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Background. Nei endonuclease VIII-like 3 (NEIL3) is widely involved in pathophysiological processes of the body; however, its
role in lung cancer has not been conclusively determined. Objective. This study is aimed at exploring the role of NEIL3 in lung
cancer. Methods. The public data used in this study were downloaded from The Cancer Genome Atlas (TCGA) database.
“Limma” in R was used for the analysis of differentially expressed genes. Clinical correlations and prognostic analyses were
performed using the survival package in R. The proliferative abilities of lung cancer cells were evaluated by the CCK8 and
colony formation assays while their invasive and migration abilities were assessed by the transwell and wound healing assays.
Quantitative real-time PCR (qRT-PCR) and western blot analyses were utilized to detect RNA and protein levels. Biological
differences between groups were determined by gene set enrichment analysis (GSEA). Tumor Immune Dysfunction and
Exclusion (TIDE) as well as Genomics of Drug Sensitivity in Cancer (GDSC) was used for immunotherapeutic and
chemotherapeutic sensitivity analyses. Results. NEIL3 was upregulated in NSCLC tissues and cell lines, implying that it is
involved in lung cancer initiation and progression. Clinical correlation and prognostic analyses showed that NEIL3 was
associated with worse clinical features (stage and T and N classifications) and poor prognostic outcomes. In vitro, NEIL3
significantly enhanced NSCLC proliferation, invasion, and migration. GSEA indicated that NEIL3 might be involved in PI3K/
AKT/mTOR, G2/M checkpoints, and E2F target pathways. Inhibition of NEIL3 suppressed cyclinD1 and p-AKT protein levels;
however, it had no effects on AKT levels, indicating that NEIL3 can partially activate the PI3K/AKT/mTOR signaling pathway.
The predicted result of TIDE indicated that immunotherapeutic nonresponders had elevated NEIL3 levels. Moreover, there was
a positive correlation between NEIL3 levels and chemosensitivity to cisplatin and paclitaxel. Conclusion. In general, NEIL3
mediates NSCLC progression and affects sensitivity to immunotherapy and chemotherapy; therefore, it is a potential molecular
target for treatment.

1. Introduction

Globally, lung cancer is the leading cause of cancer-
associated mortality, accounting for approximately 2.2 mil-
lion new cases and 1.8 million deaths in 2020 [1]. The most
frequent pathological lung cancer subtype is non-small-cell
lung cancer (NSCLC), which consists of lung squamous cell
carcinoma (LUSC) and lung adenocarcinoma (LUAD) [2].
As a multistep and multifactorial disease, lung cancer is asso-
ciated with both environmental and genetic factors, including
smoking, lifestyle, or underlying disease [3]. Although surgical

resection combined with chemoradiotherapy can effectively
improve the prognostic outcomes for early-stage lung cancer
patients, their efficacies in advanced and metastatic lung can-
cer patients are limited [4]. Immunotherapy is becoming
increasingly important in advanced solid tumors [5]. In lung
cancer, immune checkpoint inhibitors have shown promising
therapeutic outcomes [6, 7]. Currently, the treatment para-
digm for lung cancer has shifted to targeted therapy [8].
Emerging biomarkers have been incorporated into the
management of NSCLC patients. For instance, a comprehen-
sive review conducted by Rodríguez et al. indicated that a
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combination of effective biomarkers with risk stratification,
clinical data, radiomics, molecular information, and artificial
intelligence has the potential to improve clinical decision-
making [9]. Some specific biomarkers, including EGFR,
ALK, and ROS mutations, have a high clinical significance
[10]. Ostrin et al. documented that biomarker tests such as
Early CDT-Lung, Nodify XL2, and Percepta have a great
potential in improving the early detection of NSCLC [11].
Therefore, identification of effective molecular targets for lung
cancer therapy is a necessity.

