an inflammatory response in an LCN2-dependent manner. (a) HK-2 cells were transfected with a
vector expressing a scrambled shRNA (SC), an shRNA specific for VHL: shVHLI (V1), or shLCN2 (L1). Cell lysates were analyzed with
Western blot using the indicated antibodies. 5-Actin was used as a loading control. The status of LCN2 and VHL was confirmed by
assaying the levels of LCN2 and VHL proteins, respectively. The VHL knockdown increased the level of p-JNK, but the increase was
attenuated in VHL (V3) and LCN2 (L1) double knockdown cells. (b) The level of p-JNK was quantified using Image]J. (c) HK-2 cells were
transfected with a vector expressing the scrambled shRNA (SC), shRNA specific for VHL: shVHL3 (V3), or shLCN2 (L1). The cell lysates
were analyzed by Western blot using the indicated antibodies. -Actin was used as a loading control. The knockdown of LCN2 and VHL
was confirmed by assaying the levels of LCN2 and VHL proteins, respectively. VHL knockdown increased the level of p-JNK, but the
increase was attenuated in VHL (V1) and LCN2 (L1) double knockdown cells. (d) The level of p-JNK was quantified using ImageJ. All

data are presented as the mean + SD. *p <0.05 and **p < 0.01.

mL conical tube containing 20 mL of culture medium and
centrifuged at 500 rpm for 2 minutes.

Finally, the tubule pellet was resuspend in 20mL of
MRPTC Culture Medium, which consisted of DMEM/F-12
culture media (Gibco, NY, USA) with insulin/transferrin/se-
lenjum (5pg/mL, 5pg/mL, and 5ng/mL, respectively,
Sigma), 0.05uM hydrocortisone (Sigma), 50 uM L-ascorbic
acid-2-phosphate (Wako, Tokyo, Japan), and 1% antibioti-
c/antimycotic solution (10,000 units/mL penicillin, 0.1
mg/mL streptomycin, and 0.25 yg/mL amphotericin B, Bio-
logical Industries, CT, USA).

Dilutional studies were performed to determine the vol-
ume of the resuspended tubules needed for different plates
to ensure optimal growth. The tubules were plated on 12-
well (1-1.5mL/well) or 6-well (3 mL/well) Nunclon-treated
tissue culture plates (Nalgene/Nunc International, Rochester,
NY) and incubated at 37°C with 5% CO,. The media was
replaced with MRPTC culture media every day. Confluence
can be achieved in 5 to 12 days.

2.4. Transfection. HK-2 cells were transfected with a vector
with a scrambled sequence or a vector expressing shVHLI
(V1), shVHL3 (V3), or shLCN2 (L1) (kindly provided by
Dr. T. Hsu, Department of Biomedical Sciences and Engi-
neering, National Central University, Jhongli, Taiwan) using
the BTX™ Gemini X2 Electroporation System (BTX, MA,
USA), according to the manufacturer’s protocol. Briefly, 5
x 10> cells were transfected with 4 ug of a plasmid with a
100V pulse for 10 msec, plated in a 6-well plate, and cultured
for 48 hours before being analyzed for VHL expression by
Western blot to determine the transfection efficiency.

2.5. Measurement of Intracellular ROS Generation. The anal-
ysis of the measurement of intracellular ROS generation was
according to our previous studies with some modifications
[23]. The cells were washed with phosphate-buffered saline
(PBS) and incubated with 10 M dihydroethidium (DHE;
Santa Cruz, Dallas, TX, USA) in Hank’s balanced salt solu-
tion at 37°C for 30 minutes in the dark. During incubation
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F1GURE 6: VHL loss of function caused the nuclear translocation of p65 in an LCN2-dependent manner. (a) The HK-2 cells were cultured and
treated, as described in Figure 4. Their cell lysates were collected and separated into cytosolic and nuclear fractions. The subcellular
localization of NF-«xB was detected by Western blot using an antibody against NF-«xB’s subunit p65. -Actin was used as a cytosolic
marker and fibrillarin as a nuclear marker. (b) NF-xB’s cytosolic localization was decreased in VHL knockdown (V3) cells; such decrease
was attenuated in the VHL (V3) and LCN2 (L1) double knockdown cells. The level of cytosolic p65 (cyto p65) was quantified using
Image]. (c) NF-«B’s nuclear localization was increased in VHL knockdown (V3) cells; however, such an increase was attenuated in VHL
(V3) and LCN2 (L1) double knockdown cells. The expression of nuclear p65 (nuclear p65) was quantified using Image]. (d) The HK-2
cells were cultured and treated, as described in Figure 4. The cell lysates were collected and separated into cytosolic and nuclear fractions.
The subcellular localization of NF-«B was detected with Western blot using an antibody against the NF-«xB subunit p65. 3-Actin was used
as a cytosolic marker and fibrillarin as a nuclear marker. (e) NF-«B’s cytosolic localization was decreased in VHL knockdown (V1) cells;
however, the decrease was attenuated in VHL (V1) and LCN2 (L1) double knockdown cells. The level of cytosolic p65 (cyto p65) was
quantified using Image]. (f) NF-xB’s nuclear localization was increased in VHL knockdown (V1) cells; the increase was attenuated in VHL
(V1) and LCN2 (L1) double knockdown cells. The level of nuclear p65 (nuclear p65) was quantified using ImageJ. All data are presented
as the mean + SD. *p <0.05 and **p < 0.01.

