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Pathology provides the definitive diagnosis, and Artificial Intelligence (AI) tools are poised to improve 
accuracy, inter-rater agreement, and turn-around time (TAT) of pathologists, leading to improved 
quality of care. A high value clinical application is the grading of Lymph Node Metastasis (LNM) 
which is used for breast cancer staging and guides treatment decisions. A challenge of implementing 
AI tools widely for LNM classification is domain shift, where Out-of-Distribution (OOD) data has 
a different distribution than the In-Distribution (ID) data used to train the model, resulting in a 
drop in performance in OOD data. This work proposes a novel clustering and sampling method to 
automatically curate training datasets in an unsupervised manner with the aim of improving model 
generalization abilities. To evaluate the generalization performance of the proposed models, we 
applied a novel use of the Two One-sided Tests (TOST) method. This method examines whether the 
performance on ID and OOD data is equivalent, serving as a proxy for generalization. We provide the 
first evidence for computing equivalence margins that are data-dependent, which reduces subjectivity. 
The proposed framework shows the ensembled models constructed from models that generalized 
across both tumor and normal patches enhanced performance, achieving an F1 score of 0.81 for LNM 
classification on unseen ID and OOD samples. Interactive viewing of slide-level segmentations can 
be accessed on PathcoreFlow™ through https://web. pathcore.com /folder/1855 5?s=QTJVHJu hrfe5. 
Segmentation models are available at https://gith ub.com/IAMLA B-Ryerson/OO D-Generaliz ation-LNM.
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Over three hundred thousand new cases of breast cancer are expected to be diagnosed in 2024 among women 
in the United States, making it the most commonly diagnosed cancer within this demographic1. If tumor cells 
metastasize, the prognosis worsens, which increases the complexity of treatment and reduces the likelihood of 
survival. Pathologists evaluate lymph nodes to identify metastatic breast cancer, which can be labor-intensive 
and subjective. Computational pathology tools enabled by Artificial Intelligence (AI) can be used to overcome 
these challenges by offering objective and efficient metrics of disease to enhance quality of care2. AI adoption is 
becoming increasingly important as the increase in caseloads contribute to the mounting pressure on pathologists 
who are already grappling with heavy workloads3. The average pathologist workload has increased by 41.73% 
in the United States and 7.06% in Canada between 2007 and 20173, which may lead to pathologist burnout4. 
Therefore, AI can alleviate some of the workload burden on pathologists and reduce the risk of pathologist 
fatigue.

The “Cancer Metastases in Lymph Nodes Challenge” (CAMELYON) Lymph Node Metastasis (LNM) 
competitions were launched to compare automated algorithms for segmentation and detection of breast 
cancer tumor cells in lymph nodes5–7. The first challenge, CAMELYON16, focused on Whole-Slide Image 
(WSI) classification and metastasis detection while the second challenge, CAMELYON17, focused on the 
pathological N-stage (pN-stage) classification. These competitions have lead to the rapid advancement of 
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computational pathology tools for LNM segmentation and classification with deep learning tools presenting as 
top performers8,9. Despite the progress, several challenges persist, including poor generalization of deep learning 
models when applied to data that is outside the distribution of the training set. Domain shift is common in 
digital pathology imaging datasets and can be attributed to differences in scanner vendors, dataset compositions, 
staining variation, patient populations and more. This presents a fundamental barrier to wide-scale deployment 
and adoption, since data from new laboratories or sites can present as Out-of-Distribution (OOD) data and 
have lower performance10. Existing approaches for digital pathology aim to improve domain generalization 
with transfer learning, data balancing, hard-negative mining, image translation11, and generative adversarial 
networks12.

In this work, we propose an unsupervised method to curate a training dataset from a large number of patches 
to create patch-level models that generalize for LNM segmentation. The goal is to use more representative 
and balanced training datasets for patch-level segmentation to improve generalization. A novel clustering 
methodology based on pre-trained feature extractors from a histopathology dataset and ImageNet are utilized 
to balance datasets, and a sampling strategy is implemented to vary the number of partial tumor patches in 
the dataset. Top submissions to CAMELYON17 randomly sample a balanced amount of tumor and normal 
patches13, or apply hard-negative mining14,15 while others have grouped partial tumor patches into the tumor 
class15,16. Instead, we propose an automatic method of selecting the training dataset and compare the performance 
between the different models on both In-Distribution (ID) and OOD data to analyze generalization at the patch-
level.

To compare and examine the performance of models across different data distributions, some studies 
assume a linear relationship between ID and OOD performance17–19, while others report mixed findings20,21. 
Taori et al. examined the robustness of ImageNet models to distribution shifts caused by natural changes within 
datasets and found a significant performance gap between ID and OOD data17. The authors defined a measure of 
“Effective Robustness” as a proxy for generalization based on the assumption of a linear relationship between ID 
and OOD performance. Research from Andreassen et al.18 investigates the evolution of OOD robustness during 
the fine-tuning of deep learning models, discovering that early stopping can help maintain a balance between 
ID and OOD performance. Wenzel et al. explored the impact of fine-tuning on OOD generalization and found 
the relationship between ID and OOD performance depends heavily on the specific datasets used20. Teney et 
al.21 suggested there is a trade-off between optimizing for ID performance and preserving OOD generalization, 
noting that ID and OOD performance may sometimes be inversely correlated, depending on the dataset.

Here, we propose a novel application of the Two One-sided Tests (TOST)22, for examining model 
generalization through investigating the statistical equivalence of performance in ID and OOD datasets for LNM 
segmentation. Our proposed method for determining equivalence boundaries within the TOST framework is 
grounded in a data-driven approach, using statistics such as the mean and standard error directly from the 
data, thus reducing subjectivity. By relying on the data itself to guide the boundary selection, our methodology 
enhances robustness and adaptability across different clinical and modeling scenarios. This work provides 
the first evidence supporting the computation of data-dependent equivalence margins, as opposed to using 
predetermined or arbitrary thresholds. This first application of TOST for generalization analysis could have wide 
applicability to many digital pathology and computer vision tasks. The CAMELYON datasets, in addition to a 
private clinical dataset of 58 WSI are used in this study to test this framework. The held-out ID and OOD testing 
datasets comprise 237 WSI and 1,393,890 patches. As we show, the ensemble models that generalize both on 
tumor and normal patches separately have the top LNM classification performance.

