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Abstract
Leg length discrepancies are common orthopedic problems with the potential for poor functional outcomes. These are 
frequently assessed using bilateral leg length radiographs. The objective was to determine whether an artificial intelligence 
(AI)-based image analysis system can accurately interpret long leg length radiographic images. We built an end-to-end 
system to analyze leg length radiographs and generate reports like radiologists, which involves measurement of lengths 
(femur, tibia, entire leg) and angles (mechanical axis and pelvic tilt), describes presence and location of orthopedic hard-
ware, and reports laterality discrepancies. After IRB approval, a dataset of 1,726 extremities (863 images) from consecutive 
examinations at a tertiary referral center was retrospectively acquired and partitioned into train/validation and test sets. The 
training set was annotated and used to train a fasterRCNN-ResNet101 object detection convolutional neural network. A 
second-stage classifier using a EfficientNet-D0 model was trained to recognize the presence or absence of hardware within 
extracted joint image patches. The system was deployed in a custom web application that generated a preliminary radiology 
report. Performance of the system was evaluated using a holdout 220 image test set, annotated by 3 musculoskeletal fel-
lowship trained radiologists. At the object detection level, the system demonstrated a recall of 0.98 and precision of 0.96 in 
detecting anatomic landmarks. Correlation coefficients between radiologist and AI-generated measurements for femur, tibia, 
and whole-leg lengths were > 0.99, with mean error of < 1%. Correlation coefficients for mechanical axis angle and pelvic 
tilt were 0.98 and 0.86, respectively, with mean absolute error of < 1°. AI hardware detection demonstrated an accuracy of 
99.8%. Automatic quantitative and qualitative analysis of leg length radiographs using deep learning is feasible and holds 
potential in improving radiologist workflow.
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Introduction

Leg length discrepancies (LLD) are common orthopedic 
problems associated with altered weight-bearing and bio-
mechanical changes. In the pediatric population, LLD has 

been associated with musculoskeletal disorders such as gait 
disturbances and scoliosis [1, 2]. In the adult population, 
unmanaged LLD can be associated with long-standing dis-
ability and poor functional outcomes after hip and knee joint 
arthroplasties [3, 4]. In preoperative planning for total knee 
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arthroplasty, however, leg length measurements alone have 
been found to be insufficient to guide surgical planning—the 
literature suggests that excessive angulation can lead to early 
wear, for instance [5]. Given the potential impact on clinical 
outcome, accurate leg length measurements with minimal 
inter- and intra-reader variability can be critical to treatment 
planning, which can be sensitive to small differences under 
5 mm [6].

Bilateral long-leg radiographs, or leg length views, have 
been essential in preoperative assessment [7]. Simple quali-
tative, leg length discrepancy is insufficient—comprehensive 
assessment requires evaluating multiple measures to exclude 
other considerations such as surgical change, pelvic tilt, and 
angulation that may result in false leg length discrepancy. 
These examinations, however, are laborious for radiologist 
interpretation given the number of potential parameters to 
assess.

Patient care can thus be improved by using a system that 
automatically quantifies these metrics as a preliminary step 
for the clinical radiologist, potentially improving efficiency 
and reducing intra- and inter-observer variability. Toward 
this end, there have been recent achievements in AI to detect 
leg length discrepancy and leg angles [8] as well as other 
more qualitative features such as knee arthritis from leg 
length examinations [9]. These advances demonstrate prom-
ise in automating this process of normal leg length examina-
tions. However, real-world leg length examinations are also 
complex, involving hardware, severe deformity, and joint 
fusion; hence, designing a robust system to handle these 
more difficult cases is crucial for adoption into the routine 
workflow.

The goal is to build and validate an AI for interpreting 
and pre-dictating these studies into the clinical workflow. 

Previous work can be improved by designing a system that 
is capable of handling hardware and deformity. Utilizing 
anatomic landmarks as targets or keypoints for object detec-
tion allows for a more intuitive annotation approach that is 
distinctly less labor intensive compared to the arduous tradi-
tional segmentation-based approach. Lastly, an object clas-
sifier neural network is added for surgical hardware detec-
tion to enable the system to report post-surgical changes and 
convey appropriate limitations.