with ROS, DHE is oxidized and becomes fluorescent. After 2.6. Western Blot Analyses. The antibodies for Western blot
incubation, the cells were trypsinized and washed with ice-  analyses included the mouse monoclonal antibodies against
cold PBS three times. The level of ROS was quantified by flow =~ VHL (BD Biosciences, Franklin Lakes, NJ, USA); NF-xB’s
cytometry (BD Biosciences, San Jose, CA, USA). p65 subunit (GeneTex, Irvine, CA, USA); JNK (Cell
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F1cure 8: LCN2 significantly induced macrophage cell migration. (a) The treatment of human recombinant LCN2 (rhLCN2) at 100 ng/mL
increased RAW264.7 cell migration compared to no (0 ng/mL rhLCN2) treatment. (b) Migration in the Transwell system was allowed for 24
hours. The relative number of migrated cells stained by crystal violet was measured at ODx,, is shown. All data are presented as the mean

+SD. *p < 0.05.

Signaling, MA, USA); p-JNK, f-actin, and fibrillarin (Santa
Cruz, Dallas, TX, USA); and the rabbit polyclonal antibodies
against LCN2 and GAPDH (ABclonal, MA, USA). The -
actin was diluted 1:500 in the final working solution; all
other antibodies were diluted 1:1000.

2.7. Nuclear Fraction Extraction. The chemotaxis analysis
was according to our previous studies with some modifica-
tions [23]. Nuclear fractions were extracted from the HK-2
or mRTC cells. The cells were collected and resuspended in
a hypotonic buffer (10 mM HEPES, pH7.9; 10 mM KC[; 1.5
mM MgCl,; 0.2mM PMSF; 20 ug/mL aprotinin; 0.5mM
DTT; and 0.5% NP-40) on ice for 15 minutes. After
centrifuging at 6000 x g for 15 minutes at 4°C, the pellet

was collected and washed with a basal buffer (the hypotonic
buffer without the 0.5% NP-40). After centrifuging again at
6000 x g for 15 minutes at 4°C, the pellet was collected and
resuspended in a hypertonic buffer (20 mM HEPES, pH7.9;
400 mM KCI; 1.5 mM MgCl,; 0.2 mM PMSF; 20 ug/mL apro-
tinin; 0.5mM DTT; 0.2mM EDTA; 10% glycerol) at room
temperature for 30 minutes. After centrifuging at 10,000 x g
for 30 minutes at 4°C, the supernatant containing the nuclear
fraction was collected.

2.8. Chemotaxis Assay. The chemotaxis analysis was accord-
ing to our previous studies with some modifications [23]. A
24-well Transwell plate (8 ym pore size, Corning, NY,
USA) was used to measure the chemotactic ability of the
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nuclear translocation, and macrophage chemotaxis. The results
reveal the regulatory effect of VHL on inflammation in HK-2 cells
via the LCN2-ROS pathway.

RAW274.7 cells. HK-2 cells were added into the lower cham-
ber and transfected with a vector carrying a scrambled or the
shVHL [24] sequence by electroporation. After incubation
for 48 hours, the cells were treated with the indicated inhibi-
tors for 24 hours in a serum-free medium supplemented with
5% bovine serum albumin (BIONOVAS, Toronto, Canada).
Then, 1x10° RAW264.7 cells were added to the upper
chamber with an uncoated membrane in a serum-free
medium supplemented with 5% bovine serum albumin
(BIONOVAS, Toronto, Canada). In separate experiments,
RAW264.7 cells were exposed to recombinant human lipoca-
lin 2/NGAL protein (rhLCN2) (Novus Biologicals, CO, USA)
added to the serum-free medium and their migration mea-
sured. After 24 hours, the migratory cells on the underside
of the membrane of the upper chamber were stained with
0.1% crystal violet for 5 minutes, washed with H,O, and
scanned using an EPSON V750 PRO scanner. The cells were
destained for crystal violet with methanol for 15 minutes and
measured at OD570 with the Synergy HT (BioTek, VT,
USA).

2.9. Statistical Analysis. The data were expressed as means
+ SEM. The groups were compared using a one-way or
two-way ANOVA followed by the Bonferroni post hoc anal-
ysis; p < 0.05 was considered statistically significant.

3. Results

3.1. VHL Mutation-Induced ROS Production in an LCN2-
Dependent Manner. We investigated the effect of VHL defi-
ciency on ROS production by measuring the level of ROS
in VHL knockdown HK-2 cells using a previously described
protocol [25-27]. We found that VHL knockdown caused
ROS overproduction in HK-2 cells (Figure 1).