Materials and methods
This work focuses on developing patch-level tumor segmentation models that are robust and generalize to 
OOD data. The patch-level segmentation pipelines for training and testing are shown in Fig. 1. As opposed to 
comparing different model architectures, we compare the same architecture (DeepLabV323) on various datasets 
that are curated using a novel sampling and clustering technique. To determine which models generalize to 
OOD data, a new application of TOST analysis is applied to examine the performance across held-out datasets. 
Patch-level masks are then recomposed into whole-slide prediction masks, and evaluated on the testing set 
for LNM classification. It is hypothesized that unsupervised training data selection using cluster analysis can 
improve generalization.

Datasets
There are 507 WSIs used in this work, comprised of two open source datasets and a clinical dataset. Four LNM 
stages are included: Macro-Metastasis (macro), Micro-Metastasis (micro), Isolated Tumor Cells (ITC), and 
negative. See Table 1 for sample sizes and Table 2 for dataset properties. The official CAMELYON16 training 
slides are used to train all patch-level segmentation models, which differ from one another based on the training 
dataset selected by the proposed sampling and clustering techniques. To examine generalization performance of 
the patch-level segmentation models, the testing dataset contains both (held-out) ID and OOD data. The ID data 
includes all WSI scanned at the same centers as the CAMELYON16 training slides. The OOD test data includes 
a distinct center from CAMELYON17 and a clinical dataset from St. Michael’s Hospital (SMH). The annotations 
from CAMELYON16 and CAMELYON17 are provided by the competition, and for the clinical SMH dataset, 
a breast pathologist (K.J) labeled the annotated tumors using PathcoreFlow™24. A breakdown of ID and OOD 
WSI, grouped by LNM is shown in Supplementary Table S1. All WSIs in this study lack any patient-identifying 
information.
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Image pre-processing
For training, OpenSlide25 is used to read and extract patches of 256 × 256 pixels from WSIs at 20x magnification. 
Macenko26 normalization from the Tissue Image Analytics toolbox27 is applied to normalize color distributions 
of slides acquired from different medical centers, necessary for accurate analysis in digital pathology28,29. To 
make patch extraction more efficient, only WSI regions with a considerable amount of tissue are extracted for 
further analysis. Similar to13,30,31, each patch is converted to the HSV color space and Otsu’s thresholding32 is 
used to detect foreground. For normal patches, Otsu’s thresholding method is used to remove patches with large 
amounts of background (at least 10% of the patch must have nonzero intensity). Images with 10% tumor (or 
more) within a patch are labelled as tumor and retained for the tumor class. Segmentation models are trained 
from Macenko normalized patches augmented with horizontal and vertical flips with probability p = 0.5, as 
well as color jitter (p = 0.1) on the contrast and saturation.

Dataset Center Scanner Resolution (µm/px) Magnification ID/OOD # WSI (Train/Test)

CAMELYON16 RUMC* 3D Histech P250 0.24 40× ID 171/74

CAMELYON16 UMCU* Hamamatsu NanoZoomer-XR C12000-01 0.23 40× ID 99/55

CAMELYON17 CWZ** 3D Histech P250 0.24 40× ID 0/10

CAMELYON17 RST** 3D Histech P250 0.24 40× ID 0/10

CAMELYON17 UMCU* Hamamatsu NanoZoomer-XR C12000-01 0.23 40× ID 0/10

CAMELYON17 RUMC* 3D Histech P250 0.24 40× ID 0/10

CAMELYON17 LPON Philips Intellisite Ultra Fast Scanner 0.25 40× OOD 0/10

SMH SMH Aperio ScanScope 0.50 20× OOD 0/58

Table 2. Overview of the datasets used in the study for training and testing. The table also indicates whether 
the data is ID or OOD. Centers marked with * exist in both CAMELYON16 and CAMELYON17, and centers 
marked with ** sent WSIs to RUMC for scanning. RUMC Radboud University Medical Center, Nijmegen; 
UMCU University Medical Center Utrecht; CWZ Canisius-Wilhelmina Hospital, Nijmegen; RST Rijnstate 
Hospital, Arnhem; LPON Laboratorium Pathologie Oost-Nederland, Hengelo; SMH St. Michael’s Hospital, 
Toronto, Canada.

 

LNM CAMELYON16 train CAMELYON16 test CAMELYON17 SMH Total

Macro-metastasis 58 22 17 4 101

Micro-metastasis 53 27 17 18 115

Isolated tumor cells 0 0 16 6 22

Negative 159 80 0 30 269

Total 270 129 50 58 507

Table 1. Summary of all WSI used for training and testing from each dataset, grouped by LNM stage.

 

Fig. 1. Training and inference pipelines for patch-level segmentation models. During training, features are 
separately extracted from images belonging to each patch group before being clustered. We evenly sample from 
each cluster (C1, C2, ...Cn) with the goal of obtaining the desired percentage of partial tumor patches in the 
dataset.
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Patch groups
Patches are split into three “patch groups”: normal–normal (NN), normal–tumor (NT), and tumor–tumor (TT). 
NN refers to patches from slides labeled as normal (contain no tumor). NT refers to normal patches from slides 
with tumors, and TT refers to patches with tumorous cells. We adopt a similar method as Sikaroudi et al.33 to 
create the pool of extracted patches, which involves extracting the same amount of tumor and normal patches 
from a respective slide. However, we also utilize normal patches from the normal slides. We begin by randomly 
extracting as many non-overlapping tumor patches (TT) as possible since tumor patches are the limiting factor. 
For NT patches, the same amount of patches are extracted from those tumorous slides. Finally, for NN patches, 
we extract 500 normal patches from each slide, which is roughly the same amount of NT patches extracted. 
Overall, this creates approximately 230, 000 patches from 270 CAMELYON16 training slides to be clustered and 
sampled. We construct our training datasets by sampling from each cluster for each patch group.

