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Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain, 6 Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain

Abstract

Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone
anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by
poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse
the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each
PTHrP peptide (80 mg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and
3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the
femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone
site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely
runx2, osteoprotegerin/receptor activator of NF-kB ligand ratio, Wnt3a, cyclin D1, connexin 43, catalase and Gadd45, as well as
in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of
trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null
mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2
was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide
related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow
stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–
36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.
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Introduction

The insulin-like growth factor (IGF) system, formed by insulin-

like peptides, their receptors and binding proteins, plays a central

role in the regulation of cell growth and differentiation. Human

homozygous loss-of-function IGF1 gene mutations cause intra-

uterine and postnatal growth failure and severe sensorineural

deafness (OMIM 608747) [1,2]. Treatment with recombinant

human IGF-I has been shown to improve short stature in patients

with severe IGF-I deficiency [3], supporting the key role of IGF-I

in skeletal development. Moreover, decrease in IGF-I production

and/or activity has been suggested to contribute to age-related

osteopenia and low bone formation [4,5]. Mice with a homozy-

gous Igf1 gene deletion display a 30% size reduction and an

aberrant bone phenotype with shortened femoral length and

reduction in cortical bone size [6–8], and also sensorial

impairment [9], as compared to wild type littermates. These bone

changes are related to a decrease in both bone formation and bone

resorption -with a low number of osteoblasts and osteoclasts-, and

also a reduced capacity for osteoblastogenesis and osteoclastogen-

esis in the bone marrow of Igf1-null mice [6–8]. Thus, the

observation of an increased trabecular bone volume in the
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proximal tibia of these mice was suggested to be a consequence of

the IGF-I effect on osteoclast formation and/or activity at this

skeletal site, which is absent in Igf1-null mice [6–8]. Mice with a

homozygous deletion of the gene encoding the IGF-I high affinity

receptor (Igf1r) show a delayed ossification in the cranial and facial

bones, inner ear alterations and die shortly after birth [10,11].

Furthermore, partial deletion of the Igf1r gene causes postnatal

growth retardation in humans [12]. IGF1R activation recruits

insulin receptor substrates (IRS). Mice with homozygous deletion

or spontaneous mutation in Irs1 show sensory alterations [13–15],

severe bone growth impairment and low-bone turnover osteopenia

[16,17]. In addition, gain-of-function mouse mutants of IGF-I

binding proteins that reduce IGF-bioavailability also consistently

show a low cortical and trabecular bone mineral density (BMD)

and alterations in bone formation rates [18–21].

The bulk of current studies performed in rodents support the

notion that the IGF system plays a paramount role in the bone

anabolic actions of PTH [22]. Thus, neither Igf1-null nor Igf1r-null

mice show the bone anabolic response triggered by transient

administration of PTH in normal mice [23]. IGF1R in mature

osteoblasts seems to be a critical PTH target for its skeletal actions

[23]. Cells of the osteoblastic lineage are a rich source of PTH-

related protein (PTHrP), an important modulator of bone

development and bone remodelling [24]. PTH and PTHrP

interact with the same PTH type 1 receptor (PTH1R) in

osteoblasts [25]. Similarly to PTH, intermittent administration of

the N-terminal PTHrP fragment induces bone anabolic features in

mice and humans [24–30]. Recent findings have also shown that

the C-terminal PTH-unrelated region of PTHrP containing the

osteostatin epitope (107–111) may also contribute to its osteogenic

actions [24,31–35]. Of interest in the frame of the present study,

global deletion of Igf1 [6] or chondrocyte specific deletion of its

receptor gene Igf1r [36] produces a severe phenotype which

resembles that of PTHrP-null mice at birth [37], suggesting that

PTHrP may signal through IGF-I during bone development.

However, the putative contribution of IGF-I to the osteogenic

features of the different domains of PTHrP is yet to be explored.

In the present study, we aimed to evaluate whether the response

of mouse bone to PTHrP might be affected by the IGF-I status.

Specifically, we determined and compared the skeletal effects

elicited by PTHrP (1–36) or osteostatin administration to both

Igf1-null mice and their wild type littermates, at the tissue, cellular,

and molecular levels.

Materials and Methods

Mouse Genotyping and Functional Characterization
Heterozygous mice with a targeted disruption of the Igf1 gene

were generated and maintained on a hybrid genetic background of

MF1 and 129/Sv strains [10]. DNA extraction for genotyping was

performed with the REDExtract-N-AmpTMTissue PCR Kit

(Sigma-Aldrich, St. Louis, MO), according to the manufacturer’s

instructions. PCR primers and conditions used were as previously

reported [38,39]. The animals were fed a standard diet and

drinking water ad libitum, and housed following the recommen-

dations of Federation of European Laboratory Animal Science

Associations. All animal experimentation was conducted in accord

with Spanish and European legislation (EU directive 2010/63/

EU) and approved by the Animal Care and Use Committees of

Spanish National Research Council (Consejo Superior de

Investigaciones Cientı́ficas) and Instituto de Investigación Sani-

taria-Fundación Jiménez Dı́az.

