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Network science plays a central role in understanding and modeling complex systems in many areas
. including physics, sociology, biology, computer science, economics, politics, and neuroscience.
Accepted: 20 March 2018 : One of the most important features of networks is community structure, i.e., clustering of nodes
Published online: 13 April 2018 . that arelocally densely interconnected. Communities reveal the hierarchical organization of nodes,

. and detecting communities is of great importance in the study of complex systems. Most existing
community-detection methods consider low-order connection patterns at the level of individual links.
But high-order connection patterns, at the level of small subnetworks, are generally not considered.
In this paper, we develop a novel community-detection method based on cliques, i.e., local complete
subnetworks. The proposed method overcomes the deficiencies of previous similar community-
detection methods by considering the mathematical properties of cliques. We apply the proposed
method to computer-generated graphs and real-world network datasets. When applied to networks
with known community structure, the proposed method detects the structure with high fidelity and
sensitivity. When applied to networks with no a priori information regarding community structure, the
proposed method yields insightful results revealing the organization of these complex networks. We
also show that the proposed method is guaranteed to detect near-optimal clusters in the bipartition
case.

Received: 8 November 2017

Networks are a standard representation of complex interactions among multiple objects, and network analysis has
become a crucial part of understanding the features of a variety of complex systems!~'%. One way to analyze net-
works is to identify communities, mesoscopic structures consisting of groups of nodes that are relatively densely
connected to each other but sparsely connected to other dense groups in the network''. Communities, also called
clusters or modules, mark groups of nodes which could, for example, share common properties, exchange infor-
mation frequently, or have similar functions within the network'?. The existence of communities is evident in
many networked systems from a great many areas, including physics, sociology, biology, computer science, engi-
neering, economics, politics, and neuroscience!*-%.

Community detection is important for many reasons. It allows classification of the functions of nodes in
accordance with their structural positions in their communities*'~?*. It reveals the hierarchical organization that
exists in many real-world networks?%. Moreover, it improves the performance and efficiency of processing, ana-
lyzing, and storing networked data?>*°. Communities also have concrete applications. In social networks, com-
munities represent groups of individuals with mutual interests and backgrounds, and imply patterns of real social
groupings'®. In purchase networks, communities represent groups of customers with similar purchase habits,
and can help establish efficient recommendation systems®. In citation networks, communities represent groups
of related papers in one research direction, and identify scholars sharing research interests?”. In brain networks,
communities represent groups of nodes that are intricately interconnected and that could perform local compu-
tations, and they give insights into structural units of the brain®.

The mathematical synonym of networks is graphs, and in the context of graph theory, one of the mathemati-
cal formalizations of community detection is graph partitioning. Guided by spectral graph theory?’, the method
of spectral graph partitioning arose by relating network properties to the spectrum of the Laplacian matrix®.
The earliest method in this category minimized connections between different communities®-*2 In practice, this
optimization problem can be efficiently solved, but it favors non-optimal solutions involving cutting a small part
from the graph. One way to circumvent this drawback is to introduce balancing factors to the objective functions
in order to enforce a reasonably large size for each community****. However, introducing balancing factors makes
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these optimization problems NP-hard®. Hence relaxed versions of these problems are solved by taking advantage
of the properties of the Laplacian matrix.

Despite thousands of publications in the literature on spectral partitioning, these methods are constrained
to conventional graph-based models. These models involve a set of vertices, which represent objects of interest,
and a set of edges, which encode the existence or non-existence of a relationship between each pair of objects.
However, in many real-world systems, the complex and rich nature of systems cannot be captured by such
dyadic relationships. More importantly, recent computer innovations have greatly increased the size of the
real networks that one can potentially handle. As a result, the way to process and understand graphs has been
changed, and polyadic interactions are becoming more and more important. In particular, a community is
intuitively a cohesive group of vertices that are “more densely” connected within the community than across
communities'!. The precise definition and characterization of “more densely” relies on polyadic interactions
among multiple vertices. In order to quantitatively characterize polyadic structures, we employ the high-order
structures of cliques, defined to be local complete subgraphs. In the context of networks, cliques are groups of
objects that rapidly and effectively interact. This paper presents a graph-partitioning method that identifies
clusters of cliques.

One line of related work is the method of k-clique percolation®®*’. This method defines the k-clique com-
munity to be the union of “adjacent” k-cliques, which by definition share k — 1 vertices, where k is any positive
integer. However, this definition is too stringent because it rules out other possible communities that are not so
well-connected. Its performance also relies heavily on the choice of k: A small k leads to a single giant community,
and a large k leads to multiple small and possibly distant communities. In addition, this definition includes top-
ological cavities®®, which enclose holes in networks and mark local lacks of connectivity. However, this feature is
not an expected property of communities.

In a recent paper, Benson et al. devised a community-detection method based on high-order connectivity
patterns called network motifs***’, and proposed a generalized framework for identifying clusters of network
motifs*!. Cliques are certainly one special kind of network motif, and Benson et al. provide numerical simulations
for applying this framework to cliques. However, this framework has several drawbacks. First, the framework
fails to consider the nested nature of cliques and so suffers from unnecessary computational cost, since it needs
to take into consideration non-maximal cliques. Second, the method requires pre-specification of the sizes of the
cliques involved, instead of considering all clique sizes occurring in the network. Third, the conductance function
merely counts the number of cliques and ignores other properties influenced by partitions. Lastly, the perfor-
mance guarantee works only for 3-cliques. We overcome all these drawbacks by designing a novel conductance
function specifically for cliques.