Clustering
We investigate unsupervised image clustering methods for optimizing training datasets and observe the effects 
of different training set compositions on ID and OOD data. Unsupervised clustering can categorize training 
patches into subgroups based on image characteristics. We independently cluster each of the patch groups 
(NN, NT, TT) to obtain clusters of patches for each, which are then sampled by the patch type. In this work, 
we experiment with two different feature extraction (clustering) methods and one baseline approach. The first 
two clustering methods are based on extracted features from ResNet-1834 models pre-trained on (1) natural 
images from ImageNet35, and (2) histopathology data36. Specifically, the “pytorchnative_tenpercent_resnet18.
ckpt” weights are used for the histopathology model36. The ResNet-18-ImageNet model was trained using 
supervised learning while the ResNet-18-Histopathology model was trained using self-supervised learning. 
The image patches from the training dataset are supplied to each of the models, and the features are clustered 
using a Gaussian Mixture Model. The optimal number of clusters are determined by the Elbow method37–39 
using the Calinksi-Harabasz (CH) Index40 and the Davies-Bouldin (DB) Index41. The CH index measures the 
ratio of the between-cluster variance to the within-cluster variance, while DB seeks to minimize the variance 
within clusters while simultaneously maximizing the separation distance between clusters. To find the optimal 
number of clusters, a sweep of the number of clusters was conducted, ranging from 2 to 10, with the optimal 
number selected using the Elbow method37 which is a standard approach in cluster analysis38,39. The elbow 
method in cluster analysis involves plotting the CH index and/or DB index against a number of clusters and 
selecting the point where the rate of decrease (or increase, depending on the metric) sharply changes, forming 
an “elbow”, which suggests the optimal number of clusters. Both the CH and DB metrics were used in this work. 
This approach looks for similar features in subgroups, resulting in more homogeneous representations for the 
selected patches. We hypothesize that balancing the dataset using novel feature clustering strategies may help 
with generalization. The baseline comparison is treating the entire population of patches as a single cluster 
(Single).

Sampling
After applying clustering to each NN, NT and TT patch group separately, we stratify sampling by patch type 
across each cluster for each patch group to construct a final dataset of around 35, 000 patches. Patch type is 
defined based on tumor content: Full-Tumor (FT)—100% tumor, Full-Normal (FN)—100% normal, and 
Partial-Tumor (PT)—a nonzero percentage of tumor. The result is a dataset with approximately balanced NN, 
NT, and TT patches, stratified by FT, FN, and PT, across the different clusters. The amount of PT patches varies 
in the final datasets, and the “Partial Type” is the percentage of PT patches: 0%, 10%, 20%, 30%, 40%, 50%, 
and Natural%. The Natural% partial type refers to randomly sampled patches from each patch group, with the 
majority being FN (most commonly occurring tissue/patch), and the rest being a combination of FT and PT 
patches. Supplementary Table S2 contains the exact percentage of patch types in each sampled dataset. In total, 
clustering and sampling creates 3 × 7 = 21 training datasets (3 clustering types and 7 partial types).

Patch-level segmentation
Patch-level segmentation models are developed using a pre-trained (ImageNet) PyTorch implementation of 
the DeepLabV3 architecture23 with a MobileNetV3-Large backbone42. We apply transfer learning to adapt the 
model to our dataset. The segmentation is binary and pixel-level, where the tumor and normal classes are the 
positive and negative classes, respectively. The Focal Tversky Loss43, based on the Tversky Index44, is used to 
focus on difficult examples (γ) while also minimizing false positive predictions (α and β) with α = 0.3, β = 0.7
, and γ = 1

2 . We utilize this loss function for its ability to emphasize harder examples during training (Focal), 
while also providing the flexibility to adjust the weighting of false positives and false negatives (Tversky).

Equivalence testing for generalization
We present a novel method for analyzing the generalization capabilities of segmentation models for digital 
pathology which considers generalizing models to have similar patch-level segmentation performance on ID 
and OOD data. To determine whether performance is equivalent in ID and OOD data (i.e., generalizes), we 
utilize TOST, a form of statistical equivalence test used in clinical trials to determine treatment effect22. TOST is 
leveraged as opposed to a t-test since we are testing for performance equivalence, and not if the difference between 
performance in ID and OOD is statistically significant. This is a new application of TOST for generalization 
analysis.

Let µ1 and µ2 be the mean performance metrics on held-out ID and OOD data, respectively, computed for 
each of the 21 models. TOST analysis is used to determine whether the performance on ID and OOD data are 
statistically equivalent if the observed difference, µ1 − µ2, falls within a specified equivalence interval (−∆, ∆
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). The lower (L) and upper (U) null hypotheses (H0,L and H0,U ) and alternative hypotheses (H1,L and H1,U ) 
are defined as follows:

 

H0,L : µ1 − µ2 ≤ −∆, H0,U : µ1 − µ2 ≥ ∆,

H1,L : µ1 − µ2 > −∆, H1,U : µ1 − µ2 < ∆.

To determine if the performance is equivalent in ID and OOD data (i.e., the model generalizes), the entire 90% 
confidence interval (CI) for the difference µ1 − µ2 must lie within the equivalence interval. This also means 
that both null hypotheses need to be rejected. Our study applies this method on each model i, where i ranges 
from 1 to n and n = 21. The mean performance produced by model i on ID data is denoted as µ1,i, and the 
mean performance on OOD data is denoted as µ2,i. Therefore, the difference in means for each model, Di, is 
computed as: Di = µ1,i − µ2,i.

To determine the equivalence interval and bounds, the standard error is used to calculate the 95% confidence 
interval. The mean (µD), standard deviation (σD), and standard error (SED) of the differences are found by:

 

µD = 1
n

n∑
i=1

Di, σD =

√√√√ 1
n − 1

n∑
i=1

(Di − µD)2, SED = σD√
n

,

and the equivalence interval (±∆) is computed as:

 ∆ = |µD| + |1.96 × SED| ,

where we add a tolerance around the mean difference based on the standard error.