Materials and Methods

Data Collection

The images for the training and testing datasets were retro-
spectively acquired from a tertiary referral center Picture 
Archiving and Communications System (PACS) using a 
search criteria of age > 16 and a 1-year acquisition win-
dow. Images were exported in full-resolution Joint Photo-
graphic Experts Group (JPEG) format. To ensure complete 
deidentification of metadata, JPEG image format was cho-
sen. Images were manually reviewed to ensure no burned-
in private health information (PHI) was present. Only the 
anterior–posterior (AP) full-length lower extremity view 
was included in the dataset—lateral views and piecemeal 
images used to assemble the AP view or lateral views were 
excluded. A total of 863 consecutive studies were exported. 
This was randomly partitioned into a training and validation 
set of 643 images and a leave-out test set of 220 images. 
Nine patients had 2 images, which were randomized together 
in either the training/validation or the test set. The training 
and validation set was used to train and validate each of  

Fig. 1  A flowchart summarizing 
the dataset usage throughout the 
various components Hardware
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the two AI components. Figure 1 summarizes the dataset 
usage through the AI components. Demographics for each 
set can be found in Table 1.

Definitions

We utilize accepted definitions for anatomic landmarks to 
calculate each of the desired metrics. The femoral head apex 
point was defined as the most superior point along the con-
tour of the femoral head. The center of the femoral head 
point was defined as the center of a circle that would best 
fit within the femoral head. The ischium point was defined 
as the most inferior point along the contour of the ischial 
tuberosity. The intercondylar notch point was defined as the 
most superior and central point along the intercondylar notch 
of the distal femur. The tibial spine point was defined as a 
point immediately subjacent to the tibial spines at the level 
of the tibial plateaus. The ankle mortise point was defined as  
the central midpoint of the tibial plafond.

The total length of the leg is defined as the distance from 
the femoral head apex to the ankle mortise, the femur length 
is defined as the distance from the femoral head apex to 
the intercondylar notch, and the tibia length is defined as 
the distance from the tibial spine to the ankle mortise [10]. 
The mechanical angle is defined as the angle between the 
femoral head apex, tibial spine, and ankle mortise [11]. The 
pelvic tilt is defined by the angle of deviation from horizon-
tal between the bilateral ischium points [12, 13]. All lengths 
are reported in pixels, as the pixel spacing metadata was 
discarded as a part of the JPEG conversion. It should be 
noted, however, that the standard radiography systems used 
to acquire these images utilized pixel spacings of approxi-
mately 0.14 to 0.19 mm/pixel. In a production system, ready 
access to this data would render it trivial to translate pixel 
length into units of physical measurement. All angles are 
reported in degrees. Figure 2a-c shows sample annotations 
and how the angles are calculated based on the annotations.

Machine Design

Machine design consists of 2 stages of AI-based systems. 
The goal of the first stage of the AI application is to derive 
the following features from an image: individual lengths of 
each femur, tibia, and each leg, the mechanical axis (MA) 
angle, leg discrepancy, and pelvic tilt. The goal of the second 
stage is to detect the presence of surgical hardware at each 
of the anatomic landmarks. The overall architecture of the 
system is diagrammed in Fig. 3.

