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Abstract

Clinical outcomes of anti-nicotine vaccines may be improved through enhancements in

serum antibody affinity and concentration. Two strategies were explored to improve vaccine

efficacy in outbred mice: the use of enantiopure haptens and formulation of a bivalent vac-

cine. Vaccines incorporating natural (-) nicotine haptens improved relative antibody affinities

>10-fold over (+) haptens, stimulated a two-fold boost in nicotine serum binding capacity,

and following injection with 3 cigarette equivalents of nicotine, prevented a larger proportion

of nicotine (>85%) from reaching the brain. The activity of a bivalent vaccine containing (-)

3’AmNic and (-) 1’SNic haptens was then compared to dose-matched monovalent groups. It

was confirmed that antisera generated by these structurally distinct haptens have minimal

cross-reactivity and stimulate different B cell populations. Equivalent antibody affinities were

detected between the three groups, but the bivalent group showed two-fold higher titers and

an additive increase in nicotine serum binding capacity as compared to the monovalent

groups. Mice immunized with the bivalent formulation also performed better in a nicotine

challenge experiment, and prevented >85% of a nicotine dose equivalent to 12 cigarettes

from reaching the brain. Overall, enantiopure conjugate vaccines appear to improve serum

antibody affinity, while multivalent formulations increase total antibody concentration. These

findings may help improve the performance of future clinical candidate vaccines.

Introduction

Tobacco creates an undue burden on the health care systems of the world. Smoking is the lead-

ing cause of preventable mortality and morbidity in the United States. Overall, 1 in 5 deaths

are caused by smoking [1]. While 50% of smokers attempt to quit annually, less than 5% are

able to successfully quit on the long-term each year [2,3]. Currently, cessation aids consist of

nicotine replacement therapy, pharmaceutical (ant)agonists or behavioral therapy; compared

to abstinence, these increase cessation rates only modestly and can have significant side effects

[4–6].

Anti-addiction vaccines are one possible solution to these problems [7–17]. Typically, these

contain drug analogs that are covalently bound to a recombinant protein that provides T cell-

mediated B cell help. The resultant antibodies (Abs) bind the drug as it enters the bloodstream

and limit the subsequent pharmacological effects of the drug. Anti-nicotine vaccines have been
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tested in humans but ensuing Ab responses were inferior and much more variable than what

has been observed in animals [18]. Despite this, subgroup analyses in two Phase II studies indi-

cated that subjects with the highest Ab titers achieved 12 months of abstinence, that the non-

abstaining subjects within the high Ab group reduced daily cigarette consumption by 50%,

without a compensatory increase in smoking [8,19]. However, follow-on Phase III studies

failed to demonstrate efficacy, with one likely explanation being that the induced anti-nicotine

Ab concentration was insufficient to prevent significant nicotine entry into the brain. The fail-

ure of these first-generation vaccine studies has encouraged further research into the require-

ments for improving Ab affinities and concentrations, including innovations in hapten/carrier

designs and adjuvants beyond Alum [8,20–36].

Previously, we described a hapten carrier made from a short alpha-helical peptide that self-

assembles into a coiled-coil structure [37]. Following chemical conjugation, the carrier’s B-epi-

tope domain contains a high density of haptens that improves antigen presentation [38–44],

and its C-terminal half contains 2 universal CD4 T cell epitopes, which simultaneously activate

multiple MHC Class II molecules. One advantage of this carrier is its ease of manufacturing

and formulation following solid-phase protein synthesis. Additionally, it lacks non-essential

but immuno-stimulatory protein sequences found in traditional carriers that induce anti-car-

rier Ab responses. Herein, we explore two strategies for improving Ab responses with this car-

rier. The first employs enantiopure (-) nicotine haptens to improve functional Ab activity

[23,24]. The second utilizes a bivalent formulation with two structurally distinct haptens to

increase Ab responses even further [25–28].

Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health, the US Public Health

Service Policy on Humane Care and Use of Laboratory Animals, and the Association for

Assessment and Accreditation of Laboratory Animal Care International (AAALAC). Protocol

#2015–11 was approved by the Institutional Animal Care and Use Committees of the Infec-

tious Disease Research Institute which operates under a currently approved Assurance

#A4337-01 and USDA certificate #91-R-0061. Mice were housed under specific pathogen-free

conditions in ventilated microisolator cages, and kept on a 12-hour light/dark schedule with

free access to food and water. Animal welfare and health was monitored daily and in the rare

instances where medical intervention was not effective, animals were humanely euthanized

and every effort was made to minimize suffering.