The upper and lower bounds are designed to be symmetrical around a mean difference of 0, supporting the ideal 
scenario where the performance on ID and OOD data is the same. Equivalence bounds are calculated separately 
for the tumor patches and the normal patches due to different metrics being used (DSC versus FPR), as well as 
for each LNM stage, due to performance variations (macro > micro > ITC). The TOSTtwo.raw function from 
the TOSTER R package is used to perform the equivalence tests with an alpha of 0.0545,46. We have not found any 
studies using TOST for generalization analysis, and we propose this as a novel method for this task.

Classification
The LNM classification pipeline is shown in Supplementary Fig. S1. For each model, patch-level segmentation 
predictions are used to recompose the corresponding WSI. Segmentation performance at the WSI-level is 
examined by downsampling the images and predictions by 16x. For WSI-level classification of LNM category, 
a clinically-informed rule-based method is employed that mimics the pathologists scoring of lymph node 
tissue. The method is part of the Tumor, Node, Metastasis (TNM) staging system47 which uses the diameter of 
the largest tumor in the lymph node tissue, and assigns an LNM category as in Table 3. To classify WSI, each 
object in the recomposed predictions is identified using connected components and the major axis length of a 
fitted ellipse is computed to measure the diameter. The largest diameter in the WSI is used to predict the LNM 
category. No post-processing is employed. Performance is also examined in terms of “positive” and “negative” 
classes to mimic clinical decision-making47–49.

In addition to individual model predictions, the result of ensembling several models is also investigated. The 
ensemble configurations include: Generalizing (models found to generalize using TOST), Non-Generalizing 
(models not in the equivalence interval for TOST), Generalizing (T&N) for models that generalize on both 
tumor and normal, Generalizing (T) for tumor, Generalizing (N) for normal, Natural%, 50%, 40%, 30%, 20%, 
10%, 0%, Histopathology, ImageNet, and Single. To analyze classification performance of the 21 individual 
models and the 15 ensembled predictions, results were generated using a majority vote from the WSI-level 
predictions over all folds for a particular model.

Validation metrics
Segmentation performance is quantified using the DSC on the tumor patches and WSI-level:

LNM Description Class

Macro-metastasis x > 2 mm
Positive

Micro-metastasis 0.2 mm < x ≤ 2 mm

Isolated tumor cells x ≤ 0.2 mm or ≤ 200 cells
Negative

Negative No tumor found

Table 3. LNM categories, where x represents the largest dimension of the tumor.
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DSC = 2 × TP

2 × TP + FP + FN
, (1)

where TP, FP, and FN represent the true positive, false positive, and false negative pixels, respectively. It is not 
possible to use the DSC metric on normal patches as there are no true positives. We believe performance on 
normal patches is largely unreported in the literature. To quantify performance on normal patches (patches with 
no tumor pixels) we use only the False Positive Rate (FPR)

 
FPR = 1 − Specificity = FP

FP + TN
. (2)

For WSI-level classification performance, the LNM category is assigned based on the largest diameter and 
performance is measured using the True Positive Rate (TPR/Sensitivity/Recall),

 
TPR = Sensitivity = Recall = TP

TP + FN
 (3)

which highlights the number of correctly classified WSI, as well as 1-Specificity (Eq. 2) and Precision

 
Precision = TP

TP + FP
, (4)

which is the ratio of correctly predicted positive cases to all predicted positive cases. We also use the F1 score 
which is a tradeoff between precision and recall (sensitivity). All metrics in this study are reported as the mean 
value over 5 folds unless otherwise specified.

Results
For training the segmentation models, the Adam optimizer with an initial learning rate of 1e−4 and an 
exponential decay are used. Each model is set to train with a batch size of 8 for 50 epochs with early stopping. All 
models are trained on a single NVIDIA V100 GPU (32GB) through the Digital Research Alliance of Canada. 
We apply 5-fold cross validation for each of the 21 model combinations to train a total of 105 models. We hold 
out unseen ID and OOD WSI to test our models and aggregate performance metrics across the folds to obtain 
results. Inference is performed on a NVIDIA RTX 3090 (24GB) GPU for all models.

Clustering
The optimal number of clusters for each combination of feature extractor and patch group are as follows for 
ImageNet: NN: 6, NT: 7, TT: 5. For histopathology, the optimal number of clusters are: NN: 6, NT: 7, TT: 3. The 
clusters are used to gather patches with similar characteristics for further sampling. Supplementary Figs. S2–S4 
illustrate clusters of patches from the three feature extraction methods-Histopathology, ImageNet, and Single, 
respectively, for each patch group, highlighting the unique patterns in the unsupervised training data selection. 
Figures 2 and 3 show the clusters in 2D scatter-plots along with their respective CH and DB indices for all 
patch groups from the Histopathology and ImageNet methods, respectively. The chosen number of clusters is 
indicated as the red point. The 2D visualizations can be used to associate which types of patches are included in 
each cluster, while the CH and DB indices along with the elbow method are used to choose the optimal number 
of clusters. Both methods (Histopathology and ImageNet) found the same number of clusters for each patch 
group except in the TT patch group. In each respective case, the number of clusters that resulted in less cluster 
overlap was chosen based on the CH and DB indices.

Patch-level segmentation performance
Qualitative results for patch-level segmentation are shown in Fig. 4, demonstrating good performance across 
various patch compositions. Supplementary Figs. S5 and S6 show examples where the models were performing 
poorly. For quantiative performance analysis, the mean ID and OOD performance for each model on tumor and 
normal patches is shown in Table 4. The best performing model in tumor patches is Histopathology-40%, with 
mean DSC = 0.75). Histopathology-Natural% and Single-Natural% are the top performers for normal patches 
with the lowest FPRs. Figure 5 shows the mean performance over tumor and normal patches, as a function of 
PT and clustering type. Models trained on datasets with higher PT generally perform better on tumor whereas 
models trained on datasets with lower PT generally perform better on normal. Natural sampling has the lowest 
FPR in normal patches. Histopathology clustering has the best DSC in tumor patches and Single has the lowest 
FPR in normal patches. Interestingly, ImageNet clustering has the lowest DSC and highest FPR. The mean ID 
and mean OOD performance on each LNM is represented as a heatmap in Supplementary Fig. S7. The scatter-
plot shown in Fig. 6 illustrates the trade-off between DSC and FPR at the patch-level for each model.