Data Annotation

For the localization system in the first stage of the machine, a 
system of point annotations or keypoints is used. The keypoints 
identified included: femoral head apex, femoral head center, 
ischium, intercondylar notch, tibial spine, and ankle mortise. Up 
to 12 total keypoints are defined on each image, as each lower 
extremity will have up to these 6 points, depending on the field 
of view of the image and the present anatomy. Figure 2a shows 
an example of annotation image. The annotation software 
used for training and expert validation was the VGG Image 
Annotator (VIA) [14]. Each image was annotated once. Three 
student annotators (N.L., C.N., A.K.) performed preliminary 
annotations on the training and validation set, each of which 
were reviewed by a fellowship-trained musculoskeletal radiolo-
gist with over 10 years of experience (B.D). Point annotations 
were then converted to bounding box annotations by defining 
a square bounding box with center at the annotated point and 
size scaled to a proportion of the mean image dimension. This 
scaling coefficient was manually chosen for the entire dataset 
to scale the box to approximately the size of the femoral head. 
Within the training and internal validation set, 1270 femoral 
apex, 1271 femoral head center, 1263 ischium, 1269 intercon-
dylar notch, 1260 tibial spine, and 1258 ankle mortise annota-
tions were performed for a total of 7591 total annotations.

Table 1  Demographic data of 
both training and testing sets

Training/validation set Test set

N 643 220
Mean age (SD, range) 61.4 years (15.8 years, 16–96) 60.7 years (16.2 years, 22–95)
Sex 345 M (54%) / 298 (46%) F 125 M (57%) / 95 F (43%)
Hip arthroplasty 41 (6.4%) 17 (7.7%)
Other hip hardware 31 (4.7%) 10 (4.5%)
Knee arthroplasty 104 (16%) 67 (30%)
Other knee hardware 91 (14%) 23 (10%)
Ankle hardware 24 (3.7%) 11 (5.0%)
Amputation/incomplete anatomy 39 (6.1%) 12 (5.4%)



 Journal of Digital Imaging

1 3

To validate the machine, 3 fellowship-trained musculo-
skeletal radiologists were asked to individually annotate  
the test set of 220 images. Individual annotations were 
aggregated to form a consensus gold standard set of anno-
tations. For each point labeled by at least two radiologists, 

coordinates for each annotation were averaged and taken 
to represent the gold standard. Distance and angular meas-
urements, which require data from multiple points, were 
considered to be defined if coordinates for all the requisite 
points were present. If one or more of the required points 

Fig. 2  Defined landmarks and 
calculation of each metric. a 
depicts the twelve anatomic 
landmarks used for the measure-
ments. b depicts the meas-
urement of distances. Black 
represents femur length, blue 
represents leg length, and red 
represents tibia length. c depicts 
the measure of the angles. 
Angle A (blue) represents 
the measure of the pelvic tilt 
compared to a horizontal line 
(black). Angles B and C (green) 
represent the mechanical axis 
angle for each lower extremity

Fig. 3  Data flow of the final AI application
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was unlabeled in the aggregate set, such as in the case 
of an amputation, the measurement was considered not  
applicable.

For the second-stage classification step, point annotations 
in the first stage were used to extract a corresponding patch 
around the annotation for each image within the training and 
validation sets. Specifically, image patches corresponding 
to the femoral head apex, femoral head center, intercondy-
lar notch, tibial spine, and ankle mortise annotations were 
extracted. Each patch was twice the size of the bounding 

box predicted by the first-stage system, which resulted in 
a small image that still generally contained the entire joint. 
Hardware descriptions are classified into two categories: 
native and metal. Figure 4 shows examples of each category.

Each image patch was categorized according to these 
labels, and annotations were reviewed by a fellowship 
trained musculoskeletal radiologist. The patches extracted 
from the images in the original training set were used for 
the classifier training set, and the patches extracted from 
the images in the original validation set were used for the 

Fig. 4  Example image patches 
used to train the hardware clas-
sifier model. Images were clas-
sified as native or hardware and 
used to train an EfficientNet-B0 
model. The top row shows 
sample native image patches. 
The bottom row shows sample 
hardware image patches

Fig. 5  Current version of the 
clinical application (left). 
Current version of the webapp 
(right). Output format is subject 
to change
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classifier leave-out test set. The training set consisted of 
7007 native and 635 metal image patches. The leave-out 
test set consisted of 1438 native and 72 metal image patches.