Initially, young adult (2 and 4 month-old) Igf12/2 (Igf1-null),

Igf1-heterozygous and Igf1+/+ (wild type) mice were characterized

by evaluating serum IGF-I levels, using a standard OCTEIA Rat/

Mouse IGF-I kit (IDS Ltd., Boldon, UK), according to the

manufacturer’s recommendations [9]. Non invasive tests of neural

function, namely auditory brainstem response and sciatic nerve

conduction velocity were also performed in these mice, as

previously reported [14,39,40]. Briefly, auditory brainstem

response was evaluated with a TDT System 3TM workstation

and the specific software SigGenRPTM and BioSigGenRPTM

(Tucker Davis Technologies, Alachua, FL). Determination of

sciatic nerve conduction velocity was measured by supramaximal

stimulation (9 V, 2 mA, and 0.1 ms) at the sciatic notch and

recording at the metatarsian region with a clip electrode. Latencies

were measured in each case from the beginning of the stimulus to

the first positive wave of the compound muscle action potential.

The sciatic motor nerve conduction velocity was calculated

dividing the measured latency by the distance from the sciatic

notch to the clip electrode. As expected, Igf1-null mice showed

undetectable IGF-I serum levels, a significantly reduced body

weight, severe sensorineural deafness and a reduction in the sciatic

nerve conduction velocity when compared to wild type mice. As

expected, no differences related to age (within 2 and 4 months)

were found in these parameters in each group of mice studied;

therefore, pooled data are shown in Figure 1. Igf1-heterozygous

mice showed a similar functional phenotype to wild type mice and

were no further studied. Considering the aforementioned data, we

selected two month-old Igf1-null and wild type mice for further

studies.

Treatments
Eighteen mice of each Igf1-null or wild type genotypes were

used. Groups of 6 mice (2 males and 4 females) of each genotype

were treated with 80 mg/Kg/every other day of either PTHrP (1–

36) or osteostatin subcutaneously for 2 weeks. The control group (3

males and 3 females) of each genotype received the same

treatment with phosphate-buffered saline (PBS) vehicle. This time

period is within the time frame used for initial characterization of

these mice, as described above. Thus, differences observed during

2 weeks (period of study) are unlikely to be accounted for by age

but by genotype and type of treatment. Since Igf1-null mice have a

very poor postnatal survival rate (around 20%) [10], mice from

both genders were used per genotype and type of treatment. We

complied with the 3R (‘‘replace, reduce, and refine’’) experimental

design recommendation aimed to reduce the number of experi-

mental animals [41]. The number of mice in our study is in the

range of those used in related studies [23,26,27,40,42]. The

administered dose of PTHrP (1–36) is similar or lower than that

represented by daily PTH administration in other mouse models

with IGF-I action deficiency [23,42,43], and it has been shown to

produce bone anabolism in rodents [26,28,44–46]. A higher (in

molar terms) osteostatin dose was selected, which was similar to

that proven to exert anti-resorptive features in mice [47]. Mice

tolerated well these treatments, and no secondary effects were

observed. Animals were subjected to a 2-week treatment as

described above and they were sacrificed 2 h after the last

injection of each peptide or vehicle in order to analyze putative

rapid changes in gene or protein expression. At the time of

euthanasia, both tibiae and femurs were removed, and tissue from

individual mice was obtained for histological analysis, total RNA

or protein extraction.

Dual-energy X-ray Absorptiometry (DXA) and m-
computed Tomography (mCT) Analysis

Bone mass changes were assessed in anesthetized mice by DXA

(PIXIMUS; GE Lunar Corp., Madison, WI) [28,48]. Only wild

Osteogenic Actions of PTHrP in IGF-I Deficiency
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type mice were evaluated since body weight of Igf1-null mice

(,10 g) lies outside of the PIXIMUS automatic thresholds, as

recommended by the manufacturer. Both BMD and BMC were

assessed in the same region of interest in each skeletal compart-

ment tested (total body, left femur, and L1–L5 vertebrae) at the

start of the study and at the end of treatments using PIXIMUS

software. Our animals were young adult and thus growing. Hence,

in order to disclose putative bone mass differences between

different treatments, BMD and BMC results were presented as

percentage of changes as follows: 1006(BMD14d-BMD0d)/

BMD0d, and 1006 (BMC14d-BMC0d)/BMC0d (14 d and 0 d

subscripts denoting the corresponding values at the end and the

beginning of the study, respectively) in each experimental group.

Femurs were scanned using a high-resolution mCT system

(Scanco Medical AG, Brüttisellen, Switzerland), with a voxel

resolution of 10 mm3, an energy of 55 kVp, an intensity of 145 mA

and an integration time of 200 ms. Thresholds applied were

392 mg Hydroxyapatite (HA)/cm3 and 500 mg HA/cm3 for

trabecular and cortical bone, respectively. One hundred slices

were evaluated in 1-mm of the femoral diaphysis (cortical bone);

the number of slices tested in the metaphysis (trabecular bone)

varied, given the different bone length in wild type and Igf1-null

mice, consistently starting at 66% of the femur height down to the

growth plate. The three dimensional microarchitectural properties

of the cortical bone in the mid-diaphysis and trabecular bone in

the distal metaphysis were assessed by using MFEM, R-10 (version

V1.2) software (b-Cube AG, Schlieren, Switzerland). The follow-

ing parameters were calculated: % bone volume/total tissue

volume (BV/TV), bone surface (BS), trabecular thickness (Tb.Th),

trabecular number (Tb.N), trabecular connectivity density (Conn.

D), total area (T.Ar); cortical thickness (Ct.Th) and the polar

moment of inertia (J).

