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Abstract: Coxsackievirus B5 (CVB5) is one of the most prevalent enteroviruses types in humans
and causes annual epidemics worldwide. In the present study, we explored viral genetic diversity,
molecular and epidemiological aspects of CVB5 obtained from cerebrospinal fluid and stool samples
of patients with aseptic meningitis or acute flaccid paralysis, information that is still scarce in Brazil.
From 2005 to 2018, 57 isolates of CVB5 were identified in the scope of the Brazilian Poliomyelitis
Surveillance Program. Phylogenetic analyses of VP1 sequences revealed the circulation of two CVB5
genogroups, with genogroup B circulating until 2017, further replaced by genogroup A. Network
analysis based on deduced amino acid sequences showed important substitutions in residues known
to play critical roles in viral host tropism, cell entry, and viral antigenicity. Amino acid substitutions
were investigated by the Protein Variation Effect Analyzer (PROVEAN) tool, which revealed two
deleterious substitutions: T130N and T130A. To the best of our knowledge, this is the first report to
use in silico approaches to determine the putative impact of amino acid substitutions on the CVB5
capsid structure. This work provides valuable information on CVB5 diversity associated with central
nervous system (CNS) infections, highlighting the importance of evaluating the biological impact of
certain amino acids substitutions associated with epidemiological and structural analyses.

Keywords: enterovirus; coxsackievirus B5; central nervous system

1. Introduction

Most instances of central nervous system (CNS) infections are caused by non-polio
enteroviruses (EVs), although other agents can cause neurological illnesses in both children
and adults across the world [1]. EVs (genus Enterovirus, family Picornaviridae) are small,
non-enveloped, positive sense, and single-stranded RNA viruses. The genomic RNA is
around 7.5 kb long in length and encodes a large polyprotein, which is then processed
to yield the mature structural (VP1–VP4) and nonstructural proteins. Currently, EVs are
categorized into fifteen species (EV A–L and HRV A–C), but only seven can cause human
infection [2]. EVs were linked to a variety of clinical manifestations, including hand, foot,
and mouth disease (HFMD); acute myalgia; herpangina; conjunctivitis; and severe CNS
syndromes such as aseptic meningitis (AM) and acute flaccid paralysis (AFP) [3,4].
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Coxsackievirus B5 (CVB5) belongs to the species enterovirus B. The prototype strain
(Faulkner) was identified in the USA in a patient with a mild paralytic disease. CVB5,
like other EV-species members, is responsible for a wide range of clinical disorders, most
of which are self-limiting, ranging from herpangina and hand, foot, and mouth disease
to upper and lower respiratory infections [3]. However, it can also cause visceral and
neurological disorders such as AFP, AM, viral encephalitis, myopericarditis, and neonatal
sepsis-like disease [3,5]. Outbreaks of AM and encephalitis associated with CVB5 have been
widely reported worldwide, including fatal cases [6–9]. Despite its important impact on
human health, knowledge of molecular epidemiology and evolution remains very limited,
even though significant insights into genetic diversity among CVB5 strains have been
discovered in recent years [6,10–13].

In Brazil, although EVs have long been recognized and characterized as causative agents
of CNS infections, there is a limited number of studies on the molecular epidemiology of other
EV types besides E30 and E6 [7–9]. Furthermore, Brazil has a large territory, and knowledge
of the characteristics of the EV types circulating in the country is one of the most important
factors in better understanding infection and planning public health policies. In the current
study, we assessed the molecular and epidemiological characteristics of CVB5-related CNS
infections that occurred in Brazil from 2005 to 2018 within the context of the national EV
surveillance system. Our findings give insight into the genetic properties of CVB5 circulating
in Brazil, highlighting significant information regarding its genetic characteristics.