Model Selection and Training

 We selected a Faster-RCNN—ResNet 101 model from the 
open-source TensorFlow Object detection library with ini-
tial weights from pretraining on the Common Objects in 
Context (COCO) dataset [15]. Faster-RCNN—ResNet 101 
has been previously used in the literature on radiological 
images to characterize knee osteoarthritis on radiographs 
[16]. Training was performed on a workstation utilizing a 
NVIDIA P100 graphics processing unit, using a TensorFlow 
1.15 framework in Python 3.8.5. Image augmentation at the 
time of training was performed with random horizontal flips. 
No other pre-processing transformations or normalizations 
performed on the JPEG images before training. Training was 
performed with a fixed learning rate of 0.0003, until the 
intersection over union validation loss visually plateaued, 
at 64,982 steps.

A pretrained EfficientNet-B0 model was selected to per-
form the hardware image classification task [17]. Efficient-
Nets are a state-of-the-art network that have been previ-
ously utilized in the medical imaging literature to diagnose 
COVID-19 on radiographs [18], identify diabetic retinopa-
thy [19], and identify osteoporosis on hip radiographs [20]. 
Pretrained weights from the ImageNet dataset classifica-
tion task, further optimized using the NoisyStudent train-
ing algorithm, were utilized to initiate model weights and 
improve convergence [21]. Model weights and architecture 
were obtained from an open-source library [22] based on 
the PyTorch 1.8 framework. This was implemented into a 
custom training and inference routine utilizing the FastAI 
package in Python 3.8.5 [23]. Training was performed on 
a separate workstation utilizing a NVIDIA P100 graphics 
processing unit. Staggered training was performed, initially 
only on the final layer and then on the entire model, for 5 and 
30 epochs, respectively, for a total of 35 epochs, at which 

Table 2  Object detection confusion matrix

Actual

Landmarks Other

Predicted Detected 2446 101
Missed 62 -

Fig. 6  Scatterplot of leg (a), femur (b), and tibia lengths (c) with 
parallel lines of +—50 pixels (about 1 cm) Scatterplot of mechanical 
angle (d) and pelvic tilt (e) with parallel lines of +—2 degrees

▸
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point validation loss plateaued. A cyclically variable learn-
ing rate peaking at 0.001 was used for each stage of training.

System Integration

A minimum confidence score threshold for detection of 0.9 
was selected. In the case of multiple model predictions for 
landmark localization, an automated logic system processing 
the raw detections was implemented, where the landmark 
with the highest confidence was selected. The system split 
the image into left and right halves, and, for each half, the 
highest confidence bounding box was selected for each of 
the labeled landmarks. The center of each bounding box was 
selected as the point coordinate from which further measure-
ments were taken, as per the definitions previously outlined.

The intent of the study is not only to train a deep learning 
model to measure these angles and lengths, but to create a 
usable system for deployment. A simple-to-use web appli-
cation has been designed and deployed to process provided 
images and outputs the AI models as a complete preliminary 
dictation with annotated image. Figure 5 shows a sample 
screen capture of the web application.

Analysis

The performance of each model was tested at multiple lev-
els. For the initial localizing object detection model, per-
formance metrics of precision, recall, and F1 score were 
assessed for each annotated point as compared to the gold 
standard radiologist aggregate. Intersection over union (IoU) 
was selected as the metric for evaluation of detection, as is 
conventional for the object detection nature machine learn-
ing model utilized. A detection was considered a true posi-
tive if the IoU of the predicted bounding box with the cor-
responding gold standard annotation was > 50%. A detection 
was considered a false positive if the IoU of the predicted 
box and the gold standard annotation was < 50%. A detection 
was considered a false negative if there was no predicted 
bounding box to correspond to the gold standard annotation.

Measurements of the total leg length, femoral length, 
tibial length, mechanical axis angle, and pelvic tilt angle 
were computed as previously defined from both the pre-
dicted landmarks and the radiologist annotations. Statistical 
measures of mean absolute difference, mean relative dif-
ference, standard deviation, Pearson correlation coefficient, 
and intraclass correlation coefficient between the predicted 
values and the gold standard values were computed based 
on a single rater, absolute agreement, 2-way random effects 
model. A significance level of 0.05 was chosen.