Bone Histology
Mouse femoral samples were fixed in 4% p-formaldehyde in

PBS and subsequently decalcified in Osteosoft (Merck, Darmstadt,

Germany), dehydrated, and embedded in paraffin. Histological

evaluation was carried out by Masson’s staining on sagittal 3 mm

sections from each mouse in 4 mice per experimental group. The

growth plate width in wild type and Igf1-null mice was measured

with NIH Image J software. Trabecular abundance was also

calculated, and expressed as the trabecular number/mm in a bone

area below the growth plate. Osteocytes were counted in 4 to 6

random x400-fields per sample in a cortical bone segment between

the growth plate and the mid-diaphysis; the corresponding mean

score value was normalized to the bone area of each sample.

Osteoblasts, identified by their cuboidal shape and localization on

bone surfaces and multinuclear osteoclasts (with 3 or more nuclei)

[26,49], were counted in a 0.8-mm2 area of the tibial metaphysis

immediately below the growth plate. Evaluations were performed

by 2–3 independent observers in a blinded fashion for each mouse.

Bone Marrow Stromal Cell (BMSC) Cultures
To obtain BMSCs, the bone marrow from both tibiae and

femurs of either five Igf1-null or two wild type mice were pooled

and cultured, as previously described [26,28]. BMSCs were seeded

in a-minimum essential medium containing 15% heat-inactivated

foetal bovine serum, 1% penicillin–streptomycin, and 2.5 mg/ml

fungizone at a density of 1–2.56106 cells/cm2, onto 6-well plates

in 5% CO2 at 37uC. This culture medium supplemented with

Figure 1. Phenotypic characterization of Igf1-null mice. IGF-I serum levels, body weight, as well as auditory brainstem response [hearing
threshold, dB sound pressure level (SPL)] and sciatic nerve conduction velocity were measured in young wild type (WT; Igf1+/+), heterozygous (Hz;
Igf1+/2), and Igf1-null (Igf12/2) mice, as described in Methods. Data from 2- and 4-month old mice of each genotype were pooled for statistical
comparisons. Results are expressed as mean 6 SEM corresponding to the following number of mice (males and females, respectively): 7 and 4 (WT); 8
and 4 (Hz) and 2 and 2 (Igf12/2). ***p,0.001 vs WT mice.
doi:10.1371/journal.pone.0087536.g001
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50 mg/ml ascorbic acid and 10 mM b-glycerophosphate (osteo-

genic medium) was added at day 3 with or without PTHrP (1–36)

or osteostatin (each at 100 nM). Half of the volume of the cell-

conditioned medium and peptide treatment was exchanged every

other day. On day 16, matrix mineralization was determined by

staining with 40 mM alizarin red S, pH 4.2, for 10 minutes, and

measuring absorbance at 540 nm [28].

Gene Expression Analysis by Real Time PCR
Femoral samples of each Igf1-null and wild type mice were

crushed under liquid nitrogen before total RNA extraction with

Trizol (Invitrogen, Groningen, NL). For gene expression analysis

by real time PCR, cDNA was generated from equal amounts of

total RNA obtained from individual mice by reverse transcription

(High Capacity cDNA Reverse Transcription Kit; Applied

Biosystems, Foster City, CA). Thermal cycling and fluorescence

detection was performed on an ABI PRISM 7500 or 7900HT

system (Applied Biosystems). TaqMan MGB probes obtained from

Assay-by-DesignSM or TaqManH Gene Expression Assays were

used (Applied Biosystems) for amplification of: i) osteoblastic genes

including runt related transcription factor 2 (Runx2), osteocalcin

(OC), osteoprotegerin (OPG), receptor activator of nuclear factor-

kB ligand (RANKL), and Pth1r; ii) canonical Wnt pathway-related

genes, Wnt3a, cyclin D1 (Ccnd1), and connexin43 (Cx43); iii)

oxidative stress-related genes, catalase and ‘‘growth arrest and

DNA-damage-inducible 45 alpha’’ (Gadd45); and iv) genes related

to the IGF system and IGF-I signalling targets, including Igf1, Igf2,

Igf1r, Irs2, tyrosine-protein phosphatase non-receptor type 1

(PTP1B) (Ptpn1), and the cell cycle activator forkhead box M1

(FoxM1). 18S ribosomal RNA or the mouse ribosomal phospho-

protein P0 (Rplp0) was used as endogenous control gene to

normalize the expression data obtained. The relative quantifica-

tion values (RQ) between Igf1-null and wild type mice (treated or

untreated) were determined by the 22DDCt method, where

DDCt =DCtarget gene – DCreference gene [50], and data were

expressed as mRNA relative levels vs corresponding values in

untreated wild type, as reported [38,49].