In this paper, we propose a novel community-detection method that minimizes a new objective function,
called the clique conductance function. We encode in this objective function the number and sizes of cliques,
and the numbers of edges in the cliques. Finding a partition that exactly minimizes the clique conductance is
computationally intractable. Thus we extend the spectral graph partitioning methodology, and devise a com-
putationally tractable solution that approximately minimizes the clique conductance. In addition, we derive a
performance guarantee for the bipartition case, showing that the resulting bipartition is near-optimal. Finally,
we apply the proposed method to computer-generated graphs and real-world network datasets. When applied
to networks with known community structure, the proposed method achieves excellent agreement with the
ground-truth communities. When applied to networks with no a priori information regarding community
structure, the proposed method yields insightful results that help us understand the structures embedded in
these complex networks.

Methods

In this section, we describe our proposed graph-partitioning method. We begin by introducing several graph nota-
tions, and then state the formulation of our proposed graph-partitioning method based on clique-conductance
minimization. We conclude this section by proposing a computationally efficient algorithm that approximately
solves the optimization problem.

Graph Notations. An undirected weighted graph G is an ordered triplet (V, £, 7) consisting of a set of verti-
cesV = {v, ..., y},asetofedges £ C V x Vsatisfying (u, v) € £ifand onlyif(v, u) € Eforallu, v € V,anda
weight functionm: V x V — R* U {0} satisfying (&) > 0, 7(V x ¥V — &) = 0, and w(u, v) = 7(v, u) for all
u, v € V. If the weight function 7 in addition satisfies 7(€) = 1, then G is an undirected binary graph. The
weighted adjacency matrix W of the graph is defined as W(i, j) := m(v;, v)). Since G is undirected, we have W =
WY, The degree of a vertex v;is defined as d, :=Y", .,/ m(u, v;), and the degree matrix D is a diagonal matrix with
dy, ..., d, as diagonal entries. The Laplacian matrix L of the graph is defined as L := D — W. A graph § is said to
have no loops if m(u, u) = 0 forallu € V.

Formally, a k-clique is a subgraph consisting of k nodes with all pairwise connections, where k is any positive
integer. It naturally follows from the definition that any subgraph of a clique is also a clique, and such a subgraph
is called a face. We call this feature the nested nature of cliques. A maximal clique is a clique that is not a face. Due
to the nested nature of cliques, the maximal cliques of a graph contain all the clique information. The number of
vertices constituting a clique o is called the size of a clique and is denoted as w(o). In this paper, we use M, to
represent the collection of all maximal k-cliques, and M = [ J; M to represent the collection of all maximal
cliques.

Clique Conductance Minimization. We now state the formulation of our proposed graph-partitioning
method. Intuitively, the graph-partitioning problem based on cliques can be described as follows: We wish to
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find a partition of the graph, such that cliques between different groups are few and have small sizes (which
means that vertices in different clusters share few high-order connections), and cliques within each group have
large sizes (which means that vertices within one cluster are connected in high-order fashion). Formally, sup-
posethatG = (V, &, )isan undirected binary graph with no loops. Given a positive integer m > 1, we wish to
find a partition (A, ..., A,,) that satisfies ANA; = & for any i = jand [ J;A; = V), and that minimizes

WA, .o Am)::f:cut(Ai, A),
P (1)

where

cut(4, A):= S w(o) Y Nu € A, veA),
ceM u,veo 2)

where lis the truth-value indicator function. Conceptually, the cut function cut(A, A )measures how severely
maximal cliques are influenced by the partition (A, A ). The cut function considers both the number and sizes
of maximal cliques that are cut by the partition, and also the number of edges in each maximal clique that are
cut by the partition. Unfortunately, in practice the solution of this approach often yields extreme cases separat-
ing the vertex with the lowest degree from the rest of the graph, similar to phenomena observed in minimizing
conventional cut functions®’. To circumvent this problem, we introduce a balancing factor

vol(A) := E w(o)ZJl u € A),
oeM uco (3)

which conceptually measures the size of a cluster A, and propose to minimize the clique conductance function
defined as

" cut(4,;, Xi)
iZ1min(vol(4,), VOI(X,')) ' (4)

P4, ..., A,) =

We note that this objective function is formulated in a similar way to normalized spectral partitioning®*.
However, introducing balancing factors causes the computationally tractable problem of minimizing equation (1)
to become NP-hard?*. Following the idea of spectral graph partitioning®’, we next reformulate our optimization
problem and seek a computationally tractable solution.

Partitioning Algorithm. We introduce a new weighted graph, which we call the induced clique graph, to
encode the maximal-clique information of G. The induced clique graph of G = (V, &, 7) is an undirected
weighted graph G. = (V, &, ), where the weight function 7, is defined as

m(wv) = Y > wlo).

oceMu,veo (5)

By definition, 7 (u, v) is the sum of the sizes of the maximal cliques that vertex u and vertex v both engage.
Intuitively, 7, measures how densely two vertices are connected in G. We denote by W, D,, L, the corresponding
adjacency matrix, degree matrix, and Laplacian matrix, respectively. Following this spirit, the graph-partitioning
problem on an undirected binary graph G can be transformed and implemented as a graph-partitioning problem
on a weighted graph .. Notice that a partition (4, ..., A,,) on the original network G induces a partition on the
induced clique graph G.. To measure conductance on this weighted graph, we recall the traditional conductance
function on weighted graphs®, defined as

i cut,(A;, A,)
=i min(vol,(4,), vol,(4,))’ 6)

oA, ..., A=

where
cut (A, X) = Z m(u, v)
ueA,ve; (7)

is the total weight of edges cut, and

vol.(A) == Z m(u, v)

ucA,veV (8)

is the total connection from vertices in A to all vertices in the graph. The next proposition relates the traditional
conductance function in equation (6) to the clique conductance function in equation (4).
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Algorithm 1. Graph partitioning via clique conductance minimization.