Generalization analysis for patch-level segmentation
For patch-level segmentation, TOST results are summarized for tumor (DSC) and normal (FPR) patches in 
Table 4, highlighting the computed equivalence bounds, difference in means (D), 90% CI, and p-value used 
to determine whether a given model has OOD performance within the equivalence interval of the ID data 
(p < 0.05). TOST results are visualized in Fig. 7 for tumor/normal and in Supplementary Fig. S8 for each 
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LNM. Models that generalize in tumor patches are Histopathology-0%, Histopathology-40%, ImageNet-0%, 
ImageNet-50%, and Single-Natural%. Histopathology clustering has the most number of models generalizing 
over LNM categories. The generalizing models on normal patches include Histopathology-0%, Histopathology-
Natural%, ImageNet-Natural%, Single-30%, and Single-Natural%. That is, all three Natural% models generalize 
on normal patches.

WSI-level lymph node metastasis classification
Patch-level model predictions on all held-out ID and OOD data are used to recompose each WSI. The 
Generalizing ensemble contains all 8 generalizing models (on either tumor or normal patches), and for a 
fair comparison, the Non-Generalizing ensemble contains a randomly selected 8 out of 13 models that did 
not generalize. Supplementary Table S3 details the models used in each ensemble. WSI-level segmentation 
performance on macro, micro, and ITC (DSC, tumor) and on negative (FPR, normal) slides for all models in 
Supplementary Figure S9 and by LNM in Supplementary Fig. S10 show that compared to individual models, the 
ensemble models have higher performance. The Generalizing ensemble has the highest DSC and Generalizing 
(T&N) has the lowest FPR.

Using the largest diameter of the detected objects in the WSI, the LNM category is predicted using positive and 
negative slide labels. Tables 5 and 6 show the classification performance of all individual and ensemble models 
on LNM classification across positive and negative WSI. Single-Natural% is a top performer in the individual 
models with similar performance in Histopathology-Natural%. In the ensembles, Generalizing (T&N) is the 
best performing across all metrics and both individual and ensemble models, followed by Generalizing and 
Generalizing (N). Most notably, the F1 score is substantially higher than the best Single model (F1 = 0.805 versus 
F1 = 0.680) which shows the power of using generalizing models for WSI analysis of LNM. Multi-class LNM 
classification results is shown in Supplementary Table S4 for individual models and Supplementary Table S5 for 

Fig. 2. 2D features and clusters (A–C), Calinski–Harabasz Index (D–F)), and Davies–Bouldin Index (G–I) 
results for multiple clusters for each patch group using the Histopathology feature extractor. The optimal 
number of clusters is shown as a red point.
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ensemble models. Additionally, Supplementary Tables S6 (individual) and S7 (ensemble) contain the results, 
split by individual LNM labels, which exhibits similar trends.

To analyze the results further, the confusion matrices of the top models are shown in Fig. 8 for the positive/
negative classes. The benefits of using the generalizing models becomes more apparent when looking at individual 
class performance. The Single-Natural% and Non-Generalizing ensemble exhibit high positive classification 
accuracy (95.0% and 91.8%), but low negative classification accuracy (45.8% and 49.5%). Conversely, both the 
Generalizing and Generalizing (T&N) ensembles both produce high sensitivity on the positive classes (90.9% 
and 84.6%), while also having better performance on the negative classes (62.2% and 76.7%) compared to Single-
Natural% and Non-Generalizing. When considering the confusion matrices for multi-class LNM classification 
in Supplementary Fig. S11, Generalizing and Generalizing (T&N) have slightly lower performance in the macro 
and micro classes, with much higher performance across ITC and negative.

Discussion
This work presents a comprehensive framework for testing the generalization capabilities of patch-level LNM 
segmentation in WSI. Previous works primarily focused on the performance of WSI-level classification only, 
but for increased explainability of AI results, and for optimizing models, we rigorously examine patch-level 
segmentation performance in ID and OOD data. We propose cluster-based sampling strategies to balance 
datasets in an unsupervised manner, and a novel application of the TOST statistical testing, along with data-
driven margins to determine which models are generalizing. In clinical contexts where performance criteria are 
predefined, such as in clinical trials with established benchmarks, the proposed method can easily accommodate 
fixed margins. However, in areas lacking such standards, particularly for generalization capabilities, our statistical 
approach will allow for more reliable determination of equivalence boundaries based on observed data. This 
overcomes some of the inherent limitations of traditional TOST when applied to complex, real-world scenarios. 
TOST is expected to be broadly applicable to generalization tasks in machine learning and other areas due to 

Fig. 3. 2D features and clusters (A–C), Calinski–Harabasz Index (D–F)), and Davies–Bouldin Index (G–I) 
results for multiple clusters for each patch group using the ImageNet feature extractor. The optimal number of 
clusters is shown as a red point.
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its adaptability and automated boundary derivation. In the analysis, common segmentation metrics (DSC for 
tumor patches, FPR for normal patches, sensitivity, 1-specificity, precision, and F1 score) were used to provide 
a comprehensive evaluation.

At the patch-level, 21 individual models were developed using ID training data selected through cluster-based 
sampling techniques that were then applied to held-out ID and OOD data. ID data is from the CAMELYON 
challenges, and OOD data is from a private clinical dataset. In total, there are 1,393,890 patches in the held 
out dataset, where 104,842 contain tumor and 1,289,048 are completely normal. Due to false positives being 
a significant challenge when reconstructing WSI from patch-level predictions, we opted to not only report on 
tumor segmentation performance but also normal patch performance. TOST revealed several models with 
equivalent ID and OOD performance which implies that these models are generalizing. Ensembling together 
the two models that generalized in both normal and tumor patches led to a substantial gain in WSI classification 
performance compared to baseline (Single-Natural%), which would lead to improved patient management.