Western Blotting
Mouse intact tibiae from each experimental animal were

homogenized in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl,

2 mM EDTA, 2 mM EGTA, 0.2% Triton X-100, 0.3% NP-40,

1 mM dithiothreitol and protease and phosphatase inhibitor

cocktail (Sigma-Aldrich) as described [49]. Protein concentration

was measured by bicinchoninic acid-based assay (Thermo Fisher

Scientific, Rockford, IL) using bovine serum albumin (BSA) as

standard. Analysis of protein expression was performed by

Western blotting. Equal amounts of protein from individual mice

were subjected to sodium dodecyl sulfate–polyacrylamide gel

electrophoresis under reducing conditions and transferred to

polyvinylidene fluoride or nitrocellulose (for sclerostin) membranes

in a Bio-Rad Trans Blot according to the manufacturer’s

instructions. After incubation with a blocking solution, the

membranes were probed overnight at 4uC with the following

primary antibodies: anti-phospho (p)-AKT (Ser473); anti-p-p44/

42 extracellular signal-regulated kinase (ERK) 1/2 or anti-p-p38

mitogen activated protein kinase (each at 1:1000 dilution), and

anti-p44/42 ERK1/2 (Cell Signaling Technology; Danvers, MA),

or anti-p38a (Santa Cruz Biotechnology; Santa Cruz, CA) (each at

1:1000 dilution) as loading controls, respectively; and anti-

sclerostin antibody (R&D systems; Minneapolis, MN) (0.2 mg/

ml). Anti-a-tubulin antibody (Sigma-Aldrich) was used as loading

control for the latter primary antibody. Antibodies were diluted in

Tris-buffered saline with Tween containing 5% BSA for

phosphorylation-specific antibodies or non-fat dried milk for the

other antibodies. The membranes were washed and incubated

with the corresponding peroxidase-conjugated secondary antibod-

ies for 1 h at room temperature. Immunoreactive bands were

visualized by enhanced chemiluminescence (GE Healthcare;

Buckinghamshire, UK) using X-ray films, and the bands were

quantified by densitometry with NIH Image J software.

Statistical Analysis
Statistical comparisons of hearing thresholds, NCV and IGF-I

serum levels were performed with one factor ANOVA with post

hoc Bonferroni or Tamhane test in case of homogeneous or non-

homogeneous variances according to Levene’s test, respectively,

using SPSS 19.0 (IBM SPSS statistics). Statistical analysis of

changes in the expression of IGF system and related genes,

assessed by real time PCR, was performed using the Integromics

Real Time StatMiner software package (http://www.integromics.

com/genomics-data-analysis/pcr-analysis). Statistical significance

of IGF system protein expression levels as well as differences in

matrix mineralization and bone cell numbers were analyzed by

ANOVA with post-hoc Bonferroni test. Other statistical compar-

isons were done by Kruskal-Wallis test followed by Mann-Whitney

test. Results were expressed as mean 6 SEM. p,0.05 was

considered significant.

Results

Changes in Bone Structural Parameters Elicited by PTHrP
(1–36) and Osteostatin in Igf1-null and Wild Type Mice

Igf1-null mice showed a significant decrease in femur length

(Figure 2A, left), together with a dramatic decrease in the width of

the growth plate and reduced trabecular number in the femoral

metaphysis, compared to wild type mice (Figure 2A, right).

Moreover, using mCT evaluation, a general alteration was

observed in various parameters in both trabecular and cortical

compartments in the femur of Igf1-null mice compared to wild

type mice (Tables 1 and 2 and Figure 2B).

No significant differences related to PTHrP peptide treatment

were observed in body weight in each genotype studied at the end

of the study. These values were (g; mean6SEM; n = 6): 26.460.5

(wild type, WT); 26.361.2 [WT+PTHrP (1–36)]; and 25.961.6

(WT+osteostatin); or 8.460.4 (Igf1-null); 8.460.8 [Igf1-null+
PTHrP (1–36)]; and 7.860.3 (Igf1-null+osteostatin). Bone mass

differences in wild type mice throughout the study were analyzed

by calculating the percentage of change of BMD and BMC values

for each mouse, as stated in Materials and Methods. By using this

approach, we were able to detect a significant (p,0.05 or lower)

increase in these parameters in the femur (but not in the total body

or the vertebrae) after treatment with each PTHrP peptide tested.

These % values were (mean 6 SEM corresponding to 3 males and

3 females for untreated mice, and 2 males and 4 females for

PTHrP-treated mice): 0.161.2 (wild type, WT); 5.962.2

[WT+PTHrP (1–36)]; and 8.161.4 (WT+osteostatin) (DBMD,

g/cm2); or 0.162.5, 9.263.1, 11.862.7 (DBMC, g), respectively.

By using mCT analysis of the distal femur, differential changes

elicited by each PTHrP peptide tested were observed in each IGF-

I scenario. Thus, in wild type mice, both PTHrP (1–36) and

osteostatin were similarly effective in stimulating cortical param-

eters, namely T.Ar., Ct.Th and J (Table 1), and also Tb.Th

(Table 2) at the femoral metaphysis. Meanwhile, administration of

PTHrP (1–36) to Igf1-null mice improved all the trabecular

parameters evaluated even above control values, but osteostatin

treatment was significantly less efficient in this bone compartment.

Moreover, neither PTHrP peptide tested showed efficacy to

Osteogenic Actions of PTHrP in IGF-I Deficiency
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Table 1. Changes in trabecular parameters in the distal femur metaphysis from wild type and Igf1-null mice, treated or untreated
with PTHrP (1–36) or osteostatin.

Trabecular bone WT WT+Nt WT+Ost Igf1-null Igf1-null +Nt Igf1-null +Ost

BV/TV (%) 13.4862.40 10.6361.01 11.1860.91 7.0460.87* 15.7060.36# 10.8260.54#,b

BS/TV (mm21) 7.1961.00 5.6460.68 6.2760.54 4.7260.60* 9.1360.61# 7.3760.47#,a

Tb.Th (mm) 50.3761.60 56.6160.71* 54.9260.85* 44.0760.70* 52.2962.23# 43.4761.08b

Tb.N (mm21) 3.9660.30 3.1260.42 3.6160.38 2.9760.37* 4.6660.24# 3.6860.44

Conn.D (mm23) 134.31626.70 96.58613.66 107.66613.94 98.72613.52* 266.08613.64# 172.03619.21#,b