Finally, the performance of the hardware classification 
stage was characterized by sensitivity, specificity, accuracy, 
and F1 score.

Deployment

The AI system incorporated into a web application allows 
a radiologist to input a single image and generates an anno-
tated report of the leg with the following measurements, if 
applicable: bilateral leg length, bilateral femur length, bilat-
eral tibial length, leg length discrepancy, bilateral mechani-
cal axis angle, and pelvic tilt angle.

The application is built on Streamlit, a Python web frame-
work designed specifically for data science and presentation. 
The framework handles routing and styling automatically, 
allowing for fast and simple implementation of data processing 
algorithms. The web application automatically detects when a 
valid image has been uploaded via the Upload Image button and 
then triggers the beginning of the data processing algorithm. 
After the image is uploaded, our system performs inference on 
the image to localize the landmarks of the lower extremity. The 
locations of the objects’ centers are then used to calculate length 
and angle measurements for the analysis of the leg image. Image 
patches are extracted based on the detected bounding boxes, 
which are then analyzed using the hardware classifier model to 
report hardware at each defined landmark. The script creates two 
Python objects—one which represents length and angles, and 
one which represents detected hardware. This approach allows 
the data to be displayed in any manner and could even be input 
directly into clinical software if desired.

Results

Model Performance

A total of 2508 coordinates were considered labeled within 
the gold standard set after aggregation of the 3 radiologist 
annotations across the 220 image test set. At the basic object 
detection level, the machine correctly localized 2446 points 
(98%), with 62 points not detected and 101 points spuriously 
detected. Table 2 shows the confusion matrix at the object 
detection level. This corresponds to a recall of 0.975, preci-
sion of 0.960, and F1 score of 0.968.

Table 3  Comparison of A.I. with ground truth (radiologist average)

Absolute Mean error Absolute 
mean 
Error

Standard deviation

Leg length 6.37 pixels 0.22% 8.93 pixels
Femur length 9.97 pixels 0.64% 7.89 pixels
Tibia length 5.94 pixels 0.47% 8.61 pixels
Mech angle 0.42° 0.54°
Pelvic tilt 0.67° 1.74°
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 The measurements computed from radiologists’ annota-
tions were compared against the system-predicted measure-
ments for each of leg length, tibia length, femur length, M.A. 
angle, and pelvic tilt. In 0.1% of measurements, the A.I. 
model output a measured value, and none of the radiolo-
gists measured that same value. In 1.3% of measurements, 
the A.I. model did not output a value, and all 3 of the radi-
ologists output said measurement. The remaining 98.6% of 
measurements are shown in Fig. 6a-e, scatterplots showing 
predicted measurements versus ground truth. Each predicted 
measurement was compared to the ground truth to obtain the 
absolute mean errors and standard deviations as detailed in 
Table 3, showing closely approximated length measurements 
on average < 1% difference from radiologist measurements 
and closely approximated angle measurements on aver-
age < 1° from radiologist measurements.

Pearson correlation coefficients of the leg length and 
mechanical axis angle computed among the AI model and 
of the radiologists demonstrate statistically significant cor-
relations, as detailed in Tables 4 and 5, respectively. Table 6 
details Pearson correlation coefficients between the AI sys-
tem and the radiologist gold standard for each of total leg 
length, femur length, tibia length, mechanical axis angle, and 
pelvic tilt angle, which demonstrate statistically significant 
correlations.

Intraclass correlation coefficients comparing the AI 
system-generated measurements versus the gold standard 
aggregate measurements and individual radiologist measure-
ments can be seen in Table 7. Excellent agreement is seen 
between the AI system and radiologists for leg length, femur 
length, tibia length, and mechanical axis. Good agreement is 
seen between the AI system and radiologists for pelvic tilt.