Nei endonuclease VIII-like 3 (NEIL3), a class of DNA
glycosylases homologous to the bacterial Fpg/Nei family,
are involved in diverse physiological and pathophysiological
processes [12]. For instance, Karlsen et al. found that in
mouse models, NEIL3 deletion remodeled the intestinal
microbial flora and increased intestinal permeability. These
metabolic alterations play a role in atherogenesis [13]. At
the cellular level, Zhou et al. revealed that NEIL3 repairs
telomere damage during the S/G2 phase to secure chromo-
somal segregation at mitosis, protecting genomic stability
[14]. In addition, NEIL3 is involved in human malignancy.
Wang et al. reported that NEIL3 contributes towards liver
cancer carcinogenesis by regulating the PI3K/Akt/mTOR
signaling [15]. Moreover, Tran et al. found that NEIL3
might be associated with genomic mutations and chromo-
somal variations [16]. Tumors with overexpressed NEIL3
are often accompanied by anomalous expression levels of
homologous recombination genes (BRCA1/2) and mismatch
repair genes (MSH2/MSH6) [16]. Wang et al. found that
NEIL3 promotes prostate cancer cell proliferation and cis-
platin resistance by inhibiting the phosphorylation of ATR
and ATM serine/threonine kinase [17]. Meanwhile, Klat-
tenhoff et al. found that the loss of NEIL3 markedly
enhances replication-associated double-strand breaks and
enhances sensitivity to ATR inhibitors in glioblastoma cells
[18]. However, the role of NEIL3 in NSCLC has not been
conclusively determined.

Data generated by next-generation sequencing along
with bioinformatics development provides great conve-
nience for molecular target identification. Through a series
of bioinformatics analyses, we identified NEIL3 as a gene
of interest. We also found that NEIL3 was overexpressed
in NSCLC tissues as well as cell lines and that it was corre-
lated with worse clinical features and poor prognostic out-
comes for NSCLC patients. In vitro, NEIL3 significantly
promoted NSCLC cell proliferation, invasion, and migration
by regulating the PI3K/AKT/mTOR signaling pathway.
Moreover, NEIL3 affects immunotherapeutic and chemo-
therapeutic sensitivity, making it a potential therapeutic tar-
get for NSCLC patients.

2. Methods and Materials

2.1. Acquisition and Analysis of Open-Access Data. The
open-access gene expression data for NSCLC patients were
downloaded from The Cancer Genome Atlas (TCGA) data-
base (2022-1-18, https://portal.gdc.cancer.gov/, TCGA-
LUAD, TCGA-LUSC). Gene annotation was completed
based on the genomic reference file downloaded from the

ENSEMBL website (http://asia.ensembl.org/index.html).
The expression matrix was in the form of FPKM, which
was converted into the TPM form based on R code. Data
were preprocessed and normalized before analysis. Clinical
information for TCGA patients, including patient ID, sur-
vival time, survival status, gender, age, clinical stage, and
TNM classifications, was extracted using R code. “Limma”
in R was used for differential expressed gene (DEG) analyses
in two groups with the threshold of jlogFC > 1j and adjusted
p < 0:05. Survival package was used to perform survival anal-
ysis of NEIL3. The inclusion criteria were (i) samples from
patients with clinically diagnosed NSCLC (LUAD and
LUSC), (ii) samples with complete clinical information and
transcriptional profiling, and (iii) open-accessed samples.
The exclusion criteria were (i) patients whose pathology
was not NSCLC, (ii) samples without complete clinical
information and/or transcriptional profiling, and (iii) sam-
ples that could not be open-accessed. Only the samples that
met our criteria were included in our analysis.

2.2. Protein-Protein Interaction Network. To explore the
underlying interactions, the symbol of the selected gene was
uploaded to the STRING website (https://cn.string-db.org/
cgi/input?sessionId=WjOlJ4PUsdS5&input_page_show_
search=on). Cytoscape v3.7.2 was used for network visualiza-
tion. Based on the number of connections of a node, the top
20 significant nodes were identified using the cytoHubba
plug-in.

2.3. Gene Set Enrichment Analysis (GSEA). GSEA, which was
completed using fgsea and clusterProfiler package in R, was
performed to evaluate biological differences between low
and high NEIL3-expressing NSCLC patients. The reference
pathway list was Hallmark.gmt.

2.4. Immune Infiltrations and Response Analysis. Immune
infiltration analyses were performed using the CIBERSORT
deconvolution algorithm (available online: https://cibersort
.stanford.edu/), which could quantify the abundance of 22
specific cell types. Based on gene expression patterns, Tumor
Immune Dysfunction and Exclusion (TIDE) analysis was
used to assess immunotherapeutic responses among NSCLC
patients.