BV/TV, Trabecular bone volume/total tissue volume; BS/TV, trabecular bone surface/total tissue volume; Tb.Th, trabecular thickness; Tb.N, trabecular number; Conn.D,
connectivy; Nt, PTHrP (1–36); Ost, osteostatin. Values are mean6SEM corresponding to 2 males and 4 females for PTHrP-treated mice or 3 males and 3 females for
vehicle-treated mice of each genotype, respectively. Kruskall-Wallis was used to compare differences among all groups, and Mann-Whitney test for comparison
between 2 groups.
*p,0.05 vs vehicle-treated wild type (WT); #p,0.05 vs corresponding vehicle-treated Igf1-null;
ap,0.05; bp,0.01 vs Igf1-null+Nt.
doi:10.1371/journal.pone.0087536.t001

Figure 2. Bone structure in wild type and Igf1-null mice with or without PTHrP treatment. (A) Representative images of femur size (left)
and the growth plate of the tibia stained with Masson’s trichrome (right) from wild type (WT) and Igf1-null mice. Growth plate width, and trabecular
number in a defined area below the growth plate, were measured and represented for each genotype. Statistical differences were analyzed by
unpaired Student’s t test. Values are expressed as mean 6 SEM corresponding to 2 males and 2 females for each genotype. **p,0.01 vs WT mice. (B)
Representative mCT images from trabecular and cortical regions of the distal femur from WT and Igf1-null mice, treated or not with PTHrP (1–36) (Nt)
or osteostatin (Ost). Images were adjusted to the same appearance for easy comparison between WT and Igf1-null mice which have smaller bones.
Thus, scale bars represent 1 and 0.5 mm for trabecular bone (upper panel) or 200 and 100 mm for cortical bone (lower panel) from WT and Igf1-null
mice, respectively. The regions of interest in trabecular and cortical segments of the mouse bone which were analyzed by mCT are depicted at the
top.
doi:10.1371/journal.pone.0087536.g002

Osteogenic Actions of PTHrP in IGF-I Deficiency
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normalize the altered cortical parameters determined in the femur

of these animals (Tables 1 and 2). These alterations in the distal

femur of mice with different Igf1 genotype and the osteogenic

actions of PTHrP (1–36) and osteostatin are depicted by

corresponding mCT images (Figure 2B).

Comparative Effects of PTHrP (1–36) and Osteostatin on
the Expression of Bone Related Factors in Igf1-null and
Wild Type Mice

In the femur of wild type mice, treatment with either PTHrP

peptide caused a similar increase in the expression of the early

osteoblast differentiation transcription factor Runx2, but not in that

of the late osteoblast differentiation marker OC (Figure 3). OPG/

RANKL ratio is considered to be a major modulator of bone

resorption and bone remodelling [51]. In these mice, only

osteostatin treatment enhanced the OPG/RANKL mRNA ratio,

by increasing OPG and decreasing RANKL gene expression

(Figure 3), coherent with its anti-resorptive features [47]. On the

other hand, treatment with PTHrP (1–36) but not osteostatin

increased the gene expression levels of catalase and Gadd45 two

oxidative stress-associated genes [52] (Figure 3).

In the femur of Igf1-null mice, Runx2 gene expression levels and

the OPG/RANKL mRNA ratio were increased three times over the

corresponding levels of the wild type mice, and were unchanged

by either peptide treatment (Figure 3). This observation is

consistent with the reported low status of osteoblastic maturation

in Igf1-null mice [23]. In these mice, PTHrP (1–36) administration

increased OC mRNA levels, and reversed the down-regulation of

catalase and Gadd45 (Figure 3). Pth1r mRNA expression was

unchanged in these mice (data not shown), as reported in another

Igf1-null mouse mutant [23].

Activation of the canonical Wnt pathway is an important

mechanism to foster bone formation [53]. We found that the

expression of Wnt3a, Ccnd1 and Cx43 was strongly decreased in

Igf1-null mice. This decrease was partially compensated for by

PTHrP treatment (Figure 4A). Sclerostin is an inhibitor of the

canonical Wnt pathway produced by osteocytes, which acts as

an important modulator of bone remodelling [54]. We found

that sclerostin protein levels were diminished in Igf1-null mice;

and administration of either PTHrP peptide prevented in part

this decrease (Figure 4B). These changes were not related to

those in the number of osteocytes in the tibia of Igf1-null mice

(Figure 4C).

We next evaluated whether differences in the observed

osteogenic action of each PTHrP peptide according to the mouse

genotype were reflected in corresponding changes in osteoblasts

and osteoclasts in the mouse tibia. Igf1-null mice were found to

display a lower amount of both cell types per bone tissue area

(mm2), compared to wild type mice (Figure 5A and B).

Furthermore, the abundance of osteoblasts significantly increased

after PTHrP administration in the latter mice but not in Igf1-null

mice (Figure 5A). On the other hand, either peptide was also

effective in decreasing the number of osteoclasts only in wild type

mice (Figure 5B).

For assessing whether PTHrP might display cell autonomous

actions in an IGF-I deficient environment related to its observed

osteogenic actions in Igf1-null mice, we used ex vivo BMSC

cultures from either these mice or wild type mice. BMSCs from

Igf1-null mice had a reduced matrix mineralization capacity

compared to those from wild type animals. In addition, matrix

mineralization significantly increased upon treatment with osteos-

tatin in these cell cultures only from the latter mice (Figure 5C).