Input :Adjacency matrix W € {0, 1}"*", number m of clusters to construct
Output : A partition of the network (A, ..., 4.,)
Compute the maximal cliques from the adjacency matrix W using the Bron-Kerbosch algorithm;

-

2 Form the clique weight matrix W . and the corresponding normalized Laplacian matrix £. = D;l/ 2 (D. — WC)D;U 2,
3 if m = 2 then

4 Compute the second eigenvector h of L.;

5 For 1 < i <, let o; be the index of the i-th largest entry of g = D;l/ 2h;

6 Set Ay = arg min; ¢(S;), where S; = {v,,, ..., V0, }.

7 else

8 Compute the first m eigenvectors of L;

9 Let U € R™™™ be the matrix containing these eigenvectors as columns;

[
=)

Form T from U by normalizing all columns to norm 1;

For 1 <i < n,lety; € R™ be the i-th row of T

Cluster the points {y; }; using the k-means algorithm*® into clusters C1, ..., Cyp,;
For 1 < < m, form cluster 4; = {v; : y; € C;}.

—
® R =

end

—
-

Proposition 1. Given any undirected binary graph G = (V, &, m), for any subset A C V, we have

cut(A, A) = cut (4, A), 9)

vol(A) = vol.(A). (10)

The proof of Proposition 1 is given later. A straightforward consequence of Proposition 1 is that the conduct-
ance functions as shown in equations (4) and (6) are equal.

Corollary 2. Given any undirected binary graph G = (V, &, ), for any natural number m > 1 and any partition
(A, ..., A,,), we have

DAy, ..., A,) = oAy, ..., A,). (11)
Corollary 2 shows that the clique conductance minimization problem,

minimize ¢(A;, ..., A, ),
(A ) oA, m) (12)

is equivalent to the conductance minimization problem on the induced weighted graph,

minimize ¢.(A,;, ..., A, ).
(Ap-.rAy) oAy m) (13)

Solving this minimization problem directly can be computationally intractable®. One way to circumvent this
issue is to solve a relaxed version of this problem by employing normalized spectral partitioning®>*4#%. Thus our
partitioning algorithm consists of three steps. First the maximal cliques are computed using the Bron-Kerbosch
algorithm®~*¢. Then the induced clique graph G. is formed. Finally, normalized spectral partitioning** is applied
to achieve a partition of the graph G. Our partitioning algorithm is stated in detail in Algorithm 1. As shown in
Algorithm 1, we use two different clustering methods for m = 2 and m > 2 when applying normalized spectral
partitioning, because for m = 2 the Cheeger inequality ensures that this clustering method produces a
near-optimal partition, as shown later. For the general case of m > 2, there are no similar results providing per-
formance guarantees. Among the several spectral partitioning methods®, we choose normalized spectral parti-
tioning*? because of the construction of the clique conductance function. A recent work provides a performance
guarantee for the general case, but the proof is constrained to regular binary graphs and is based on a new and
untested clustering method?”. We choose to keep using the k-means clustering method for its ease of implemen-
tation and successful empirical results.

Empirical Results

In this section we present a number of numerical experiments with the proposed method. We first perform
experiments on computer-generated graphs, and then apply the proposed method to real-world networks with
known community structures. In each case, we find that the proposed method almost perfectly detects commu-
nity structures indicated by network connectivity.

Benchmarks. We use benchmarks to compare the proposed method to the motif-conductance method*!, the
normalized spectral partitioning®, and greedy methods, including the Louvain method*, the Ravasz method®,
and the fast modularity maximization method>*->2. Benchmarks are computer-generated graphs whose commu-
nity structure is known. To compare two partitions C,, C, of the same graph, we use the normalized mutual infor-
mation®>*, defined as
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Figure 1. Normalized mutual information of different community-detection methods on (a) the Girvan-
Newman benchmark, (b) the Lancichinetti-Fortunato-Radicchi benchmark (using the same legend as subfigure

(a)).

plepscy)
I(Cp Cy) = Leeceecer log i
n\-p Y2/ 1 1 .
EH(CI) + EH(Cz) (14)

Here, p(c) is the probability that a randomly chosen vertex belongs to community ¢, p(c;, ¢,) is the probability that

a randomly chosen vertex belongs to both community ¢, and community c,. Also, H(C) is the Shannon entropy,
defined as

H(O) = — (c)log p(c).
%pc ogpl(c s)

Intuitively, the normalized mutual information measures the similarity between two partitions. If the two
partitions C,, C, are identical, then I, (C,, C,) = 1, and if the two partitions are independent of each other, then
I(C,, C,) = 0.In the following experiments, C, is the ground-truth partition given by the benchmark, and C, is
the partition predicted by a community-detection method.

The first benchmark we use is the Girvan-Newman (GN) benchmark®. Here, each graph is composed of 128
vertices and is partitioned into 4 communities of size 32. Each vertex is connected to approximately 16 others. For
each vertex, a fraction z,,, of 16 connections is made to randomly chosen vertices of other communities, and the
remaining connections are made to randomly chosen members of the same community. When z,, is a
half-integer k + L, half of the vertices have k inter-community connections and the other half have k + 1
inter-community connections. The GN benchmark produces graphs with known community structures, which
are essentially random in all other aspects.