We find importance in the cluster type for generalization. Histopathology is the only cluster type in the 
study that has at least one model that generalizes for each LNM which indicates that this feature extractor 
may be aiding in model robustness and generalization. There are both similarities and differences associated 
with the types of patches selected in each cluster for Histopathology (Supplementary Fig. S2) and ImageNet 
(Supplementary Fig. S3) pre-trained feature extractors, specifically relating to the diverse tissue types found 
in the data (Supplementary Fig. S12). By clustering similar patches like histiocytes, stroma, and artifacts into 
their own groups, the training dataset could end up with more samples from these types of patches, potentially 
enhancing the model’s robustness. The tumor-tumor patch group contains 3 clusters for Histopathology and 5 
for ImageNet. The Histopathology clusters vary by tumor cell size and density, while for ImageNet there is more 
randomness in the clusters, which is undesirable. We attribute this to be a potential cause for decreased DSC 

Fig. 4. Visual results displaying the original image patch, ground truth, and prediction mask from the top 
generalizing model for each LNM: Histopathology-40% (tumor and macro), Histopathology-50% (micro), 
ImageNet-40% (ITC), Histopathology-Natural% and Single-Natural% (normal). Single-Natural% is shown as 
the baseline model as well. Full-tumor, partial-tumor, and full-normal patches are shown from one ID WSI and 
one OOD WSI.
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Fig. 5. Patch-level segmentation results showing Mean DSC for tumor patches and Mean FPR for normal 
patches across different groupings. (A) Tumor DSC by partial type. (B) Normal FPR by partial type. (C) Tumor 
DSC by cluster type. (D) Normal FPR by cluster type.

 

Cluster type Partial type

Patch-level segmentation Equivalence testing

Tumor Normal

Tumor Normal

− 0.079, 0.079 − 0.006, 0.006

Mean DSC Mean FPR D 90% CI p value D 90% CI p value

Histopathology 0 0.72 (0.43) 0.004 (0.060) 0.000 − 0.028, 0.027 < 0.001 0.003 0.002, 0.005 0.019

Histopathology 10 0.73 (0.40) 0.006 (0.064) 0.052 0.002, 0.103 0.169 0.005 0.003, 0.007 0.253

Histopathology 20 0.73 (0.39) 0.007 (0.068) 0.066 0.039, 0.092 0.175 0.006 0.004, 0.007 0.331

Histopathology 30 0.71 (0.39) 0.007 (0.064) 0.098 0.081, 0.115 0.963 0.006 0.003, 0.008 0.402

Histopathology 40 0.75 (0.37) 0.010 (0.076) 0.017 − 0.004, 0.038 < 0.001 0.004 0.001, 0.008 0.219

Histopathology 50 0.70 (0.39) 0.012 (0.084) 0.103 0.041, 0.166 0.776 0.005 0.003, 0.007 0.294

Histopathology Natural 0.68 (0.42) 0.003 (0.047) 0.070 0.041, 0.098 0.279 0.003 0.001, 0.005 0.015

ImageNet 0 0.71 (0.43) 0.006 (0.072) 0.026 − 0.010, 0.063 0.016 0.006 0.003, 0.008 0.459

ImageNet 10 0.71 (0.40) 0.008 (0.077) 0.089 0.046, 0.131 0.672 0.008 0.003, 0.014 0.804

ImageNet 20 0.71 (0.40) 0.006 (0.062) 0.082 0.054, 0.109 0.577 0.006 0.004, 0.007 0.393

ImageNet 30 0.71 (0.39) 0.009 (0.074) 0.089 0.007, 0.172 0.598 0.007 0.003, 0.011 0.72

ImageNet 40 0.67 (0.40) 0.010 (0.078) 0.171 0.099, 0.243 0.974 0.008 0.005, 0.011 0.856

ImageNet 50 0.73 (0.38) 0.010 (0.075) 0.041 0.012, 0.069 0.022 0.009 0.005, 0.013 0.917

ImageNet Natural 0.71 (0.41) 0.004 (0.053) 0.043 − 0.002, 0.088 0.082 0.004 0.003, 0.005 0.002

Single 0 0.70 (0.44) 0.004 (0.060) 0.041 − 0.013, 0.095 0.110 0.003 0.000, 0.006 0.059

Single 10 0.71 (0.40) 0.005 (0.056) 0.056 0.009, 0.104 0.190 0.005 0.003, 0.006 0.081

Single 20 0.73 (0.39) 0.006 (0.062) 0.047 0.002, 0.091 0.099 0.004 0.002, 0.006 0.101

Single 30 0.73 (0.38) 0.006 (0.057) 0.059 0.032, 0.086 0.101 0.004 0.002, 0.006 0.047

Single 40 0.70 (0.39) 0.007 (0.061) 0.086 0.049, 0.124 0.648 0.004 0.001, 0.007 0.131

Single 50 0.73 (0.38) 0.011 (0.074) 0.058 0.018, 0.099 0.178 0.005 0.002, 0.008 0.304

Single Natural 0.72 (0.40) 0.003 (0.045) 0.029 − 0.006, 0.064 0.017 0.002 0.001, 0.004 < 0.001

Table 4. Mean DSC (tumor) and mean FPR (normal) across ID and OOD datasets for all models, reported as 
mean (SD). TOST results for difference in means, D, between ID and OOD datasets by fold, with 90% CIs and 
p-values. Top-performing models and significant values are in bold.
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Cluster type Partial type Sensitivity 1-Specificity Precision F1

Histopathology 0 0.670 (0.036) 0.330 (0.036) 0.739 (0.015) 0.639 (0.053)

Histopathology 10 0.622 (0.034) 0.378 (0.034) 0.709 (0.022) 0.570 (0.053)

Histopathology 20 0.607 (0.010) 0.393 (0.010) 0.715 (0.007) 0.546 (0.016)

Histopathology 30 0.592 (0.027) 0.408 (0.027) 0.723 (0.015) 0.515 (0.045)