2.5. Drug Sensitivity Analysis. Correlations between NEIL3
and IC50 (half maximal inhibitory concentrations) for sev-
eral chemotherapeutic drugs were evaluated based on the
Genomics of Drug Sensitivity in Cancer (GDSC) database.
This tool predicts treatment responses for each patient based
on sample transcriptome.

2.6. Cell Lines, Tissue, and Quantitative Real-Time PCR
(qRT-PCR). Human bronchial epithelial cell lines (BEAS-
2B) and lung cancer cell lines (SPC-A-1, SK-MES-1, A549,
and H1299) were acquired from routinely cultured labora-
tory stocks. The SPC-A-1 cell line was cultured in DMEM
with 10% FBS while the other cell lines were cultured in
1640 medium with 10% FBS. Cells were grown under stan-
dard cell culture conditions (37°C, 5% CO2). Four paired
lung cancer and adjacent tissues were collected from
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Figure 1: Continued.
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Figure 1: Identification of NEIL3 as the interested gene in our study. Notes: (a–d) DEGs analysis was performed between the tumor and
normal tissues in TCGA-LUAD and TCGA-LUSC; (e) a total of 1798 genes were commonly upregulated in TCGA-LUAD and TCGA-
LUSC, as well as in paired samples; (f) a total of 1280 genes were commonly downregulated in TCGA-LUAD and TCGA-LUSC, as well
as paired samples; (g) top 20 key nodes of the commonly upregulated and downregulated genes based on the PPI network.
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Figure 2: Continued.
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HwaMei Hospital. All the patients signed consent forms,
and the protocol was approved by the Research Ethics Com-
mittee of HwaMei Hospital, according to the Helsinki Decla-
ration. Total RNA was extracted using the TRIzol reagent
and reverse transcribed into cDNA using a Reverse Tran-
scription Kit (K1691, ThermoFisher Scientific). The SyBr
Green PCR system was used to perform qRT-PCR. The
primers used in this study were the following: NEIL3, for-
ward 5′-GTCCTTCCCATTCTGCAACC-3′ and reverse 5′
-GAAACAGAGGAGGACCAAACA-3′, and GAPDH, for-
ward 5′-GCAAATTCCATGGCACCGT-3′ and reverse 5′-
TCGCCCCACTTGATTTTGG-3′.

2.7. Cell Transfections. A Lipofectamine 2000 transfection kit
(11668019, Invitrogen) was used for cell transfection, as

instructed by the manufacturer. The NEIL3 shRNA and
control plasmids were purchased from Genepharma
(Suzhou, China). Target sequences were the following:
siRNA1: 5′-GCCTGTTTAATGGATATGTTT-3′; siRNA2:
5′-CTGTTAAAGTTTGTCAATTAA-3′; and siRNA3: 5′-
GACGATAAAGTGTTTTTAGTA-3′.

2.8. Western Blot. Extraction of total proteins was done using
the total protein extraction kit (P0027, Beyotime), as
instructed by the manufacturer. Primary antibodies, includ-
ing AKT (1 : 5000), cyclinD1 (1 : 5000), phosphorylated AKT
(1 : 2000), and GAPDH (1 : 20000) were purchased from Cell
Signaling Technologies (Danvers, MA). The PVDF mem-
brane was used to perform the western blot assay, following
a standardized process.
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Figure 2: NEIL3 was upregulated in lung cancer and was associated with worse clinical features. Notes: (a–d) a higher NEIL3 expression was
found in LUAD, LUAD+GTEx, LUSC, and LUSC+GTEx cohorts; (e, f) clinical correlation of NEIL3 in TCGA-LUAD and TCGA-LUSC.
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Figure 3: Continued.
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2.9. Cell Proliferation Assay. The CCK8 and colony forma-
tion assays were performed to evaluate cancer cell proliferative
abilities. For the colony formation assay, cells were resus-
pended and seeded in a six-well plate. After 14 days of incuba-
tion at 4°C, cells were fixed and stained using crystal violet.
The CCK8 assay was performed using a CCK8 kit (CK04,
Dojindo, Shanghai, China), as instructed by the manufacturer.