The results of different community-detection methods compared against the GN benchmark are shown
in Fig. 1a. Each curve is averaged over 1000 realizations. As can be seen, the proposed method achieves com-
plete mutual information when z,,, < 7, detecting virtually correct communities. The proposed method yields
almost zero mutual information when z,,, > 9, where each vertex has more inter-community connections than
intra-community connections. The transition between these two regions is swift and sharp. In other words, the
proposed method performs almost perfectly up to the point where each vertex has as many inter-community con-
nections as intra-community connections. This performance is almost optimal, because the ground-truth com-
munity structure diminishes when each vertex has more inter-community connections than intra-community
connections. In this situation, the community structure represented by graph connections deviates from the
ground-truth community structure, and so these two sets of clusters share little mutual information. The normal-
ized spectral partitioning and the motif-conductance method using 3-cliques as the network motif perform as
well as the proposed method. But when 4-cliques and 5-cliques are chosen as network motifs, the performance of
the motif-conductance method degrades severely. This degradation shows that the motif-conductance method
heavily relies on the choice of, and prior knowledge about, which cliques are overexpressed in a graph. Finding
this knowledge and determining this choice necessarily involve a brute-force search over all subgraphs of certain
sizes. Among the greedy methods, the Louvain method and the fast modularity method offer the best perfor-
mance, but compared to the proposed method, the accuracies of both methods are lower when z,,, < 7.

The GN benchmark generates a random graph where all vertices have approximately same degrees and all
communities have an identical size. However, many real-world networks are scale-free®, with node degrees and
community sizes following the power-law distribution. As a result, a community-detection method that performs
well on the GN benchmark might fail on real-world networks. To ensure that the proposed method does not suf-
fer from this limitation, we use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark as a second benchmark®,
where both vertex degrees and ground-truth community sizes follow the power-law distribution. In this bench-
mark, each graph is composed of # vertices and is partitioned into m communities. Each vertex is given a degree
following a power-law distribution with exponent +, and each community is given a size following a power-law
distribution with exponent 3. The minimal and maximal values of degrees, k., ka0 and of community sizes,
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Figure 2. Distribution of sizes of maximal cliques in (a) the Girvan-Newman benchmark, (b) the
Lancichinetti-Fortunato-Radicchi benchmark.

Figure 3. The friendship network from Zachary’s karate club study. (a) The communities observed by Zachary.
(b) The communities detected by the proposed method.

Smin> Smaw ar€ chosen such that k,;, < s, and k. < Sy For each vertex, a fraction 1 — p of its connections is
made to randomly chosen members of the same community, and the remaining connections are made to ran-
domly chosen members of other communities. A realization of this benchmark is constructed via the following
steps. At the beginning, all vertices are homeless, i.e., they belong to no communities. Each vertex is assigned to
a randomly chosen community with a size greater than the vertex degree. If the community is already full, a ran-
domly chosen member of this community is kicked out. This procedure continues until each vertex is assigned
to a community. Then connections are randomly generated while preserving the ratio between the external and
internal degrees of each vertex.

The results of different community-detection methods compared against the LFR benchmark are shown in
Fig. 1b, with parameters chosen as n = 500, m = 10, k.;, = 20, Ky, = 80, ¥ = 2, sy = 30, S = 100, and 3
= 1.1. Each curve is averaged over 1000 realizations. The results are similar to those on the GN benchmark.
The proposed method, the normalized spectral partitioning method, and the motif-conductance method using
3-cliques perform similarly: All closely approximate complete mutual information when £ < 0.5, and yield nearly
zero mutual information when p > 0.8. The performance of the motif-conductance method degrades severely
when 4-cliques and 5-cliques are chosen as network motifs. The performances of the greedy methods are similar
to their performances on the GN benchmark, except that the fast modularity method has a much lower accuracy
when p < 0.6.

To further validate the advantage of the proposed method over the motif-conductance method, we depict in
Fig. 2 the size distribution of maximal cliques in both benchmarks averaged over 1000 realizations. The distribu-
tions in both benchmarks are similar. When z,,, and y are small, the 4-cliques are the dominant maximal cliques
and other maximal cliques generally have sizes of 2, 3, and 5. With increasing z,,, and y, the numbers of 4-cliques
and 5-cliques decrease rapidly and are exceeded by the numbers of 2-cliques and 3-cliques when approximately
1/3 of the connections of each vertex are inter-community. In the GN benchmark, the number of 3-cliques keeps
growing after this point and remains the most numerous maximal clique. But in the LFR benchmark, the number
of 3-cliques is exceeded by the number of 2-cliques when £ > 0.7. Given these patterns in the distributions, it is
not surprising that the motif-conductance method performs poorly when 4-cliques and 5-cliques are chosen as
network motifs. These distributions also further demonstrate the advantage of the proposed method. In practice,
the distribution of cliques (and other network motifs) is mostly probably unavailable when one is processing
observed network data. Collecting this information is computationally expensive. Since the maximal cliques con-
tain all the clique information, the proposed method is able to process general networks with no prior knowledge
of clique sizes and clique locations.