2. Materials and Methods
2.1. Study Background and Virus Isolation

The study comprised clinical and epidemiological information assessed in the scope of
the enterovirus surveillance program from the Brazilian Ministry of Health. Cerebrospinal
fluid (CSF; N = 6.808) and feces (N = 8.299) samples were collected from aseptic meningitis
and acute flaccid paralysis patients that attended the public hospital network from different
Brazilian regions. The samples were sent to the National Reference Laboratory on Polio
and non-polio enteroviruses from MoH. Clinical samples were used to inoculate human
rhabdomyosarcoma (RD), human cervix carcinoma (Hep2C), and L20B (cell line expressing
poliovirus receptor) cell lines as previously described [7,8]. Cell cultures showing cytopathic
effect (CPE) were harvested and kept (−20 ◦C) until typing. EV molecular detection was
performed by conventional RT-PCR in the culture supernatant. EV-positive was defined
as the presence of CPE followed by conventional reverse transcriptase polymerase chain
reaction (RT-PCR) for EVs.

2.2. Molecular Detection and Sequencing

Viral RNA was extracted from 140 µL of the culture supernatant using the QIAamp
viral RNA mini kit (Qiagen, Hilden, Germany) and used as a template for cDNA construc-
tion using random primers (Promega, Madison, WI, USA) and SuperScript III Reverse
Transcriptase (Invitrogen, Calrsbad, CA, USA) according to the manufacturer’s instructions.
RT-PCR was performed with the primer pairs HEVBS1695 and HEVBR132 (for the entire
VP1) [14]. After 40 cycles (94 ◦C/15 s, 55 ◦C/20 s, and 72 ◦C/50 s), PCR products were
submitted to electrophoresis, and amplicons were gel-purified (QIAquick Gel Extraction
Kit, Qiagen, Hilden, Germany). Cycle sequencing reactions were performed by using the
ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Ready Reaction Kit (ABI PRISM
BigDye Terminator v.3.1, ABI, Waltham, MA, USA) in a GeneAmp PCR System 9700 ther-
mocycler ((Applied Biosystems, Foster City, CA, USA) with the primer pairs P1S1695S and
P2R132S (25 cycles of 96 ◦C for 10 s, 50 ◦C for 5 s, and 60 ◦C for 4 min) [14]. Products were
precipitated and examined as previously reported [8].

2.3. Phylogenetic Analysis

CVB5 sequences were deposited at the GenBank (NCBI) under the accession numbers
OK031005-OK031034 and OK149119-OK149134. Representative CVB5 sequences were down-
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loaded from Genbank (https://www.ncbi.nlm.nih.gov/nucleotide/, accessed on 10 October 2021)
and added to our dataset. Faulkner (AF114383.1) was used as reference strain. For phylo-
genetic reconstruction, sequences were aligned using Muscle [15] available in the Mega 7.0
package [16], and the best nucleotide substitution model was determined by using JModeltest,
Version 2.1.4 [17]. The temporal structure of the dataset was verified using TempEst Ver-
sion 1.5.1 [18]. Afterward, phylogenetic trees were reconstructed by a Bayesian Markov Chain
Monte Carlo (MCMC) method, accessible in the BEAST software package, Version 1.10 [19,20].
Time calibration was set based on the year of sample collection, and the general time reversible
(GTR) with gamma-distributed rates and invariant sites was employed as the nucleotide
substitution model. Beast runs were carried out using the uncorrelated lognormal relaxed
molecular clock model and a time-aware Gaussian Markov Random Field (GMRF) Bayesian
skyride coalescent tree prior [21,22]. The length of MCMC chains was established as 30 million,
sampled every 30,000 steps. Trace files generated through Bayesian phylogenetic inference
were visualized and analyzed in Tracer Version 1.7 [23]. Convergence of parameters was con-
sidered in the presence of effective sample size (ESS) values exceeding 200. Three independent
Beast runs were performed, and .log and .trees output files were further combined (LogCom-
biner Version 1.10.0). The target Maximum Clade Credibility (MCC) tree was summarized by
TreeAnnotator 1.8.4, with a burn-in corresponding to 10% of states. MCC trees were visualized
and edited in FigTree, Version 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on
29 October 2021). Beast runs were performed in CIPRES Science Gateway [24].