2.10. Transwell Assay. This assay was performed using the
transwell chamber with a pore size of 8μm and 24-well
plates. Briefly, the transwell chamber separated the plate into
upper and lower chambers. The upper chamber was seeded
with 1 × 104 cells in a medium without FBS while the lower
chamber was supplemented with a medium containing 20%

FBS. After 24 h, cells were fixed in 4% paraformaldehyde and
stained with crystal violet.

2.11. Wound Healing Assay. Cells were seeded in a six-well
plate and incubated to 90% density. Then, scratches were
made on cells in each well using a 10μl pipette tip. The orig-
inal medium was removed, and the medium without FBS
was added. After 24 h, wound healing was microscopically
observed.

2.12. Statistical Analysis. Statistical analyses were completed
using R and GraphPad Prism 8 software. Normally distrib-
uted variables were analyzed using the Students T-test while
nonnormally distributed variables were analyzed using
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Figure 3: NEIL3 was associated with poor prognostic outcomes in lung cancer patients. Notes: (a–c) association between NEIL3 and patient
OS, DSS, and PFI in the TCGA-LUAD cohort; (d–f) association between NEIL3 and patient OS, DSS, and PFI in the TCGA-LUSC cohort;
(g, h) univariate and multivariate analyses indicated that NEIL3 was an independent prognostic marker in lung cancer patients.
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Figure 4: Continued.
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Kruskal-Wallis. p ≤ 0:05 was set as the threshold for statisti-
cal significance.

3. Results

3.1. Identification of the Key Gene in NSCLC. First, we
performed differential expression analysis between TCGA
nonpaired and paired tissues with the threshold of jlogFC
> 1j and adjusted p < 0:05, including TCGA-LUAD
(Figures 1(a) and 1(b)) and TCGA-LUSC (Figures 1(c)
and 1(d)). A total of 1798 genes were commonly upregu-
lated while 1280 genes were commonly downregulated
(Figures 1(e) and 1(f)). Furthermore, univariate cox regres-
sion analysis was performed to identify prognosis-related
genes. Among the 1798 upregulated genes, 191 genes were
risk factors while among the 1280 downregulated genes,
84 were protective genes (Figure 1(g)). Based on these
genes, the PPI network was constructed, and the top 20 sig-
nificant nodes were visualized. Among them, NEIL3 has
not been fully explored in NSCLC, and therefore, it earned
our interest (Figure 1(g)).

3.2. NEIL3 Was Upregulated in NSCLC Tissues and Was
Correlated with Aggressive Clinical Features. Based on
TCGA and GTEx data, NEIL3 was markedly upregulated
in NSCLC (Figures 2(a)–2(d); TCGA-LUAD, p < 0:001;
TCGA-LUAD+GTEx, p < 0:001; TCGA-LUSC, p < 0:001;
and TCGA-LUSC, p < 0:001). Patients with elevated NEIL3
levels were associated with worse clinical features, includ-
ing clinical stage and T and N classifications (Figures 2(e)
and 2(f)). In the TCGA-LUAD cohort, patients with ele-
vated NEIL3 levels had significantly short overall survival
(OS), disease-specific survival (DSS), and progression-free
interval (PFI) (Figure 3(a), OS, HR = 1:98, p < 0:001;
Figure 3(b), DSS, HR = 2:30, p < 0:001; and Figure 3(c),
PFI, HR = 1:77, p < 0:001). Differences in OS in the TCGA-
LUSC cohort were not significant (Figure 3(d), OS, HR =
0:92, p = 0:539). However, NEIL3 markedly affected the
DSS of patients in the TCGA-LUSC cohort (Figure 3(e),
DSS, HR = 1:43, p = 0:047). There was a clear separation
between PFI KM curves of high and low NEIL3-expressing
patients (Figure 3(f), PFI, HR = 1:28, p = 0:136). Univariate
and multivariate analyses showed that independent of other
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Figure 4: NEIL3 promoted lung cancer cell proliferation. Notes: (a) expression levels of NEIL3 in lung cancer cell lines; (b) expression levels
of NEIL3 in lung cancer tissue; (c, d) qRT-PCR was performed to evaluate the knockdown efficiency of NEIL3 in cancer cell lines; (e) colony
formation assay was performed in control and NEIL3 knockdown cells; (f) CCK8 assay was performed in control and NEIL3 knockdown
cells.
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clinical features, NEIL3 is an effective prognostic biomarker
(Figures 3(g) and 3(h)).