In summary, the proposed method achieves state-of-the-art performance on the homogeneous GN benchmark
and on the scale-free LFR benchmark. In addition, the proposed method yields almost the optimal performance

SCIENTIFICREPORTS | (2018) 8:5982| DOI:10.1038/s41598-018-23932-z 6



www.nature.com/scientificreports/

Hses: © Atlantic Coast
Lo} @ Big East
@ sun Belt
1 @ BigTen

g @ Big Twelve

@ conference USA

@ Mid-American

@ Mountain West

@ Pacific Ten

’\ 11N = © southeastern
L/ O Independents

N\ X‘ O Western Athletic

Figure 4. Communities of college football network, using colors for conferences and spatial clusterings for
identified communities.

one could expect on these two benchmarks: The proposed method detects the pre-defined ground-truth commu-
nity structure when it is well represented by connections, and deviates from it when the ground truth diminishes.
This behavior explains why there is little improvement over the existing methods. As opposed to the motif-based
method, the proposed method also benefits from the fact that it requires no pre-specification of clique sizes. As a
result, the proposed method bypasses a computationally expensive search for the optimal choice of clique sizes.

Zachary's Karate Club.  We apply our method to the network from the well-known karate club study by
Zachary?®. This study followed a social network composed of 34 members and 78 pairwise links observed over
a period of three years. During the study, a political conflict arose between the club president (node 34) and
the instructor (node 1). This political conflict later caused the club to split into two parts, each with half of the
members. Zachary recorded a network of friendships among members of the club shortly before the fission, and
a simplified unweighted version is shown in Fig. 3a. Different node colors are used in this figure to show the two
factions of the fission after the political conflict.

Figure 3b shows the community structure detected by the proposed method. The identified communities
almost perfectly reflect the two factions observed by Zachary, with only 1 (node 9) out of 34 nodes “incorrectly”
assigned to the opposing faction. This exception can be explained by the conflict of interest faced by individual
number 9. As recorded by Zachary, individual number 9 was a weak political supporter of the club president
before the fission, but not solidly a member of either faction®®. This ambivalence is revealed by the fact that node
9 is engaged in two maximal 3-cliques, on nodes {1, 3, 9} and on nodes {3, 9, 33}, and one maximal 4-clique on
nodes {9, 31, 33, 34}, implying that node 9 is weakly more densely associated with members of the club president’s
faction. On the other hand, Zachary pointed out that individual number 9 had an overwhelming interest in stay-
ing associated with the instructor, which was not shared by any other member of the club. Individual number 9
was facing his black-belt exam in three weeks, and joining the club president’s faction would result in renouncing
his rank and starting over again®®. In other words, individual number 9 would have joined the club president’s
faction, if this conflict of interest had not emerged. Therefore, the proposed method perfectly detected the social
communities in an empirically observed network of friendships.

College Football Network. We then apply the proposed method to a more complex real-world network
with known community structures. The network represents the schedule of United States football games between
Division IA colleges during the regular season in Fall 2000°. The network is shown in Fig. 4, where the nodes
represent teams, and the links represent regular season games between the two teams connected. The known
communities are defined by conferences, each containing around 8 to 12 teams and marked with colors. Links
representing intra-conference games are also marked with the same colors as the corresponding conferences. In
principle, teams from one conference are more likely to play games with each other than with teams belonging to
different conferences. There also exist some independent teams that do not belong to any conference, and these
teams are marked with a light-green color.

The communities identified by the proposed method are represented by spatial clusterings in Fig. 4. In general,
the proposed method correctly clusters teams from one conference. The independent teams are clustered with
conferences with which they played games most frequently, because the independent teams seldom play games
between themselves. The clusters detected by the proposed method deviate from the conference segmentation in
several ways. First, the Sun Belt conference, marked with a brown color, is split into two parts, shown at the eleven
oclock and three oclock directions, and each part is grouped with teams from the Western Athletic conference,
marked with a yellow color, and independent teams. But this result is understandable given the fact that there
was only one game involving teams from both these two parts. Second, one team from the Conference USA con-
ference, marked with a dark red color, is clustered with teams from the Western Athletic conference. This team
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Figure 5. Social network of 62 bottlenose dolphins. The nodes are colored based on the groups observed in the
study by Lusseau et al.*’. The spatial clustering represents communities detected by the proposed method.

played no games with other teams from the Conference USA conference, but played games with every team from
the Western Athletic conference. Third, two teams from the Western Athletic conference are isolated from other
teams from this conference, and each is grouped with part of the Sun Belt conference. The team at eleven oclock
had no intra-conference game, and the team at three oclock had only two intra-conference games, but they had
inter-conference games with every member of the cluster that they are assigned to. In summary, the proposed
method perfectly reflected the community structures established in regular-season-game association, and in
addition detected the lack of intra-conference association that the known community structure fails to represent.

Applications to Complex Real-World Networks

In the previous section, we tested the proposed method on both computer-generated graphs and real-world net-
works for which the community structures are well-defined and known a priori. In this section, we apply the pro-
posed method to complex real-world networks of which the community structures are not known, and show that
the proposed method helps us understand these complex networks. For each application example, the number of
communities is chosen based on prior information regarding the datasets.

Bottlenose Dolphin Social Network. Our first example is a social network composed of 62 bottlenose
dolphins living in Doubtful Sound, New Zealand®. The social ties between dolphin pairs are established based on
direct observations conducted during a period of seven years by Lusseau et al. The clustering analysis conducted
by Lusseau et al. on 40 of these dolphins shows that three groups spent more time together than all individuals
did on average, but group 1 is relatively weak in the sense that it is an artifact of the similar likelihood of encoun-
tering these individuals in the study area®. Figure 5 shows the social network of bottlenose dolphins, where
nodes represent dolphins and links represent social ties. The three groups observed by Lusseau et al. are colored
in green, red, and blue, respectively, and the dolphins not involved in the clustering analysis by Lusseau et al. are
left in black. The dashed line denotes the community division found by the proposed method. As can be seen, the
achieved division corresponds well with the observed groups, separating the red and blue groups into two com-
munities. The green group (group 1) is split evenly between the two detected communities. This phenomenon is
understandable, because group 1 is a weak group and is not well represented by the social network since most of
its members share no social ties.