PTHrP (1–36) and Osteostatin Modulate IGF System
Expression and IGF Signalling in the Long Bones of Igf1-
null Mice

We next evaluated several components of the IGF system and

downstream signalling pathways, which might have been targeted

by the PTHrP peptides to compensate for the absence of IGF-I.

Basal expression of Igf2, Igf1r and Irs2 was found to be increased in

the femur of Igf1-null mice compared to wild type mice, possibly as

a response to IGF-I deficiency. Interestingly, this was not the case

for the IGF1R inhibitory tyrosine phosphatase Ptpn1 gene

expression, which remained unchanged. The cell cycle activator

FoxM1 gene was also increased in Igf1-null mice. Of note, the

expression of these genes further increased in Igf1-null mice after

treatment with either PTHrP peptide (Figure 6A). Neither PTHrP

peptide affected Igf1 mRNA expression in the femur of wild type

littermates (data not shown).

Upon IGF1R activation, mitogen activated kinase-ERK1/2

and phosphatidylinositol-3 kinase/AKT downstream pathways are

activated to promote cell proliferation and survival, respectively;

whereas the pro-inflammatory p38a kinase pathway becomes

inactivated [1,38]. We here examined the status of these signalling

pathways in the tibia of Igf1-null mice, and the effect of PTHrP

administration to these mice. AKT activation was significantly

decreased in the Igf1-null mouse tibia, regardless of PTHrP

peptide treatment (Figure 6B). On the other hand, there were no

significant changes in ERK1/2 and p38a phosphorylation in Igf1-

null mice compared to wild type mice. Together with FoxM1 gene

expression data, these results suggest that cell proliferation is not

severely compromised and could be maintained by the concerted

actions of IGF-II and IGF1R in Igf1-null mice. Treatment with

PTHrP (1–36) increased both p-ERK1/2 and p-p38a levels in the

Igf1-null mouse tibia. In contrast, in these mice, there was no

evident change in the former levels but a reduction in the latter

levels upon osteostatin treatment (Figure 6B).

Table 2. Changes in cortical parameters in the distal femur diaphysis from wild type and Igf1-null mice, treated or untreated with
PTHrP (1–36) or osteostatin.

Cortical bone WT WT+Nt WT+Ost Igf1-null Igf1-null +Nt Igf1-null +Ost

T.Ar. (mm2) 0.7560.01 0.8760.03* 0.8760.01* 0.2760.01* 0.3160.03 0.2460.01

Ct.Th. (mm) 204.564.3 223.861.4* 222.264.0* 130.166.5* 126.867.7 117.062.7

J (mm4) 0.2660.01 0.3260.02* 0.3460.01* 0.0360.01* 0.0560.01 0.0360.01

T.Ar, total area; Ct.Th, cortical thickness; J, polar moment of inertia. Nt, PTHrP (1–36); Ost, osteostatin. Values are mean6SEM corresponding to 2 males and 4 females for
PTHrP-treated mice or 3 males and 3 females for vehicle-treated mice of each genotype, respectively. Kruskall-Wallis was used to compare differences among all groups,
and Mann-Whitney test for comparison between 2 groups. *p,0.05 vs vehicle-treated wild type (WT).
doi:10.1371/journal.pone.0087536.t002
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Discussion

IGF-I-deficient mice have dramatic growth retardation, show-

ing smaller bones than those of normal mice [1,4]. In this study,

young adult mice with Igf1 gene deletion showed significant

alterations in bone mass and bone structure at both cortical and

trabecular compartments. Previous studies in IGF-I deficient mice

of a different background have shown a decrease in cortical bone

formation but an increase of several trabecular parameters in the

tibia [6,8,23]. It has been hypothesized that bone regional

differences in response to IGF-I deficiency might be a consequence

of the dual effect of IGF-I on both osteoblastogenesis and

osteoclastogenesis [4,6,55].

Differences have also been reported for the anabolic action of

intermittent PTH or PTHrP (1–36) treatment on trabecular and

cortical bone in mice and humans [30,56,57]. Here, we show that

intermittent PTHrP (1–36) or osteostatin treatment for two weeks

in wild type mice showed a similar efficacy at increasing bone mass

related to enhancing various cortical parameters but not the

majority of trabecular parameters in the femur. In this regard, a

previous study has shown that the anabolic effect of PTH was

mainly observed in cortical bone, whereas BV/TV was decreased

Figure 3. Osteoblast- and oxidative stress-related genes in wild type and Igf1-null mice treated or not with PTHrP. Gene expression
(assessed by real time PCR) of Runx2, OC, OPG, RANKL, catalase and Gadd45 in the femur of wild type (WT) and Igf1-null mice, treated or not with
PTHrP (1–36) (Nt) or osteostatin (Ost). The variation coefficient of vehicle-WT (control normalized to 1) value was consistently ,30% in each case. This
variation was taken into consideration for statistical analysis using Kruskall-Wallis test followed by Mann-Whitney test. Values are mean 6 SEM
corresponding to 2 males and 4 females for PTHrP-treated mice or 3 males and 3 females for vehicle-treated mice of each genotype, respectively.
*p,0.05; **p,0.01 vs vehicle-treated WT value; #p,0.05; ##p,0.01 vs vehicle-treated Igf1-null mice.
doi:10.1371/journal.pone.0087536.g003
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at trabecular level, after 2 week-treatment in male CD1 mice [23].