3.3. NEIL3 Promotes NSCLC Cell Proliferation, Invasion, and
Migration. Previous clinical correlation analysis indicated
that NEIL3 was associated with worse clinical features.
Therefore, we evaluated the potential role of NEIL3 at the

cellular level. We found that NEIL3 was significantly upreg-
ulated in NSCLC cell lines, compared to normal cell lines
(Figure 4(a)). Meanwhile, a higher NEIL3 mRNA expression
level was also observed in lung cancer tissue (Figure 4(b)).
Among the NSCLC cell lines in which NEIL3 was elevated,
A549 and H1299 cell lines were selected for further assays.
Knockdown efficiency of shRNA3 was validated by qRT-
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Figure 5: ENO2 facilitated lung cancer cell invasion and migration. Notes: (a, b) transwell assay was performed in control and NEIL3
knockdown cells; (c) wound healing assay was performed in control and NEIL3 knockdown cells.
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PCR (Figures 4(c) and 4(d)). Colony formation and CCK8
assays showed that NEIL3 knockdown markedly sup-
pressed NSCLC cell proliferations (Figures 4(e) and 4(f)).
The transwell and wound healing assays showed that
NEIL3 knockdown markedly inhibited NSCLC cell inva-
sion and migration abilities (Figures 5(a) and 5(c)).

3.4. NEIL3 Regulated the Activities of the PI3K/AKT/mTOR
Signaling Pathway. GSEA was performed to identify biolog-
ical differences between the high and low NEIL3-expressing
patients. In patients with high NEIL3 expressions, the PI3K/
AKT/mTOR pathway, G2/M checkpoints, and E2F targets
were aberrantly activated (Figure 6(a)). A previous study
reported that NEIL3 can affect the activities of the PI3K/
AKT/mTOR signaling pathway [15]. Therefore, we evalu-
ated whether the cancer-promoting effects of NEIL3 in
NSCLC are mediated by PI3K/AKT/mTOR signaling.
NEIL3 knockdown significantly suppressed the protein
levels of cyclinD1 and p-AKT; however, it had no effects
on AKT protein levels, indicating that NEIL3 partially acti-
vates the PI3K/AKT/mTOR signaling pathway (Figure 6(b)).

3.5. NEIL3 Regulates Immunotherapeutic and
Chemotherapeutic Sensitivity. Immunotherapy is a promis-
ing prospect in lung cancer treatment. We evaluated the cor-

relation between NEIL3 and several key immune checkpoint
molecules. Patients with elevated NEIL3 levels had higher
CD274, LAG3, and PDCD1LG2 expressions as well as sup-
pressed HAVCR2 and SIGLEC15 levels (Figure 7(a)). TIDE
revealed that immunotherapeutic nonresponders had ele-
vated NEIL3 levels, indicating that NEIL3 may inhibit the
response rate of NSCLC to immunotherapy (Figure 7(b)).
Cisplatin and paclitaxel are common chemotherapeutic
options for lung cancer. Therefore, we performed drug sen-
sitivity analysis through the GDSC database to identify the
underlying effects of NEIL3 on chemotherapeutic sensitivity.
We found that NEIL3 significantly increased sensitivity to
cisplatin and paclitaxel (Figures 7(c) and 7(d); cisplatin
IC50, R = −0:42, p < 0:001; paclitaxel: R = −0:35, p < 0:001).

4. Discussion

Globally, lung cancer has the highest morbidity and mortal-
ity rates. Therefore, it is imperative to identify novel and
effective targets for lung cancer diagnosis and treatment.