2.4. In Silico Analysis

The sequences were aligned by BioEdit (7.2.5.0) and T-Cofee [25,26] and grouped
according to amino acid residues. The VP1 sequences were analyzed by changes in chemical
characteristics of sidechains—according to the BLOSUM62 substitution matrix [27] in
the sidechain volume (A3) [28] and hydropathy changes in residues [29]. PROVEAN
(Protein Variation Effect Analyzer) approach was used to evaluate the possible structural
and functional changes in the VP1 protein compared to the reference sequence [30]. In
PROVEAN, a threshold of −2.5 was used (a score ≤ −2.5 was considered deleterious,
while a score > −2.5 was considered neutral).

The structure of the asymmetric unit of the prototype strain (Faulkner, AF114383.1)
was modeled from the CVB5 F-particle Cryo-EM structure (PDB access 7C9Y) for the
Peterborough strain (UniProtKB—Q03053) applying the mutated residue module of VMD—
Visual Molecular Dynamics software [31]. The prototypic structure and the consensus
sequences were modeled starting from this structure. Images were rendered by VMD and
PyMOL (Molecular Graphics System, Version 2.0 Schrödinger, LLC, New York, NY, USA).

3. Results

During the last fifteen years (2005–2018), 57 CVB5 isolates (42 CSF and 15 feces) were
recovered in clinical samples from patients clinically diagnosed with aseptic meningitis
or AFP. Brazilian CVB5 isolates revealed nucleotide and amino acid similarities ranging
from 76.3 to 82.4% (mean 77.5%) and above 96.0% in relation to the prototype (Faulkner-
AF114383), respectively. CVB5 isolates from 2005 to 2006 showed a lower nucleotide
similarity (76.3–78.2%) compared to more recently Brazilian isolates (2017–2018) circulating
in the country (81.5–82.4%).

The phylogenetic analysis of complete VP1 CVB5 sequences was grouped into two
large distinct groups (A and B) and two subgenogroups (A4 and B2) (Figure 1). Genogroup
B comprised the majority of sequences assessed in this study and seemed to circulate in
Brazil until 2016, being further replaced by genogroup A. The last was composed of four
Brazilian CVB5 isolates circulating in 2017–2018, suggesting a more recent introduction
of this genogroup (Figures 1 and 2). Additionally, Brazilian CBV5 isolates belonging to
subgenogroup A4 were genetically related to viruses previously identified in Haiti in 2016,
while subgenogroup B2 grouped with CVB5 identified in France (2010–2012 and 2015) and
Turkey (2016) (Figure 1).

https://www.ncbi.nlm.nih.gov/nucleotide/
http://tree.bio.ed.ac.uk/software/figtree/
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Figure 1. Phylogenetic reconstruction of CVB5 VP1 gene (849 bp), based on Brazilian isolates from meningitis and acute flaccid paralysis cases (represented in blue)
and their closely related representative genotypes (represented in red, green and black) and sequences. In the temporal maximum clade credibility (MCC) tree,
the posterior probabilities are shown on color and size scale. Scale—the node circle size is proportional to posterior probability support. The strain name, year of
sampling, and GenBank accession numbers are also presented.
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Figure 2. CVB5 distribution among AFP and aseptic meningitis cases in Brazil, 2005–2018. Surveil-
lance data for AFP and aseptic meningitis (black line) and distribution of CVB5 genogroups strains
(histogram bars) over time.

The amino acid variability in VP1 protein among the Brazilian CVB5 isolates was also
explored. VP1 is the most external capsid protein, composed of two important regions:
the “canyon” and “pocket factor”—critical structures associated with receptor binding and
viral uncoating. Additionally, the VP1 region comprises major neutralizing antigenic sites
represented by surface loops—located around the icosahedral five-fold axes, including the
BC loop—an important immunogenic site located between the β-sheets B and C [32,33].
Amino acid substitutions within the loop region can confer resistance to neutralization by
antibodies directed against the viral capsid [34,35]. Thus, we explored the deduced amino
acid sequences from the BC loop and surrounding regions of the prototype strain and our
Brazilian CVB5 isolates. The amino acid alignment revealed 251 (89.0%) conserved and
31 (11.0%) variable positions in the VP1 protein compared to the prototype strain (Faulkner
strain). In addition, five substitutions were found in the BC loop region (Figure 3). T84A
and A90T were only found once, whereas D87N and A90G were observed in two and four
CVB5 isolates, respectively. Among CVB5 isolates, the substitution Q91Y was found in all
analyzed sequences (Figure 3). As can be shown by the sequence logo program output
(Figure 3), parts of amino acids in the prototype sequence were completely replaced by
others with similar or different properties.