Figure 7 shows sample output from the machine com-
pared against the gold standard. Figure 7a is a sample image 
with misplaced objects. The model detects two different 
locations for the right ankle mortise. These cases are rare 
across our dataset and further reduced in number with our 
automated point selection algorithm but can cause the output 
to export a measurement that is inaccurate. Careful review 
of the output image for any errors such as these before sub-
mitting a generated report would be necessary in a clinical 
environment.

Classification Model

The hardware detection stage of the machine demonstrated a 
sensitivity of 95.8%, specificity of 100%, accuracy of 99.8%, 
and a F1 score of 97.9% as detailed in Table 8. The 3 mis-
classified patches are shown in Fig. 8.

Discussion

We have built an AI system that automatically identifies ana-
tomic landmarks of a bilateral lower extremity radiograph, 
quantifies bilateral leg lengths and associated discrepancy, 
and characterizes the length of the femur and tibia along 
with computing mechanical axis angles and pelvic tilt. 

Table 4  Leg length Pearson correlation coefficient (r value)

Radiologist 2 Radiologist 3 A.I

Radiologist 1 0.999 
(p < 0.00001)

0.999 
(p < 0.00001)

0.998 
(p < 0.00001)

Radiologist 2 NA 0.999 
(p < 0.00001)

0.999 
(p < 0.00001)

Radiologist 3 0.999 
(p < 0.00001)

NA 0.999 
(p < 0.00001)

Table 5  Mechanical axis angle Pearson correlation coefficient (r 
value)

Radiologist 2 Radiologist 3 A.I

Radiologist 1 0.983 
(p < 0.00001)

0.986 
(p < 0.00001)

0.978 
(p < 0.00001)

Radiologist 2 NA 0.988 
(p < 0.00001)

0.989 
(p < 0.00001)

Radiologist 3 0.988 
(p < 0.00001)

NA 0.983 
(p < 0.00001)

Table 6  Machine vs gold standard Pearson correlation coefficients

Measurement R value (A.I. vs. 
radiologist average)

Leg length 0.999 (p < 0.00001)
Femur length 0.997 (p < 0.00001)
Tibia length 0.995 (p < 0.00001)
Mech angle 0.988 (p < 0.00001)
Pelvic tilt 0.864 (p < 0.00001)

Table 7  Intraclass correlation coefficients (ICC): high ICC among the 
measurements of leg length, femur length, tibia length, mechanical 
axis angle, and pelvic tilt indicates a high level of agreement between 
radiologist measurements and machine predicted measurements. For 
reference, values less than 0.5, between 0.5 and 0.75, between 0.75 
and 0.9, and greater than 0.90 are indicative of poor, moderate, good, 
and excellent reliability, respectively. [24]

VS aggregate (CI; p 
value)

VS individual radiologists 
(CI; p value)

Leg length 1.00 (1.00–1.00; 0) 1.00 (1.00–1.00; 0)
Femur length 0.99 (0.94–1.00; 0) 0.98 (0.95–0.99; 0)
Tibia length 1.00 (0.99–1.00; 0) 0.99 (0.98–0.99; 0)
Mech axis 0.98 (0.98–0.99; 0) 0.99 (0.99–0.99; 0)
Pelvic tilt 0.86 (0.83–

0.89; < 0.00001)
0.8 (0.77–0.83; < 0.00001)
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Fig. 7  a A case where the 
object detection model detected 
two ankle mortises on the same 
leg, which leads to an error in 
the leg length and tibia length 
measurements. Points identi-
fied by our model are labeled 
in yellow; the average point 
identified by radiologists is 
labeled in green. b A sample 
properly detected image with 
points very similar to that of the 
radiologists. Points identified by 
our model are labeled in yellow; 
the average point identified by 
radiologists is labeled in green

Radiologist Average (R/L) A.I. Model (R/L)

Leg Length (Pixels) 2853/2826 2956/2816

Femur Length (Pixels) 1570/1537 1581/1550

Tibia Length (Pixels) 1240/1243 1336/1216

Mechanical Angle (Degrees) 172.1/174.9 172.3/173.9

Pelvic Tilt (Degrees) 1.05 1.85

a

Radiologist Average (R/L) A.I. Model (R/L)