Peptides, haptens

All peptides were synthesized at Bio-Synthesis Inc (Lewiston, TX). In addition to a coiled coil

domain [37], P8 contained T cell epitopes derived from tetanus toxoid and herpes B surface

antigen [45]. P9 contained epitopes from diphtheria toxoid [46] and PADRE [47]. Nicotine

haptens (3’AmNic and 1’SNic, Fig 1) were synthesized (Life Chemicals, Vancouver BC) as

racemic mixtures using reported methodologies [23,28]. 3’AmNic was then succinylated and

1’SNic treated with methyl bromoacetate and subsequently deprotected to the free carboxylic

acid with lithium hydroxide. Enantiomer separation via supercritical fluid chromatography

was performed by Averica Discovery (Marlborough, MA) and enantiomer chirality was

assigned using vibrational circular dichroism (Biotools Inc., Jupiter, FL).
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Conjugations

Synthetic carrier peptide or bovine serum albumin (BSA) was dissolved in 100 mM 3-(N-morpho-

lino)propanesulfonic acid (MOPS) buffer (50 mM NaCl, pH 7.2) at 10 mg/mL. The appropriate

hapten, N-hydroxysuccinimide (NHS) and 3-(ethyliminomethyleneamino)-N,N-dimethylpropan-

1-amine (EDC) were dissolved to 1 M in the same buffer. Hapten (400 equivalents to peptide

monomer), NHS and EDC (380 equivalents to peptide monomer) were combined and agitated

on a plate shaker (700 rpm, r.t.) for 30 min, after which the peptide/BSA was added to the reaction.

Four hours later, the reaction was diluted to ca. 1 mg/mL with MOPS buffer and dialyzed (1K

MWCO) against MOPS buffer overnight. Samples were centrifuged at 10,600 x g for 5 min to

remove any precipitate and the hapten load was quantified as previously described [37,48]. It was

determined that 100 hapten equivalents led to a loading of ~2.5 haptens/peptide monomer, while

500 equivalents yielded ~6 haptens/monomer. Loadings plateaued beyond 500 equivalents. These

studies used a loading ca. 4–5 haptens/peptide monomer. To generate antigens for enzyme-linked

immunosorbent assays (ELISA), BSA was conjugated with 1000 equivalents of hapten and 950

equivalents of EDC and NHS. Peptide concentrations were determined by amino acid analysis.

Immunizations

Female CD-1 mice (Charles River Laboratories) were housed under pathogen-free conditions

in the Infectious Disease Research Institute vivarium. The nicotine-conjugated peptides were

combined on the day of immunization with 2% glucopyranosyl lipid adjuvant in a squalene

emulsion (GLA-SE) [49]. Conjugated peptide stock solutions were diluted in GLA-SE/PBS to

yield 50 µg/mL (enantiomer experiment) or 100 µg/mL (bivalent experiment) peptide conju-

gate. Mice were injected with 50 µL of the appropriate vaccine in each hind quadriceps muscle

(100 µL total injection volume) on days 0, 21, 42 and serum was collected on days 35 and 56

for measuring nicotine-specific Ab responses.

Antibody titers and affinities

Serum Ab titers, cross-reactivity and relative affinities were determined by ELISA as previously

reported [37] with the following modifications. Serum samples were serially diluted 3-fold

Fig 1. Nicotine haptens used in this study.

https://doi.org/10.1371/journal.pone.0178835.g001
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from 1/100 in blocking buffer. Midpoint titers at half maximal absorbance were calculated

using GraphPad Prism (GraphPad Software, San Diego, CA). Ab affinities were determined as

previously reported [37] with the following modifications. Nicotine was prepared at 200 mM

and serially diluted to 0.2 nM in blocking buffer. 80 µL of sera (diluted to a concentration

Fig 2. Antibody titers induced by enantiopure 3’-AmNic and 1’-SNic haptens. CD-1 female mice (n = 8)

received a prime boost boost immunization with either P8 peptide (5 µg) conjugated to (-) 3’ or (+) 3’AmNic

haptens (A); or with P9 peptide (5 µg) conjugated to (-) 1’ or (+) 1’SNic haptens (B). Serum was collected 56

days later and assayed by ELISA using plates coated with the reciprocal enantiopure haptens conjugated to

BSA. Comparisons between groups were conducted by unpaired t-test. ***p<0.001.

https://doi.org/10.1371/journal.pone.0178835.g002
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twofold higher than that which yielded half maximal titer absorbance) and nicotine were

mixed in a non-absorbent 96-well plate and incubated at 37 ˚C for 1.5 h. Data were trans-

formed according to the method of Friguet et al. [50] with the correction factor applied for

bivalent IgG antigen binding described by Stevens et al. [51].