LCN2 is one of the candidate genes predominantly
related to immune response; however, its role in precancer-
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ous kidney cells is still unclear. We hypothesized that VHL
deficiency caused inflammation and immune cell infiltration
by overexpressing LCN2 in HK-2 cells and mouse primary
renal tubule cells (mRTCs). VHL knockdown was found to
induce LCN2 secretion in HK-2 cells (Figures 2(a) and
2(b)). Meanwhile, the level of LCN2 was elevated in Vhl
mutant mRTCs (Figure 3). Interestingly, the enhanced level
of LCN2 was detected in the urine of VAl conditional knock-
out mice (Figure 2(d)). The presence of LCN2 in urine indi-
cates acute kidney injury (AKI) [28]. These findings
demonstrated that VHL deficiency induced expression and
secretion of LCN2 in vitro and in vivo.

We further studied the role of LCN2 on ROS production
by examining the effect of LCN2 knockdown on ROS levels.
The increase in ROS levels was attenuated in LCN2 knock-
down in VHL-deficient (knockdown) HK-2 cells (Figure 4).

3.2. Vhl Mutant Caused Inflammatory Response and
Sensitized RAW264.7 Cell Chemotaxis in a LCN2-
Dependent Manner. We dissected the role of LCN2 in inflam-
mation by investigating the effect of LCN2 knockdown on the
phosphorylation of JNK and the nuclear translocation of NF-
xB’s p65 subunit in HK-2 cells and chemotaxis of RAW264.7
cells. LCN2 knockdown was found to significantly attenuate
the increase in p-JNK expression activated by Figure 5.
LCN2 knockdown also diminished the nuclear translocation
of p65 in the VHL knockdown HK-2 cells, as demonstrated
by Western blotting (Figure 6).

On the other hand, VAl mutant was found to induce the
chemotaxis of the RAW264.7 cells (Figure 7, V3/SC com-
pared with SC/SC), and LCN2 knockdown could reduce the
Transwell migration of RAW264.7 induced by VHL knock-
down HK-2 cells (Figure 7, V3/L1 compared with V3/SC).
This suggests that LCN2 is required for the chemotactic func-
tion of VHL-deficient HK-2 cells. We confirm the chemotac-
tic effect of LCN2 by comparing the relative migration of
RAW264.7 cells in the absence and presence (100 ng/mL)
of recombinant human LCN2 (rhLCN2). We found that
LCN2 significantly induced RAW264.7 cell migration after
the thLCN2 treatment (Figure 8). In summary, our findings
suggested that LCN2 sensitizes the inflammatory response
of HK-2 cells and chemotactic abilities of macrophage
RAW264.7 cells.

4. Discussion

The mechanism underlying the inflammatory response to
VHL inactivation in kidney tubule cells presents an intrigu-
ing pathophysiological question and a potential therapeutic
target. It has been shown that VHL mutant cells are involved
in increased protein synthesis and ROS accumulation [4],
likely due to the increased mTOR signaling in the mutant
cells [29, 30]. Moreover, the significantly elevated activation
of immune cells likely contributes substantially to tissue
damage during inflammatory diseases.

VHL/VhI mutation causes HIF overexpression [31, 32].
During HIF overexpression, excessive protein synthesis
occurs, leading to metabolic problems, ROS accumulation,
and, eventually, ER stress. In addition, HIF overexpression
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resulted in mitochondrial damage, disruption of the TCA
cycle, severe hypoxia stress, and Warburg effect [30, 33].

LCN2 is critical for the inflammation in retinal degener-
ation [34], ocular disease [35], intestinal tract [16, 36], ische-
mic stroke [37], psoriasis [38], cardiovascular diseases [39],
alcoholic steatohepatitis [40, 41], nonalcoholic steatohepati-
tis (NASH) [42], muscle-skeletal disorders [43], and lung
infection [44]. However, LCN2’s role in the VHL-mutation-
mediated progression of tumor formation via the regulation
of oxidative homeostasis and mitochondrial metabolism has
not been previously studied. The present study shows that
mutant VHL induces ROS production in an LCN2-
dependent manner (Figures 1-4). On the other hand, the
results also show that mutant VHL sensitized RAW264.7 cell
chemotaxis in an LCN2-dependent manner (Figures 5-8).
The diverse functional roles of LCN2 were exemplified in
the central nervous systems [45]. Therefore, emerging evi-
dence suggests that LCN2 has protective as well as patho-
genic activities [46-48]. We propose that the dual biological
effects of LCN2 may be considered during the design of ther-
apeutics against ccRCC.

5. Conclusion

Our results indicated that VHL deficiency caused overproduc-
tion of reactive oxygen species (ROS), but an LCN2 knock-
down could reverse this process. VHL deficiency was also
found to increase in vitro and in vivo LCN2 expression and
secretion. Our findings reveal that the regulatory effect of
VHL on chronic inflammation in ccRCC progression is likely
mediated, at least in part, via the LCN2-ROS pathway
(Figure 9). Our study offers novel insights into the therapeutic
target and strategy for attenuating the development of ccRCC.
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