Based on amino acid sequences, genogroup A of the CVB5 isolates in this study was
defined by substitutions I7V, G19E, A90G, Q91Y, N95S, S125T, K132Q, R200Q, V235A,
V248A, S268T, G273S, and T275I, whereas the genogroup B was defined by the substitutions
G4E, A6S, I7V, R9Q, I18M, G19S, H82Y, T84A, D87N, A90T, A91Y, S125T, T130N/T130A,
K132Q, S136A, V156I, S158C, V169I, M180I, V235I, Q258E, N262S, S268T, G273S, D276,
and T279A (Table 1). I17V, Q91Y, S125T, K132Q, S268T, and G273S were shared for all
Brazilian isolates independently of the genogroup. In addition, different substitutions were
observed in the same position: G19E, A90G, V235F (subgenogoup A4) and G19S, A90T,
V235A (subgenogoup B2) (Table 1).

Amino acid substitutions at the interaction interface may result in binding affinity
changes. For instance, these substitutions can affect the structure of the protein complex,
folding protein, antibody virus, and receptor binding. In order to evaluate the putative
impact of amino acid substitution on the capsid structure, we carried out in silico analysis
with the PROVEAN algorithm. PROVEAN can provide a broad approach to predicting
the functional effects of protein sequence variations, such as single or multiple amino acid
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substitutions [30]. Analysis of the Brazilian sequences identified 35 different amino acid
substitutions in the VP1 protein. Of those, only 5.7% (2/35) were predicted by PROVEAN
to be structurally or functionally deleterious: T130N and T130A were detected in OK149121
and OK149124 sequences, respectively (Table 1). Conversely, the predicted impact of other
substitutions was considered to have a neutral effect, suggesting these variations are not
decreasing the viral fitness (Table 1).
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Figure 3. Alignment of deduced amino acid sequences of the VP1 protein from Brazilian CVB5
isolates with the prototype sequence showing variable sites. The dots (.) denote amino acids that are
identical to those found in the prototype strain, while the amino acid symbols denote amino acids
that are not connected to the prototype. The frequency of aa along the protein is indicated by the
letter sequence at the top of the picture.

Table 1. Changes and prediction of amino acid substitution impact in the VP1 protein from Brazilian
CVB5 isolates.

VP1 Amino Acid
Residue

Prototype
Strain

Residue
Genogroup A Genogroup B PROVEAN

Prediction

Position Location A0 A1 A2 A3 A4 B0 B1 B2
4 N-terminus G G4E Neutral
6 N-terminus A A6S Neutral
7 N-terminus I I7V I7V Neutral
9 N-terminus R R9Q Neutral

18 N-terminus I I18M Neutral
19 N-terminus G G19E G19S Neutral
82 BC-loop H H82Y Neutral
84 BC-loop T T84A Neutral
87 BC-loop D D87N Neutral
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Table 1. Cont.

VP1 Amino Acid
Residue

Prototype
Strain

Residue
Genogroup A Genogroup B PROVEAN

Prediction

90 BC-loop A A90G A90T Neutral
91 βC-strand Q Q91Y Q91Y Neutral
95 CD-loop N N95S Neutral
125 βD-strand S S125T S125T Neutral
130 DE-loop T T130A/T130N Deleterious
132 DE-loop K K132Q K132Q Neutral
136 DE-loop S S136A Neutral
156 EF-loop V V156I Neutral
158 EF-loop S S158C Neutral
169 βF-strand V V169I Neutral
180 βG-strand M M180I Neutral
200 βH-αF R R200K Neutral
235 βJ-strand V V235I V235A Neutral
248 C-terminus V V248A Neutral
258 C-terminus Q Q258E Neutral
262 C-terminus N N262S Neutral
268 C-terminus S S268T S268T Neutral
273 C-terminus G G273S G273S Neutral
275 C-terminus T T275I Neutral
276 C-terminus D D276E Neutral
279 C-terminus T T279A Neutral

Position: the amino acid residue in the asymmetric unit. Location: the position at the tertiary structure where alfa
helices are represented by α and beta strands are represented by β, followed by a sequential alphabetical index.
The loop between β-stand and α-helice was represented by βH-αF. Mutations identified inside the secondary
structure element were identified by βC-strand, βD-strand, βF-strand, βG strand, and βJ strand. Proto strain
residue: the amino acid residue in the prototypic strain. Genogroup: the identified groups in phylogenetic analysis.
PROVEAN prediction: the PROVEAN algorithm result for the amino acid residue substitution.