Food Web. Our second example is a food web representing the carbon exchange among 128 compartments
(organisms and species) occurring during the wet and dry seasons in the Florida Bay ecosystem®, as shown in
Fig. 6. In this network, nodes represent compartments, and links represent energy flow (the link from node i to
node j means that carbon is transferred from node i to node j). Part of the compartments are classified into a total
of 13 groups (Part of the groups were compiled by Benson et al.*!), as marked with different colors in Fig. 6. The
remaining compartments are left in grey. This network is a directed network, and we apply the proposed method
to a simplified version with each directed edge converted to an undirected edge.

The communities detected by the proposed method are divided by the dashed lines. The division corresponds
quite closely with the division of groups of compartments. The clustering reveals four known aquatic layers:
macroinvertebrates and microbial microfauna (left), sediment organism microfauna (bottom), pelagic fishes and
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Figure 6. Food web in the Florida Bay. The nodes are colored based on the group classification given in the
original research report®. The spatial clustering represents communities detected by the proposed method.
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Figure 7. Neural network of the nematode Caenorhabditis elegans. The nodes are colored based on neuron
categories described in the original research report®!. The spatial clustering represents communities detected by
the proposed method.

zooplankton microfauna (right), and algae producers, avifauna, benthic fishes, herpetofauna, and seagrass pro-
ducers (middle). Interestingly, some groups are evenly distributed in multiple communities, like mammals, dem-
ersal fishes, and phytoplankton producers, while some other groups have a few members clustered into different
communities, like benthic fishes, macroinvertebrates, and pelagic fishes. This phenomenon presumably indicates
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that the roles of these species in the carbon exchange cannot be derived from the traditional divisions in a trivial
manner. For example, though both are mammals, the manatee and the dolphin have very diverse diets. The man-
atee feeds on submergent aquatic vegetation, and the dolphin feeds on small fishes and shrimps. Consequently,
one would expect that the manatee and the dolphin play different roles in the carbon exchange. Thus the simple
traditional divisions of taxa, for example, into benthic, demersal, and pelagic organisms, or into fishes, aves, herp-
tiles, and mammals, may not ideally reflect their roles in the carbon exchange.

Neural Network. Our third example is the nervous system of the soil nematode Caenorhabditis elegans®', the
only organism whose connectome has been completely mapped so far. The nervous system of C. elegans is repre-
sented by a neural network consisting of 280 nonpharyngeal neurons and covering 6393 chemical synapses, 890
electrical junctions, and 1410 neuromuscular junctions®*%, as shown in Fig. 7. In this network, nodes represent
neurons and links represent the existence of any of the three neural interactions. The original network is directed
and contains multi-edges and loops, and we apply the proposed method to the simplified undirected version, with
each directed edge converted to an undirected edge, multi-edges merged, and loops deleted. We have labeled part
of the neurons as ciliated/sensory neuron or motoneuron based on descriptions in the original research®, and
these labeled neurons are colored in Fig. 7. The remaining neurons are left in grey. In general, ciliated/sensory
neurons are neurons that are part of sensilla (groups of sense organs) or directly associated with sensilla, and
motoneurons are neurons that innervate muscles. The neurons left in grey are mostly interneurons that create
neural circuits among other neurons.

The dashed line denotes the community division found by the proposed method. As can be seen, the achieved
division yields an approximate distinction between ciliated/sensory neurons and motoneurons. This distinction
is not perfect: A small number of ciliated/sensory neurons find their way into the motoneuron community (left),
and several motoneurons are clustered into the ciliated/sensory-neuron community (right). This “incorrect” clus-
tering of motoneurons is understandable. The families of motoneurons clustered into the ciliated/sensory-neuron
community (RIM, RMD, RME, RME, RMG, RMH, SMB, SMD, URA) are motoneurons that innervate head mus-
cles and are located near the head, where the major sensilla are also located. Thus one would expect these moto-
neurons to frequently interact with ciliated/sensory neurons that are also located in the head. On the other hand,
part of the families of ciliated/sensory neurons clustered into the motoneuron community (PHB, PHA, PDE,
PLM) are ciliated/sensory neurons that are connected to sensilla located at the posterior body, where motoneu-
rons are densely located to control body movements. As a result, one would expect these ciliated/sensory neurons
to be more associated with local motoneurons than with ciliated/sensory neurons in the head. However, the other
four families of incorrectly clustered ciliated/sensory neurons (ADL, AS], ALM, FLP) cannot be explained by this
theory, because they are located near the head, and in addition some of them are connected to major sensilla in
the head. This anomaly might arise because our simplification of the neural network (ignoring interaction direc-
tions, merging multi-edges, deleting loops, and regarding all kinds of neural interactions as equivalent) could
only approximately represent neural associations, and some information is lost after the simplification.