Serum nicotine binding capacity

Serum was pooled from each immunization group and aliquots (100 µL) were spiked with seri-

ally diluted nicotine to achieve final nicotine concentrations of 0.01–10000 µM. These samples

were then subjected to equilibrium dialysis against an equal volume of 1X phosphate-buffer

saline (PBS) for 4 h (37 ˚C) using an HTD96b equilibrium dialysis setup (HTDialysis, Gales

Ferry, CT). Aliquots from the sera and buffer sides of the dialysis membranes were removed

and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (Alturas,

Moscow, ID). Unbound nicotine was quantified by comparing peak intensities to an internal

standard of d4-nicotine and a standard curve generated with a nicotine standard.

Nicotine distribution in brain and sera

Anesthetized mice received a tail vein infusion (5 s) of 0.05 or 0.2 mg/kg of nicotine hydrogen

tartrate diluted in 100 mL of PBS, which approximates the mg/kg dose of nicotine equivalent

to three and twelve smoked cigarettes in humans, respectively [21]. Mice were sacrificed after

Fig 3. Relative nicotine binding affinities improve when using natural (-) enantiomers of two nicotine

haptens. Day 56 serum was subjected to a competitive ELISA assay using serially diluted (-) nicotine as the

competitor. Comparisons between groups were conducted by unpaired t-test. ***p<0.001.

https://doi.org/10.1371/journal.pone.0178835.g003
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5 minutes. Blood was collected via cardiac puncture for serum preparation and the brain was

removed, weighed and flash frozen in liquid nitrogen. Following tissue sample extraction, nic-

otine was measured by LC-MS/MS (Alturas Inc, Moscow ID). The amounts of nicotine

detected in brain were not corrected for nicotine present in cerebral blood. Data were analyzed

using GraphPad Prism. Statistical significance of the difference between two groups was calcu-

lated by Student’s 2-tailed t-test on log-transformed data and between three or more groups by

1-factor analysis of variance (ANOVA) followed by post-hoc analysis.

Results

Enantiopure haptens improve anti-Nicotine Ab responses in immunized

mice

It has been reported that Ab responses to natural (-) nicotine were substantially improved in

rats following immunization with a tetanus toxoid carrier and an enantiopure (-) 3’AmNic

hapten [23]. To test how hapten chirality might influence vaccine performance, racemic

3’AmNic and 1’SNic haptens were separated into (-) and (+) enantiomers and conjugated,

respectively, to P8 and P9 peptides (see Methods). CD-1 mice received a prime-boost-boost

immunization (5 ug antigen plus adjuvant) and day 56 sera were assayed for binding specificity

to (-) and (+) haptens. As indicated in Fig 2A, the Abs induced with (-) 3’ P8 and (+) 3’ P8 rec-

ognized both chiral forms of 3’AmNic, although cross-enantiomer binding was lower for both

immunogens. This difference was statistically different for (-) 3’ P8 serum on (+) 3’AmNic-

Fig 4. Serum nicotine binding capacities improve when using natural (-) enantiomers of two nicotine

haptens. Day 56 serum was collected and pooled from mice immunized with 5 µg (-) 3’ P8 or (+) 3’ P8 (A) or 5

µg (-) 1’ P9 or (+) 1’ P9 (B). Nicotine binding capacities were determined by equilibrium dialysis.

https://doi.org/10.1371/journal.pone.0178835.g004
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coated plates, but only qualitatively different for (+) 3’ P8 serum on (-) 3’AmNic-coated plates.

Abs induced by (-) 1’ P9 and (+) 1’ P9 peptides also recognized both enantiomers; binding of

antisera from (-) 1’ P9 immunized mice to (+) 1’SNic was diminished but those induced with

(+) 1’ P9 vaccine bound both (-) and (+) 1’SNic equally well (Fig 2B). In addition to specificity

of enantiomer binding, the relative binding affinity of these antisera for native (-) nicotine was

measured by competitive ELISA (Fig 3), and the overall serum binding capacity for (-) nicotine

was determined by equilibrium dialysis (Fig 4). As indicated, the relative binding affinity and

nicotine binding capacity was markedly better for the Abs induced by the (-) 3’AmNic and (-)

1’SNic immunogens, relative to the (+) enantiomers.

To test for a functional difference between hapten enantiomers, mice immunized with (-) 1’

P9 and (+) 1’ P9 were subjected to a nicotine brain/serum partitioning study on day 70. Nico-

tine (0.05 mg/kg, 3 cigarette equivalents) was injected intravenously; 5 minutes later, blood

and brain samples were collected and nicotine content was quantified by LC-MS/MS. When

compared to PBS immunized mice,<20% of the infused dose of nicotine was detected in the

brains of (-) 1’SNic immunized mice (Fig 5A), with most the nicotine being retained in sera

(Fig 5B). In contrast to this, brain nicotine levels were greater and more varied in (+) 1’SNic

animals and their nicotine blood levels were indistinguishable from the control PBS group.