Moreover, gender differences in PTH bone anabolism have been

reported in this mouse strain [58]. Normal male mice on a mixed

genetic background of FVB/N, C57Bl/6J and 129Sv also showed

a stronger PTH response of cortical bone than trabecular bone

after 4 week-treatment [57]. Thus, although anabolic effects of

PTH have been reported in both genders of different mouse

strains [23,57,58], it cannot be ruled out that the osteogenic effect

of PTHrP reported here might have been attenuated by

combining both genders. A clear anabolic action of PTH in

mouse trabecular bone has been reported using a prolonged

treatment and/or higher PTH doses than those used here for

PTHrP [44,57,59]. The observed increase in Tb.Th. by PTHrP

administration in the femoral metaphysis of wild type mice could

be explained by a possible (yet uncharacterized) effect of these

peptides on lining cells as occurs with PTH [60]. Alternately, a

putative anti-resorptive action of PTHrP peptides might contrib-

ute to this increase, a mechanism supported by our histology data

and previous observations [26–29,35,47]. Further studies are

needed to confirm these hypotheses. These findings suggest that

differences in mouse strains and/or peptide administration

regimes highly influence the bone anabolism achieved by PTH

and presumably PTHrP peptides.

Our data indicate an IGF-I dependence for the osteogenic

effects of PTHrP peptides on the cortical compartment of the

mouse femur. In the present study, the administered doses of

PTHrP peptides are higher than those used in a recent clinical

study showing the bone anabolism of PTHrP (1–36) in postmen-

opausal women [30]. We are also aware of the limitation

represented by using these high doses for reaching conclusions

Figure 4. Wnt pathway-related factors in wild type and Igf1-null mice with or without PTHrP treatment. (A) Gene expression (assessed
by real time PCR) of Wnt3a, cyclin D1 (Ccnd1) and Cx43 in the femur of wild type (WT) and Igf1-null mice, treated or not with PTHrP (1–36) (Nt) or
osteostatin (Ost). (B) Sclerostin protein levels were assessed by Western blotting in the tibia of the different groups of mice studied. A representative
autoradiogram of each experimental condition is shown; values on top represent n-fold ratio over WT value. Values are mean 6 SEM, corresponding
to 2 males and 4 females for PTHrP-treated mice or 3 males and 3 females for vehicle-treated mice of each genotype, respectively. Vehicle-WT (control
normalized to 1) value has a variation coefficient of ,20% in each case. Kruskall-Wallis test followed by Mann-Whitney test were used for statistical
comparisons. *p,0.05, **p,0.01 vs vehicle-treated WT; #p,0.05, ##p,0.01 vs vehicle-treated Igf1-null mice. (C) Osteocyte number (N.Ot/mm2) in
the cortical tibia in the experimental groups of mice studied. Values are mean 6 SEM, corresponding to 2 males and 2 females for each genotype and
treatment. Representative images of osteocytes in the cortical mouse tibia (Masson’s staining) from each experimental group of mice are shown.
Stars (*) and arrowheads denote bone area and osteocytes, respectively.
doi:10.1371/journal.pone.0087536.g004

Osteogenic Actions of PTHrP in IGF-I Deficiency

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e87536



on the physiological relevance of the present findings. In any

event, and consistent with our results, PTH doses in the range of

those used here for PTHrP have been reported to be ineffective in

the cortical long bones of mice with global IGF-I or osteoblastic

IGF1R deficiency [23,61]. Also of interest, PTH was shown to be

ineffective in cortical bone, but not in trabecular bone, in mice

with liver-specific IGF-I deletion [62]. The low resorptive activity

related to IGF-I deficiency has been suggested to account for the

different PTH response of cortical and trabecular bone [6,23]. In

this respect, the reduced number of trabecular osteoclasts in the

Igf1-null mouse tibia suggests that such a mechanism might

facilitate the disclosure of an anabolic action of PTHrP peptides in

the trabecular femur of Igf1-null mice. Increased OPG mRNA

levels (without changes in those of RANKL), which are likely to

correlate with those of the corresponding protein [63–65], were

also detected in these mice. This further supports the notion that a

deficit of osteoclastogenesis occurs in Igf1-null mice.

Gene expression analysis also suggests the existence of an

osteoblast maturation deficit in the absence of a pro-oxidative

stress scenario in the femur of osteopenic Igf1-null mice. PTHrP

(1–36) (but not osteostatin) treatment increased OC gene

expression, suggesting it acts toward correcting the altered

osteoblast differentiation in these mice. A similar efficacy of

PTH in promoting the expression of osteoblast differentiation

markers (including OC) in the femur of another Igf1-null mouse

model has been previously reported [23]. However, the anabolic

Figure 5. Changes in bone cellularity elicited by PTHrP in wild type and Igf1-null mice. Osteoblasts (A) and osteoclasts (B) lining trabecular
surface were counted in the tibial metaphysis of mice of both genotypes, treated or untreated with each PTHrP tested, and their number were
represented per bone tissue area (T.Ar), as described in the text. Values are expressed as mean 6 SEM corresponding to 2 males and 2 females for
each genotype and treatment. (C) BMSCs from two (1 male and 1 female) wild type (WT) or five (2 males and 3 females) Igf1-null mice were cultured
for 16 days, with PTHrP (1–36) (Nt) or osteostatin (Ost) (each at 100 nM), or saline vehicle. Matrix mineralization was determined by alizarin staining by
measuring absorbance at 620 nm. Values are mean 6 SEM (corresponding to 7 culture wells per experimental condition). Statistical differences were
assessed by ANOVA followed by post-host Bonferroni test. *p,0.05; **p,0.01 vs vehicle-treated WT.
doi:10.1371/journal.pone.0087536.g005
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Figure 6. IGF system and signalling targets in bone of wild type and Igf1-null mice with or without PTHrP treatment. (A) Gene
expression levels of Igf2, Igf1r, Irs2, Ptpn1 and FoxM1 were determined by real time PCR in wild type (WT; white bars) and Igf1-null (black bars) mice,
treated with either PTHrP (1–36) (Nt), osteostatin (Ost) or saline vehicle. Rplp0 expression levels were used as endogenous housekeeping control
gene. Data correspond to 2 males and 3 females for PTHrP-treated mice or 3 males and 2 females for vehicle-treated mice of each genotype,
respectively, and were calculated as log10RQ and represented as relative levels over corresponding WT-vehicle value in each case. Adjusted p-values
were calculated with StatMiner software, and were considered significant when p,0.05. (B) Levels of p-ERK1/2, p-AKT and p-p38a were measured by
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and catabolic effects of PTH on the proximal tibia of wild type