Conclusion and Discussion

In this paper, we developed a novel community-detection method on the basis of cliques, i.e., local complete
subnetworks. The proposed method overcomes the deficiencies of previous similar community-detection meth-
ods by considering the nested nature of cliques and encoding the size of cliques into the optimization objective
function. In addition, it does not require any pre-specification of the type or size of the subnetworks considered
in partitioning. To verify the effectiveness of the proposed method, numerical experiments were conducted using
both well-established benchmarks and real-world networks with known communities. In all cases, the commu-
nity structure detected by the proposed method either achieves state-of-the-art performance or aligns well with
ground-truth communities. Finally, we applied the clique-based community-detection method to real-world net-
works with no a priori information regarding community structure. Specifically, the detected community struc-
ture provides insights into the social groupings of bottlenose dolphins, the roles of compartments in ecological
carbon exchange, and the functions of neurons in the connectome of the model organism Caenorhabditis elegans.
We also presented a theoretical analysis of the performance of the proposed method. Specifically, we showed that
our method was guaranteed to yield near-optimal performance in the bipartition case, and analyzed the compu-
tational complexity of our method.

The proposed method emphasizes the power of maximal cliques in community detection. In networks with
community structure, nodes within each community tend to be densely interconnected and may potentially
form multiple cliques with large sizes, whereas nodes from different communities are sparsely connected and
so are unlikely to form high-order cliques. It would in general be unfair to assume that the sizes of these cliques
are above some certain threshold, though most existing methods involving cliques have made such assumptions.
Maximal cliques allow algorithms to operate without such assumptions by adaptively encoding all clique informa-
tion based on whatever clique sizes are available. Though the computational complexity of the proposed method
makes it unsuitable for large-scale networks, considering maximal cliques could be useful in devising more com-
putationally efficient methods. For example, some greedy methods may converge faster without losing much
accuracy by treating local maximal cliques as a whole. By requiring only information of local maximal cliques,
it is possible to bypass the collection of global maximal-clique information, which is computationally expensive.

Theoretical Analysis

In this section, we present the theoretical analysis of the proposed method. We begin by analyzing the perfor-
mance of the proposed method for a special case. We then discuss the computational complexity of the proposed
method, and conclude this section by proving the key theoretical results in this paper.
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Figure 8. Comparisons of clique conductance of the proposed method and the performance bounds in
Theorem 4. (a) Varying » and fixed p = 0.6. (b) Varying p and fixed n = 30.

Performance Guarantee for Graph Bipartition. For the case m = 2, the graph-partitioning problem
becomes a graph-bipartition problem. For this special case, spectral graph theory provides guidance on measur-
ing the goodness of approximation to the clique conductance minimization®-%. One way is through an expanded
version of the Cheeger inequality that characterizes the performance of spectral graph partitioning®. We follow a
similar approach in the remainder of this subsection. Next we introduce terminology necessary to present our
result. Let G = (V, &, m) be a connected undirected binary graph with no loops. For a subset A C V), the Cheeger
ratio of A is defined as

cut(A, A )

h(A) = — —,
min(vol(A), vol(A)) (16)

and the Cheeger constant of G is defined as

hg :=min h(A).
g =mn WA a7)

Let o be the Cheeger ratio of the output of Algorithm 1. Chung proved an expanded version of the Cheeger
inequality, relating these values for spectral bipartition on connected binary graphs®’. However, in our setting, G,
is defined to be a weighted graph. Thus our first step is to generalize Chung’s result to connected weighted graphs.

Lemma 3. (Expanded Cheeger inequality). Let G be a connected undirected binary graph and G, be the induced
clique graph with a normalized Laplacian matrix L. Let \; be the second smallest eigenvalue of L, and hg be the
Cheeger constant of G. Then

2 2
a h
2he > A > -4 > 9,
¢ T (18)
where o is the Cheeger ratio of the output of Algorithm 1.

The proof of Lemma 3 is given later in this section. In our setting, the Cheeger constanth; is equal to ¢*, which
is the optimal value of the clique conductance optimization (12), and the Cheeger ratio o is equal to ¢, which is
the clique conductance of the output of Algorithm 1. Therefore, combining Proposition 1 and Lemma 3 yields
Theorem 4.

Theorem 4. Let G be a connected undirected binary graph. Let ¢* denote the optimal clique-conductance value of
(12) and ¢ be the clique-conductance value of output of Algorithm 1 for the case m = 2. Then

o* < b <2.fo". (19)

Theorem 4 shows that our optimization algorithm finds a bipartition that is bounded within the optimal
bipartition by a quadratic factor. Therefore our algorithm is mathematically guaranteed to achieve a near-optimal
partition.

Performance Guarantee Verification. To verify the performance guarantee of the proposed method,
given in Theorem 4, we apply it to a set of randomly generated graphs. Each graph is composed of n vertices, each
of which is assigned a random point in [0,1]'%. An undirected weighted graph is generated by computing the neg-
ative Euclidean distances between each pair of these vertices, and then an undirected binary graph is generated
by preserving a percentage p of the edges with the largest weights. This process produces graphs that reflect the
degradation of correlation with distance, which is a common assumption in many network models, and that are
essentially random in other aspects.
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Proposed 0(3") o(n?)
Motif"! 02" o(n’)
Spectral® — o(n?)
Louvain®® — O(nlogn)
Ravasz* — o(n?)

Fast Modularity*-* — O(n(logn)?)

Table 1. Computational complexity of the community-detection methods.

We apply the proposed method to each graph and partition it into two parts. We also enumerate all possible
bipartitions and find the bipartition with the minimal clique conductance. In Fig. 8a, we show comparisons of
clique conductance of the bipartitions achieved by the proposed method and the optimal bipartitions, with n
varying from 20 to 30 and p = 0.6. In Fig. 8b, we repeat the experiments with n = 30 and p varying from 0.2 to
0.8. Each curve is averaged over 50 independent trials. As can be seen, the proposed method follows the optimal
performance curve closely in general, and is well bounded by the upper bound in Theorem 4. In other words, the
proposed method performs almost perfectly and always finds a near-optimal bipartition.