Histopathology 40 0.571 (0.015) 0.429 (0.015) 0.752 (0.022) 0.471 (0.031)

Histopathology 50 0.541 (0.016) 0.459 (0.016) 0.724 (0.056) 0.417 (0.031)

Histopathology Natural 0.702 (0.047) 0.298 (0.047) 0.758 (0.031) 0.679 (0.057)

ImageNet 0 0.644 (0.033) 0.356 (0.033) 0.726 (0.021) 0.603 (0.047)

ImageNet 10 0.609 (0.023) 0.391 (0.023) 0.704 (0.022) 0.551 (0.040)

ImageNet 20 0.626 (0.033) 0.374 (0.033) 0.732 (0.032) 0.570 (0.047)

ImageNet 30 0.586 (0.026) 0.414 (0.026) 0.722 (0.024) 0.504 (0.050)

ImageNet 40 0.563 (0.018) 0.437 (0.018) 0.725 (0.017) 0.462 (0.038)

ImageNet 50 0.564 (0.028) 0.436 (0.028) 0.744 (0.025) 0.457 (0.052)

ImageNet Natural 0.644 (0.020) 0.356 (0.020) 0.725 (0.025) 0.604 (0.028)

Single 0 0.677 (0.039) 0.323 (0.039) 0.742 (0.022) 0.648 (0.057)

Single 10 0.662 (0.017) 0.338 (0.017) 0.742 (0.017) 0.626 (0.022)

Single 20 0.622 (0.028) 0.378 (0.028) 0.731 (0.030) 0.565 (0.038)

Single 30 0.622 (0.017) 0.378 (0.017) 0.746 (0.023) 0.562 (0.026)

Single 40 0.597 (0.030) 0.403 (0.030) 0.746 (0.020) 0.518 (0.057)

Single 50 0.555 (0.024) 0.445 (0.024) 0.751 (0.019) 0.439 (0.045)

Single Natural 0.704 (0.045) 0.296 (0.045) 0.767 (0.031) 0.680 (0.056)

Table 5. LNM classification results for all individual models when positive/negative classes are considered. 
Sensitivity, 1-Specificity, Precision, and F1 are reported as mean (SD) over 5-folds. Top performers are in bold.

 

Fig. 7. Difference in means (D) and 90% CI for (A) tumor patches, and (B) normal patches. Models are 
considered equivalent if the CI is within the equivalence bounds (p < 0.05), indicated by the black vertical 
dashed lines.

 

Fig. 6. Scatter-plot of the mean DSC (tumor) versus mean FPR (normal) across the entire testing set for all 
models.
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and increased FPR for patch-level segmentation with ImageNet models. For normal patches, both methods have 
5 clusters for normal-normal and 6 clusters for normal-tumor patch groups and appear to be able to separately 
cluster patches with a high density of lymphocytes and those with adipose tissue. However, Histopathology 
has additional clusters for patches with both lymphocytes and histiocytes, which is unseen with ImageNet. 
Also, Histopathology can group blurry patches that could be problematic for false positives (which are lacking 
in a typical dataset). On the other hand, ImageNet looks to have a dedicated cluster to stroma, which could 
potentially improve robustness for this specific tissue type.

It is interesting to note that one of the two models that had both tumor and normal generalization was 
Single-Natural%, with the other being Histopathology-0%. The performance of Single-Natural% and 
Histopathology-0% on their own was lower than the generalizing ensemble (T&N) with these two models. This 
suggests that while Single-Natural% may capture some of the natural variability in the datasets due to random 
sampling, the histopathology model was necessary to add the details that perhaps are more specific for LNM 
segmentation. Furthermore, the ImageNet ensemble performed poorly for all metrics, which underscores the 
need for more foundation and domain-specific pre-trained models specifically for pathology.

The PT played an important role in the performance across the LNM category. A higher PT percentage 
resulted in improved tumor segmentation particularly in ITCs at the expense of increased false positives. This 
is likely due to the fact that tumor boundaries are used in the training dataset and since ITCs are a few patches, 

Fig. 8. Confusion matrices for LNM classification of the positive (macro/micro) and negative (ITC/negative) 
classes reported as mean (SD) percentages of the actual class. (A) Single-Natural%. (B) Non-Generalizing (8). 
(C) Generalizing. (D) Generalizing (T&N).

 

Ensemble name Sensitivity 1-Specificity Precision F1

Generalizing 0.765 (0.011) 0.235 (0.011) 0.787 (0.009) 0.758 (0.012)

Non-Generalizing (8) 0.706 (0.010) 0.294 (0.010) 0.749 (0.010) 0.689 (0.012)

Generalizing (T&N) 0.806 (0.024) 0.194 (0.024) 0.809 (0.020) 0.805 (0.025)

Generalizing (T) 0.719 (0.028) 0.281 (0.028) 0.763 (0.022) 0.703 (0.032)

Generalizing (N) 0.762 (0.012) 0.238 (0.012) 0.788 (0.009) 0.753 (0.013)

Natural% 0.745 (0.027) 0.255 (0.027) 0.778 (0.025) 0.734 (0.029)

0% 0.739 (0.026) 0.261 (0.026) 0.777 (0.020) 0.726 (0.030)

10% 0.678 (0.025) 0.322 (0.025) 0.738 (0.015) 0.652 (0.034)

20% 0.662 (0.022) 0.338 (0.022) 0.742 (0.019) 0.626 (0.028)

30% 0.659 (0.018) 0.341 (0.018) 0.756 (0.020) 0.618 (0.026)

40% 0.618 (0.019) 0.382 (0.019) 0.746 (0.012) 0.554 (0.031)

50% 0.577 (0.016) 0.423 (0.016) 0.717 (0.029) 0.489 (0.024)

Histopathology 0.686 (0.015) 0.314 (0.015) 0.739 (0.017) 0.664 (0.017)

ImageNet 0.668 (0.011) 0.332 (0.011) 0.731 (0.012) 0.640 (0.014)

Single 0.724 (0.022) 0.276 (0.022) 0.778 (0.021) 0.706 (0.025)

Table 6. LNM classification results for all ensemble models when positive/negative classes are considered. 
Sensitivity, 1-Specificity, Precision, and F1 are reported as mean (SD) over 5-folds. Top performers are in bold.
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and mainly composed of patches with only PT, this improves performance. However, since the variability of the 
appearance of boundaries (and percentage of PT) is vast, it is recommended that future studies include more 
PT in the training set to account for the variability. We find this to be consistent with existing class imbalance 
literature50–52 that discusses how learners often show a preference for the majority class, at the the cost of 
overlooking the minority class. While the full tumor and full normal patches (0% PT) had reduced performance 
in the smaller objects, it offered generalization in both tumor and normal patches for the histopathology models 
and improved performance in the final WSI classification results.