Collectively, these data confirm that hapten chirality influences Ab specificity and that enan-

tiopure vaccines should be used to maximize Ab responses to native (-) nicotine.

Fig 5. Vaccine efficacy is improved by using the natural (-) enantiomer of hapten 1’-SNic. Mice were

immunized with 5 µg (-) 1’ P9 or (+) 1’ P9 on days 0, 21 and 42. On day 70, mice were injected with an amount of

nicotine tartrate equivalent to three cigarettes (0.05 mg/kg). Mice were sacrificed after 5 minutes and nicotine

levels were measured in brain tissue (A) and sera (B) by LC-MS/MS. Comparisons between groups were

conducted one-way ANOVA. ***p<0.01 between vaccinated groups.

https://doi.org/10.1371/journal.pone.0178835.g005
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Bivalent vaccines enhance functional Ab responses in an additive

manner

Previous work has shown that structurally-distinct haptens, which differ in linker design and

attachment points to the nicotine molecule, can activate different B cell clones and that vac-

cines formulated with 2 or 3 haptens increased functional Ab concentrations relative to a

monovalent vaccine [25–28]. To test this strategy, mice received a prime-boost-boost immuni-

zation with 10 µg of the enantiopure (-) 1’ P9 or (-) 3’ P9 conjugates, or 10 µg of a bivalent for-

mulation containing 5 µg of (-) 1’ P9 and 5 µg of (-) 3’ P9. To show that these haptens

stimulate different B cell clones, we measured the degree of hapten cross-reactivity on ELISA

plates coated with (-) 3’AmNic-BSA (Fig 6A) or (-) 1’SNic-BSA (Fig 6B). The Abs induced by

the monovalent vaccines showed <10% cross-reactivity and the bivalent formulation stimu-

lated titers comparable to the respective monovalent groups. To test whether this leads to an

additive increase in anti-nicotine Abs, we incubated sera with ELISA plates coated with a 50:50

mixture of (-) 1’SNic and (-) 3’AmNic and observed a roughly twofold increase in total Ab pro-

duction relative to the monovalent groups (Fig 7A). No differences in relative Ab binding

affinity were detected between the monovalent and bivalent immunization groups (Fig 7B).

To confirm that the bivalent formulation improves functional Ab concentrations, the

serum nicotine binding capacity was measured (Fig 8A), and a second nicotine brain/blood

partitioning experiment was performed, with a four-fold higher nicotine dose (0.2 mg/kg; 12

cigarette equivalents) than was used previously to better resolve functional differences between

Fig 6. Antibody cross-reactivity between 1’-SNic and 3’-AmNic monovalent and bivalent vaccines. Serum

was collected 56 days after priming from mice immunized with: (1) 10 µg (-) 1’ P9, (2) 10 µg (-) 3’ P9 or (3) 5 µg (-)

1’ P9 + 5 µg (-) 3’ P9. Sera titers were assayed by ELISA using plates coated with (-) 3’-BSA (A) or (-) 1’-BSA (B).

https://doi.org/10.1371/journal.pone.0178835.g006
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groups. The serum binding capacity for nicotine in the bivalent group was 2,560 ng/mL, which

was equal to the sum of the binding capacities of the (-) 3’ P9 (665 ng/mL) and (-) 1’ P9 (1815

ng/mL) groups. It is worth noting that the binding capacity of the (-) 1’ P9 group in the biva-

lent study is roughly twofold higher than the (-) 1’ P9 group in the enantiomer experiment (ca.

1000 ng/mL). In-house dose-response studies showed that increasing the (-) 1’ P9 dose from 5

to 10 µg led to a doubling in Ab titers (data not shown); this increase in Ab titer is congruent

with the increased binding capacity across studies. Correspondingly less nicotine accumulated

in brains of mice immunized with the bivalent vaccine (7 ng/g) relative to the 3’-P9 (22 ng/g)

and 1’-P9 (11 ng/g) monovalent vaccines (Fig 8B), and proportionally more nicotine was pres-

ent in circulating sera (Fig 8C). Collectively, these results argue that a vaccine using two differ-

ent nicotine haptens will independently activate populations of B cells resulting in an additive

increase in functional Ab concentrations.