NEIL3, a class of DNA glycosylases, is involved in DNA
repair through DNA base excision repair [19]. Moreover,
genomic instability is a crucial factor in cancer, significantly
contributing to cancer progression [20]. Given the biological
effects of NEIL3 on genomic stability, it may have oncogenic
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Figure 6: NEIL3 regulated the activation of the PI3K/AKT/mTOR signaling pathway. Notes: (a) GSEA in patients with low and high NEIL3
expressions; (b) western blot assay was performed to detect the key molecule of PI3K/AKT/mTOR signaling pathway in control and NEIL3
knockdown cells.
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effects. The underlying mechanisms of NEIL3 in cancer have
attracted extensive attention, making it an attractive thera-
peutic target for specific cancers [15]. Zhao et al. found that
NEIL3 prevents senescence in liver cancer by repairing oxi-
dative lesions at telomeres during mitosis, contributing to
poor prognostic outcomes [21]. Moreover, Rolseth et al.
found that compared to control mice, cancer predisposition
or increased spontaneous mutation frequencies were not
observed in NEIL1/2/3 DNA glycosylases-deficient mice,
indicating that NEIL1/2/3 might be essential in cancer pre-
vention [22]. The cancer-promoting effects of NEIL3 have
been proven in multiple cancers, including prostate, liver,
and breast cancers [17, 21, 23]. Our results indicate that
NEIL3 promotes NSCLC cell proliferation, invasion, and
migration partially by regulating the classic PI3K/AKT/
mTOR signaling pathway; thus, it might be a promising
therapeutic target.

GSEA showed that NEIL3 is involved in PI3K/AKT/
mTOR, G2/M checkpoints, and E2F target signaling. The
PI3K/AKT/mTOR signaling pathway plays an important
role in development and tumorigenesis [24]. In lung cancer,
PI3K/AKT/mTOR signaling is a critical regulatory axis con-
tributing to cell malignant phenotypes and drug resistance
[25]. The G2/M checkpoint is an essential step in the cell
cycle. Hung et al. found that bavachinin induces G2/M cell
cycle arrest and apoptosis of NSCLC cells through the
ATM/ATR signaling pathway [26]. Moreover, Yao et al.
indicated that cyclin K depletion suppresses lung cancer cell
proliferation and defective G2/M checkpoint and enhances
radiosensitivity [27]. Generally, transcription activities of
the E2F target are strictly regulated in the whole cell cycle
[28]. However, abnormal expressions of E2F target genes
are associated with cancer progression [28].

Currently, systemic chemotherapy is the main treatment
approach for advanced NSCLC; however, its effectiveness
has plateaued [29]. Immune checkpoint inhibitors (ICI)

have been shown to increase the survival rates for advanced
NSCLC patients [30]. Cancer cell growth and metastasis
depend on the features of tumor cells and on interactions
with the immune system [31]. Some ICI drugs, for example,
ipilimumab, nivolumab, and pembrolizumab, have achieved
remarkable results in clinical trials [32]. Our TIDE result
showed that immunotherapeutic nonresponders have ele-
vated NEIL3 expressions, indicating that targeting NEIL3
might improve the response rates of NSCLC patients to
immunotherapy. Cisplatin and paclitaxel are core compo-
nents of the NSCLC chemotherapy regimen. GDSC analysis
showed that NEIL3 can significantly increase sensitivity to
cisplatin and paclitaxel. Therefore, for patients with elevated
NEIL3 levels, cisplatin- and paclitaxel-based chemotherapy
might be more appropriate.

In summary, NEIL3 is overexpressed in NSCLC tissues
and cell lines. In addition, patients with elevated NEIL3
expressions tended to have more aggressive clinical features
and worse prognostic outcomes. In vitro, NEIL3 significantly
facilitated NSCLC cell proliferation, invasion, and migration.
GSEA showed that the pathway of PI3K/AKT/mTOR, G2/M
checkpoints, and E2F target were abnormally activated in
NEIL3 patients while western blot revealed that NEIL3 could
partially activate the PI3K/AKT/mTOR signaling pathway,
which might be responsible for the cancer-promoting effects
of NEIL3. Finally, we found that NEIL3 could affect the
sensitivity of NSCLC patients to immunotherapy and che-
motherapy, making it a potential therapeutic target. Mean-
while, this study has some limitations. First, the patients
obtained from TCGA were mainly white. Therefore, consid-
ering the potential racial bias, the applicability of our conclu-
sions to other ethnicities would be unstable. Second, the
clinical information for some patients was incomplete; for
example, TNM classification of some patients was unknown.
If all patients have complete clinical data, it would reduce the
bias of our conclusions.
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Figure 7: NEIL3 was associated with sensitivity to immunotherapy and chemotherapy in lung cancer patients. Notes: (a) correlation
between NEIL3 and several immune checkpoint genes; (b) expression levels of NEIL3 in immunotherapeutic responsive and
nonresponsive patients; (c, d) patients with higher NEIL3 might be more sensitive to cisplatin and paclitaxel.
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