Computational Complexity. Finding all maximal cliques in an arbitrary graph requires O(3"*) compu-
tations*, which is optimal as a function of n because any n-vertex graph has up to 3"* maximal cliques®. After
forming the clique weight matrix, computing the first m eigenvectors requires an eigenvalue decomposition of the
clique weight matrix, for which the computational complexity is O(#®)®. The k-means clustering algorithm needs
O(nm?i) computations’®, where i is the number of iterations needed to achieve convergence. Since m is much less
than » and 7 is very small in practice, we conclude that the number of required computations in the clustering
scales as O(n?).

In Table 1, we summarize the computational complexity of the proposed method, the motif-conductance
method, and other community-detection methods discussed in the Empirical Results section. As can be seen,
the greedy methods are much faster than the proposed method, but the proposed method exhibits better perfor-
mance on benchmarks (see Fig. 1). The motif-conductance method suffers from the high computational com-
plexity of the brute-force search for the optimal clique size before clustering. By focusing on maximal cliques,
the proposed method decreases the computational complexity of this step from O(2") to O(3"3). However, the
exponential complexity of the proposed method still makes it unsuitable for large networks.

Proof of Proposition 1 B
Proof. Let z € {0, 1}" be a vector such that z(i) = 1 if v; € A and 2(i) = 0 ifv; € A. Further let W_, be an adjacency
matrix defined as

Wi )= 30 30 wlo),

cEM €0
let D ; be the corresponding degree matrix, and let L, be the corresponding Laplacian matrix. Then

cut(A, A) = Z Z w(o) Z I(z(i) = 1, z(j) = 0)

k>1oceM; vpVi€o
1 . ;
= =3 > wlo) > Mz = z()
2kZl oeM; {vi,v/-}Ca
1 . ;
= =3 Y wo) Y (=) — z()
2k21 oeM; {vi,vj}Ca
= Yzl
k>1
= zTLCz

= cut(4, Z),

where the fourth and sixth equalities make use of the standard properties of Laplacian matrices®, and the fifth
equality follows L, = Y7, L, ;. In addition,

vol(A) = Z Z w(a)Zz(i)

k>10eM; V€T
= Y 2'D.,z

k>1
= zTDC)kz
= vol.(A4),
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where the third equality follows from D, = Y7, D, ;. This concludes the proof. O

Proof of Lemma 3

Proof. This proof extends Chung’s proof to connected weighted graphs®’. The second smallest eigenvalue \; of £,
can be expressed as the infimum of the Rayleigh quotient

2
Ag = inf R(y) = inf Y w) — y(v)) m(u, V))
y

y Zvev)’(")zdv (20)

where u ~ v means {u, v} is a connected pair of vertices, and y satisfies 3, .,,y(v)d, = 0. Suppose the Cheeger
constant, hg, is achieved by a set S. Let x5 be the vectorized indicator function of S, defined as

) = {1 ifu e,
$ 0 otherwise.

Consider y = x ¢ — vol(S)/vol(V)1, and it follows that

Ag < R(y) < 2hg. (21)

Thus the remainder of this proof focuses on deriving a lower bound for \; in terms of Cheeger ratios.
Let g be an eigenvector achieving ), namely,

T
g = arg min AL A (DCT_ VV[)y.
yTD1=0 y Dy (22)

Reorder the vertices such that

gv) > gvy) > - > g(v,),
and set S; = {v,, ..., v;}. It follows that

ag = miin h(S;). (23)

Let r denote the largest integer such that vol(S,) < vol(V)/2. Since g'D.1 =0,
> g(i)’d = mind (g(i) — o)*d; < 3 (g(i) — g(5,))’d,
i=1 ¢ =1 i=1

where d;:= D (i, i) for any i. Denote by g, and g_ the positive and negative parts of g — g(s,), respectively, defined
as

&0 = {0 otherwise,

g () = {g(s»—g(i) ifg(i) < g(s,),
B 0 otherwise.

By the Rayleigh-Ritz theorem”!,

A; = R
S, (&) — gW)’m(u, v)
S,e8()’d,
>, (&) — gW)’m(u, v)
S,en(gv) — gw))d,
(&, (W) — g, () + (g (W) — g (M) (u, v)
Coen(g, (0 + g (), '
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Without loss of generality, we may assume R(g,) < R(g), and then we have \; > R(g_ ) because

a+b .[a b]
> min|—, —
c+d d

ifa, b, ¢, d > 0. For ease of presentation, we use the notation vol'(S) := min(vol(S), vol(5)). Then we have

Ag = R(g)
(8, () — g, ()7 (u, v)
EVEVng(V)zdv
(T8, (1) = g, MV, v)) (2,8, (1) + &, ()1 (u, v))
S8 WY, (8, () + g, () m(u, v)
(Cuy(@, ) — g, )7 (u, v))

>
- 25,008, (vd,)?
_ (Zlgign—1|g+(vi)2 - g+(Vi+1)2‘CUt(si> §i))2
- 25,008, (0)d,)
N (Z]gi§n71|g+(vi)2 - g+(vi+1)2‘a§V01T(Si))2
- 25,08, () d,)
o (C1<icn8, ) [vol'(S) — vol'(S, )|
2 (Cyerg. (vd,)
_ ag (Elgigng+("i)2dv,-)2
T2 (D8, 0Pd,)
_ %
2

where the second inequality is by the Cauchy-Schwarz inequality and the arithmetic-geometric-mean inequality,

and the third inequality is by definition of og. This concludes the proof. O
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