mice were absent in Igf1-null mice [23]. This apparent discrepancy

was explained by the suggestion that IGF-I might not be essential

for proximal events of osteoblast activation (namely, increased

expression of some osteoblastic genes) by PTH. In addition,

components of the canonical Wnt pathway were found to be

affected in the long bones of Igf1-null mice, further underpinning

the existence of an altered bone formation and remodelling in

these animals. The observed decrease in sclerostin protein

expression (without changes in osteocyte density) in Igf1-null mice

indicates a diminished osteocyte function. In this respect, targeted

disruption of Igf1 in mouse osteocytes results in poor Wnt pathway

activation causing a marked impairment of bone development and

in the bone anabolic response to loading [66,67]. Our data

indicate that administration of PTHrP (1–36) or osteostatin

partially recovered Wnt pathway activation in these mice. In fact,

PTHrP (1–36) and the osteostatin-related PTHrP (107–139)

peptide have recently been reported to target this pathway in

osteoblastic cells in vivo and in vitro [48,68], related to their

osteogenic action in diabetic mice with low bone turnover

osteopenia [28,69].

A previous report has shown that primary calvaria osteoblasts

isolated from mice with partial deletion of Igf1 showed decreased

proliferation [70]. In the present study, the long bones of Igf1-null

mice displayed less trabecular osteoblasts, and BMSCs from these

mice had an impaired mineralization capacity. This was similar to

previous findings in these cultures from mice with selective

deletion of Igf1r in mature osteoblasts, which failed to respond to

PTH [61,71]. In line with this observation, BMSCs from Igf1-null

mice showed a lack of osteogenic differentiation response to

PTHrP (1–36) or osteostatin in vitro; although this response

occurred for osteostatin in BMSCs from wild type mice. However,

PTHrP (1–36) was ineffective in this respect in the latter mice, in

contrast to a previous report using PTHrP (1–34) and rat BMSCs

[72]. Differences in either the N-terminal PTHrP peptide

sequence or species (rats and mice) between this study and the

present study might explain these discrepancies. Anyhow, our

findings support a role for IGF-I in the action of PTHrP on bone

marrow osteoprogenitors.

Bone cells synthesize IGF-I and IGF-II [22]; both factors bind

the tyrosine kinase receptor IGF1R although with different

affinities [1,73,74]. Upon this receptor activation, intracellular

pathways are activated targeting important cell processes such as

proliferation, survival, differentiation, inflammation and stress.

Feedback signalling negatively regulates this activation by means

of phosphatases and proteases [73]. We here show an increased

gene expression levels of Igf2 and Igf1r concomitant to IGF-I

deficiency in the mouse femur. Interestingly, an increased

expression of docking Irs2 was also detected, whilst that of Ptp1n

was unchanged. In this signalling scenario, ERK activation is

maintained whereas that of AKT was decreased, which suggests

that cell survival but not cell proliferation would be compromised

in the bone tissue of Igf1-null mice. These data are in contrast to

those obtained in Igf1-null cochlea, retina and brain, which do not

exhibit an increase in the basal levels of either IGF-II or IGF1R or

its substrates [9,38,39]. In the cochlea, stress pathways are strongly

activated; in contrast, p38a phosphorylation levels were un-

changed in the bone tissue of Igf1-null mice. Our findings of

differential activation of IGF-I signalling mediators between the

cochlea and bone of Igf1-null mice suggest that IGF-I deficit causes

specific alterations in target tissues [4,74].

Expression levels of Igf2, Igfr1 and Irs2 were further increased in

the femur of Igf1-null mice after treatment with each PTHrP

peptide. Although this treatment failed to affect Igf1 mRNA levels

at this skeletal site in wild type littermates (data not shown). In

contrast, PTH treatment for a longer period (4 weeks) increased

bone IGF-I content in rats [75,76]. Our data in Igf1-null mice also

indicate that PTHrP (1–36) was effective in promoting ERK1/2

and p38a phosphorylation, suggesting that these pathways could

be effectively modulated through IGF-II/IGF1R. On the

contrary, the decreased p-AKT levels in these mice were not

normalized after treatment with either PTHrP peptide. Therefore,

PI3K/AKT pathway activation by PTHrP in bone seems to be

IGF-I-dependent.

These aggregated findings confirm and extend the reported

skeletal defects of Igf1-null mice using other mouse strains. In

addition, our data in mice on a hybrid MF1/129/Sv genetic

background support the notion that PTHrP (1–36) and osteostatin

can exert osteogenic actions even in the absence of IGF-I.
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