Leg Length (Pixels) 3159/3146 3161/3146

Femur Length (Pixels) 1717/1687 1731/1699

Tibia Length (Pixels) 1392/1407 1382/1395

Mechanical Angle (Degrees) 177.0/178.0 177.3/178.9

Pelvic Tilt (Degrees) 0.52 0.39

b
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Validation results show robust performance at the detec-
tion level, demonstrating exceptional agreement with the 
gold standard of aggregated radiologist measurements. Per-
formance on pelvic tilt prediction is noted to demonstrate 
slightly less agreement, and it is suspected that this is due to 
the fact that the pelvic tilt measurement is consistently very 
close to zero in the test set. Therefore, small variations of a 
few pixels in the points that the system selects will result in 
a large percent relative error and weaker correlation. Fur-
thermore, we note greater subjectivity between radiologists 
in measuring pelvic tilt, as can be seen in Table 7, where the 
ICC drops substantially when radiologist measurements as 
individual points are used to compute correlation, relative 
to when the single aggregate measurement is used. Never-
theless, system predicted pelvic tilt remains largely within 
1 degree of radiologist measured values on average, which 
remains impressive.

Prior work has attempted to use AI to characterize leg 
length radiographs, and we improve upon this by reducing 
our exclusion criteria, capturing a larger training set, and 
using a novel annotation and machine learning architecture 
to improve efficiency. Zheng et al. [25] used a segmentation-
based approach that generated strong correlation with radi-
ologist measurements. However, this study was limited to 
children and radiographs without hardware, had a total train-
ing/validation dataset of 179 patients, and only attempted 
to quantify lengths. Our training set included radiographs 
with arthroplasty present, allowing the system to identify 
measurements even when encountering hip, knee, or ankle 
replacements. Our system achieves a comparable level of 
performance on patients greater than 16 years without such 
limitations. Schock et al. [8] also use a segmentation-based 
approach to quantify mechanical axis angles but exclude 

single-leg view examinations and trained on a combined 
training/validation set of 149 patients. By virtue of the 
object detection-based algorithm, our system is able to 
handle incomplete anatomy and amputations, as the model 
utilized independently detects all visible landmarks. There 
was no discernable drop in accuracy for images with missing 
anatomy included in our test set. By detecting the same land-
marks a radiologist recognizes, our system is able to achieve 
a higher level of performance and radiologist agreement—for 
instance, we achieve ICC for mechanical axis angles of 0.99,  
compared to reported ICC of 0.86–0.89.

The landmark detection approach also has significant 
advantages over the segmentation-based approach utilized 
in these prior works. As landmarks are used by radiologists 
to perform measurements, this is an intuitive approach that is 
easy to troubleshoot and does not rely on complex geometric 
mapping and manipulation to retroactively estimate land-
mark coordinates. This also results in a more robust system, 
as our calculations are not sensitive to subtle perturbations 
in the contour or alignment of the anatomy, particularly in 
the cases of more extensive deformity. For instance, no sub-
jectively apparent discrepancy was noticed with the perfor-
mance of the model on patients with severe osteoarthrosis. 
Importantly, landmark annotation is a simple annotation 
task, requiring an order of magnitude or two less time to 
annotate compared to the laborious task of segmentation. 
This allows for expansion of the size of our training set to 
be several times the size of pre-existing work, which theo-
retically allows for more robust machine training and better 
generalizability.