Discussion

Nicotine vaccines tested in humans have failed to generate Ab responses capable of preventing

nicotine from reaching the brain in a meaningful way [8,19], and a strong effort has been

made to modernize conjugate vaccine technology. The hapten used in Phase III studies, 3’

AmNic, was a racemic mixture of (-) and (+) enantiomers, and recent studies report that nico-

tine binding capacities of immunized rat sera can be improved using enantiopure (-) 3’AmNic

[23]. We tested this concept using enantiomer pairs of both 3’-AmNic and 1’-SNic haptens,

and like the previous report, there was a marked increase in functional activity when the

Fig 7. A bivalent nicotine vaccine stimulates an additive increase in antibody titers and equivalent avidities

compared to dose-matched monovalent vaccines. Serum was collected 56 days after priming from mice

immunized with: (1) 10 µg (-) 1’ P9, (2) 10 µg (-) 3’ P9 or (3) 5 µg (-) 1’ P9 + 5 µg (-) 3’ P9. Sera titers (A) and affinities

(B) were assayed by ELISA using plates coated with a 50/50 mixture of (-) 1’ BSA and (-) 3’ BSA. Comparisons

between groups were conducted by one-way ANOVA. ***p<0.01.

https://doi.org/10.1371/journal.pone.0178835.g007
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hapten shared the same chirality as naturally-occurring nicotine. In our study, only minor dif-

ferences in binding specificity were detected between antisera induced with (-) and (+) haptens

and (-) and (+) coated antigens, and cross-reactivity between (-) and (+) reactants was more

apparent than measured by Lockner et al [23]. However, a significant difference in Ab binding

affinity was observed in our experiments; antisera from (-) 1’SNic and (-) 3’AmNic groups had

17- and 38-fold stronger affinities than those from (+) 1’SNic and (+) 3’AmNic groups, respec-

tively. Correspondingly, both (-) enantiomers induced nicotine binding capacities that were

roughly twofold greater than their (+) counterparts. Furthermore, following an intravenous

injection of nicotine, mice immunized with (-) 1’SNic retained significantly more nicotine in

serum and nicotine accumulation in brain was decreased >80% relative to the PBS control.

Conversely, sera nicotine levels of mice immunized with (+) 1’SNic were indistinguishable

from the PBS control group and nicotine accumulation in brain was decreased by 65%. These

data confirm that hapten chirality influences Ab recognition and argue that future clinical can-

didate vaccines should only use enantiopure haptens.

A second method for improving vaccine efficacy involves multivalent hapten formulations

with different nicotine linkers and attachment sites that increase the breadth of antigen presen-

tation and B cell activation. The linkers in 3’AmNic and 1’SNic differ in length, chemical

make-up and attachment points on opposite sides of the nicotine pyrrolidine ring. Evidence

that they engage different populations of Ig receptors was based on ELISA where cross-reactiv-

ity between antisera and the opposing hapten-coated plates was less than 10%. The notion that

bivalency stimulates a complimentary increase in Ab production was reflected by the ~two-

fold higher Ab titer in the bivalent group vs the monovalent groups and a concomitant addi-

tive increase in nicotine binding capacity. Importantly, the broadened Ab response in the biva-

lent group resulted in a statistically superior inhibition of nicotine accumulation in brain. As

Fig 8. Functional antibody responses are improved with a bivalent vaccine. Plasma was collected on day 56 and pooled from mice immunized on days

0, 21 and 42 to determine nicotine binding capacity by equilibrium dialysis (A). Fourteen days later, mice were injected with an amount of nicotine tartrate

equivalent to 12 cigarettes (0.2 mg/kg). Mice were sacrificed after 5 minutes and nicotine levels were measured on brain (B) and plasma (C) by LC-MS/MS.

https://doi.org/10.1371/journal.pone.0178835.g008
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first reported by the Pentel laboratory [27], a vaccine containing 1’SNic, 3’AmNic and a third

hapten with a linker attachment site at the 6 position of the pyridine ring (6-CMU-Nic),

induced a functional Ab response that was greater than monovalent vaccines. Thus, it may be

possible to formulate a multivalent vaccine containing a fourth or fifth hapten that presents

the nicotine moiety to antigen receptors in a structurally distinct way that minimizes inter-

hapten cross-reactivity. The use of coiled-coil peptide carriers seems particularly well suited

for this approach because of their ease of manufacturing and downstream processing resulting

in a reduced cost of goods. In conclusion, formulation of an enantiopure bivalent vaccine sub-

stantially increased Ab affinity and concentrations to levels that inhibited a nicotine dose

equivalent to 12 cigarettes from reaching the brain. Given these promising results, it will be

important to see how this technology translates from mice to larger species.
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