While we were able to balance datasets and focus on models that generalize, we are aware that of the limitation 
of current models in that we can only reach a certain accuracy due to the tradeoff between TP and FP. Future 
works should focus more on the FP rate and we suspect the FP rate from patch-level predictions in digital 
pathology studies is largely under-reported. This could be a significant challenge if reporting requirements 
for ITC change. Currently, ITC are acknowledged if detected during clinical reporting, but the TNM staging 
system47 still categorizes the lymph node as negative if there are no macro or micro metastases found. The 
clinical significance of ITC and micro metastases in lymph nodes remains a matter of debate5,53,54, although 
after preoperative treatment, the relevance of any size of residual metastasis in the lymph node comes into 
consideration48,55. Improving ITC performance is crucial and could be achieved with more boundary patches 
and methods that reduce FP rates.

Limitations of this study include sample size, ITC availability, and annotation quality. The inclusion of more 
ID and OOD data samples for each LNM would enhance the robustness of the findings. This study is limited by 
the training dataset size of 35, 000 patches due to the number of PT patches. In the future, larger sample sizes 
could improve generalization and overall performance. Additionally, the choice of equivalence interval should 
be validated against domain specific knowledge. Generalizability of the results depends on the datasets used for 
ID and OOD data. Therefore, ensuring that these datasets are representative of real-world variability is crucial 
for the external validity of the findings. It should also be noted that the power of TOST depends on the sample 
size. With 21 models, the study might have limited power to detect small but clinically meaningful differences. 
On the note of ITC availability, the models were not trained on ITC patches since there were no ITC slides 
available in CAMELYON16. While we propose methods to overcome this through more inclusion of boundary 
patches, this challenge has also been acknowledged by other authors5,56, proving to be an unsolved problem. 
Lastly, any inaccuracy in annotations can create noise in the results. For example, annotations of large tumor 
masses including regions of normal cells can inflate the FPR, as illustrated in Supplementary Fig. S6. This issue 
is compounded in lobular carcinoma, where tumorous regions are dispersed.

Several avenues could be explored in the future. Improving the segmentation of ITC is crucial, and adding 
ITC patches to the training set could be beneficial due to the unique morphology they may present. This may 
still not be enough to achieve the desired result due to the level of difficulty, so the adoption of recent state-
of-the-art architectures like Vision Transformers57 and ConvNeXt58 may offer considerable improvements as 
well. We also plan to explore segmentation models such as U-Net59 for their capability to extract tissue regions 
compared to Otsu for foreground segmentation as was done in this work. To mitigate the heavy reliance on 
extensively annotated WSI which are difficult to obtain, self-supervised36,60–62 or generative augmentation63–65 
methods can be considered. Additionally, experimenting with alternative stain normalization methods66–68 or 
stain augmentation techniques69–72 could improve generalization. The lack of contextual information in the 
patch size-magnification combination used in this study (256 × 256, 20×) can lead to segmentation errors on 
small objects. We must also consider that pathologists utilize surrounding areas and multiple magnifications 
to come to their conclusions. Therefore, incorporating multi-resolution architectures62,73–78 could provide the 
necessary context for more accurate segmentations. Finally, the method for determining the optimal number 
of clusters may result in cluster overlap. Future work will focus on addressing this issue by exploring alternative 
clustering algorithms79,80 or refining selection criteria to minimize overlap and enhance cluster distinctiveness.

Pathology provides the definitive diagnosis, and AI tools are poised to improve accuracy, inter-rater 
agreement, and turn-around time (TAT) of pathologists, leading to improved quality of care81. A fundamental 
challenge of implementing AI tools widely is OOD generalization, where performance in data not used in the 
training set is drastically reduced due to domain shift. For the task of LNM classification, recent works found 
that on OOD data, there was a drop in classification performance which necessitated retraining on the OOD 
data to improve performance48. Re-training algorithms on OOD data for pathology imaging is impractical 
and new methods are needed to overcome this key barrier. Therefore, this work proposes methods to generate 
training datasets in an unsupervised manner that generalize better to OOD data, as well as a method to measure 
the reliability and generalization in ID and OOD data. Ensuring the performance across datasets is equivalent is 
necessary for optimized quality of care and patient safety.

Conclusions
This study evaluates models constructed from various cluster-based sampling techniques in terms of their 
performance in LNM segmentation at both the patch and WSI levels, as well as LNM classification using an 
explainable and clinically informed decision structure. Notably, our ensemble models, selected based on a novel 
generalization framework, consistently outperformed individual models. This framework determines models 
that demonstrate robust generalization across both tumor and normal tissues, enhancing performance in WSI-
level segmentation and LNM classification when ensembled. This study highlights the potential of curated 
training sets and our proposed generalization framework to refine ensemble techniques, thus enhancing clinical 
utility and improving patient care.
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Data availability
The open-source datasets used in this study (CAMELYON16 and CAMELYON17) are available at  h t t p s : / / c a m e l 
y o n 1 7 . g r a n d - c h a l l e n g e . o r g / Data/ through GigaScience, AWS or Baidu channels. Private clinical data is not  a v a 
i l a b l e . Segmentation models are available at  h t t    p s :  /  / g i  t h u b  .  c o m / I A  M  L A B - R y e r s o n / O O D - G e n e r a l i z a t i o n - L N M     .  
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