The addition of automatic hardware detection and locali-
zation adds a final layer to the system that improves its clini-
cal usefulness. Although it may seem straightforward for a 
radiologist to identify the presence of hardware, automation 
makes initial reports generated by the system more useful 
by identifying additional pertinent information. Addition-
ally, these data help to identify situations when the accu-
racy may be limited, as the array of orthopedic hardware 
is vast and diverse in function and appearance which can 
potentially affect detection of landmarks if the hardware 
is extensive or unique. This is particularly useful in light 
of the web application, which allows not only radiologists 

Table 8  Confusion matrix for machine predictions of hardware pres-
ence versus native anatomy

Actual

Hardware Native

Predicted Hardware 69 0
Native 3 1438

Fig. 8  Misclassified patches 
from the hardware detection 
stage of the system. These 
patches were mistakenly clas-
sified as native anatomy by the 
machine. No patches with native 
anatomy were misclassified as 
having hardware
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but providers from other specialties to upload radiographs 
into the web application for a fast preliminary assessment to 
determine on-the-spot functional or operative implications. 
This automated data analysis is also much faster than the 
laborious, time-consuming process of radiologists analyz-
ing each data point. Finally, by reducing the manual effort 
needed to include these metrics in reporting, radiologists 
are more likely to include this information, thereby improv-
ing the quality and usefulness of radiology reports while 
simultaneously reducing a source of intra- and inter-reader 
variability.

Limitations & Future Work

Several limitations are acknowledged and enhancements for 
future work with the system are presented. As with other 
deep learning-based AI projects, additional data from other 
sites would serve to improve generalizability of the system 
and potentially improve accuracy. As only radiographs of 
patients 16 or older were used for training, the application 
has not been validated on and may not be reliable for radio-
graphs of children. The efficiency of producing landmark 
keypoint annotations utilized in this project somewhat miti-
gates this limitation, as it becomes substantially less time-
intensive to annotate new data to retrain model weights for 
a new application site in the case of a production model.

Second, as the field of computer vision continues to 
evolve at a rapid pace, there may be new different mod-
els that are more suited to the task of keypoint detection 
compared to the object detection models that are used in 
the current system. Although performance with the selected 
models is highly accurate, future work should evaluate mul-
tiple models of various architectures to select the optimal 
performing model to improve machine accuracy.

Third, our web application can could be refined to achieve 
faster performance using GPU inference, utilize session 
states to save program progress, accept multiple images, 
and provide easy translation from the output into a report-
ing application. Ultimately, however, the web application 
is designed to showcase the potential of the model rather 
than provide a production-level service, as such services will 
be of most use with integration into the clinical workflow. 
Further improvements that could improve workflow would 
include decision systems to convert pixels to actual units of 
measurement, either by accessing the pixel spacing DICOM 
metadata field or, perhaps more accurately, identifying and 
adjusting based on technologist placed markers, such as rul-
ers or magnification marker balls.

As such, a translational facet of future work would be to 
implement this system in a clinical workflow with results 
tracking and feedback to assess the net impact such a system 
might have on metrics such as radiologist productivity and 

need for report revision. Application of our system within 
a clinical environment could enable retrospective analysis 
of archived examinations and produce population-level 
analyses, yielding nuanced demographic data and popula-
tion norms on a scale that has never before been practical to 
achieve. This could help us better identify subtle patholo-
gies, more precise normal ranges, and ultimately achieve a 
level of personalized medicine never before possible.

The principles presented in this study are not only appli-
cable to leg length and angle measurements, but also to 
nearly any measurement of the human skeleton. Ours is 
a flexible approach that can easily and rapidly be adapted 
to specific clinical questions compared to the published 
standard of segmentation-based annotation. We plan to 
continue our work building applications that assist radiolo-
gists with automated image measurements and with the aim 
of using AI to increase efficiency and productivity in the  
radiology workflow.

Conclusion

In summary, we have constructed a novel, efficient, and accu-
rate means of automatically quantifying leg lengths/angles and 
detecting hardware from bilateral lower extremity radiographs 
using a keypoint-based artificial intelligence system. Automatic 
quantitative analysis and reporting of radiographic leg length 
examinations using our system is feasible and not only has great 
potential to enhance radiologist workflow/efficiency, but may 
also have profound implications on the field of orthopedics as 
this conceptual approach can be extrapolated to nearly any meas-
urement of the human skeleton.
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