The impact of VP1 protein amino acid changes on the structure of Brazilian CVB5
isolates was also investigated. Figure 4 depicts the substitution positions observed in this
study and as they appear in the asymmetric unit on the surface of the virus (Figure 4A).
The N-terminus mutations are found on the inner face of the capsid. For instance, G19S was
detected in 42 out of 46 sequences and presented a significant change in sidechain volume
(48%), including a slight change in electronegativity at this position when compared to
the prototypic sequence (Figure 4B,C (B2_OK031028) and Supplementary Table S1). The
remaining changes in genogroup B2 were low-frequency mutations, where it is interesting
to highlight mutation I18M, which represents a significant change in the hydrophobic
nature of this position (Figure 4C (B2_OK031030)). Interestingly, the sequence OK031031
(genogroup A) showed the mutation G19E, which introduced a negative charge at the
position and increased sidechain volume significantly (Figure 4C (A4_OK031031) and
Supplementary Table S1).

Regarding BC-loop and adjacent regions, the Brazillian CVB5 isolates presented the
substitutions H82Y, T84A, D87N, A90G, A90T, Q91Y, and N95S. Genogroup A4 showed
the most impacted sequences, enclosing the cluster of mutations A90G, Q91Y, and N95S.
Intriguingly, mutation A90G, which is not on the capsid surface, reduces sidechain volume
and hydrophobicity, allowing this loop area to be more flexible (Supplementary Table S1).
Simultaneously, these mutations would change the loop flexibility. Mutation N95S, also
buried in the structure, causes a loss of charge in this position. The mutation Q91Y
exchanges a carboxiamide sidechain to an aromatic ring with a hydroxyl group, in-
creasing the sidechain volume and hydrophobic surface (Figure 4D (A4_OK031032) and
Supplementary Table S1) would be interesting for molecular recognition. Low-frequency
mutations H82Y, T84A, A90T, and D87N were found in Genogroup B2. In this group, the
sequence OK_031030 showed two positions simultaneously mutated (T84A and D87N)
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(Figure 4D (B2_OK031030)). Figure 4D shows the effect of this mutated patch, which has
enhanced hydrophobicity due to T84A and lost negative charge due to D87N (Figure 4D
(B2_OK031030). Finally, it is interesting to highlight the mutation H82Y, representing a
meaningful change in the hydrophilic character and volume of the position in sequence
OK_149124 (Figure 4D (B2_OK149124) and Supplementary Table S1).
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substitutions G19S and the sequence I18M, G19S, and G19E. (D) BC-Loop was represented as the 

Figure 4. Structural features of VP1 in the asymmetric unit of CVB5 show the sites with modifications
and how they are exposed to the virus surface. (A) Map of the mutations identified in Brazilian CVB5
isolates on the asymmetric unit of Faulkner prototypic strain with VP1 represented as the tertiary
structure and VP2 (cyan), VP3 (gray), and VP4 (green) represented as surfaces. The interacting loops
were indicated as BC-Loop (residues from 82 to 90), DE-Loop (residues from 127 to 137), EF-Loop
(residues from 148 to 166), FG-Loop (residues from 172 to 177), and HI-Loop (residues from 223
to 230). The position of the hydrophobic pocket, where the palmitic acid molecule is bound, was
represented as a yellow transparent surface. Mutations were represented by the residue Cα atom
represented as vdW sphere. (B) Rotation of 180◦ showing of the VP1 N-terminus in the capsid
inner face. (C) VP1 N-terminus was represented as the electrostatic surface showing the Faulkner
strain G19 position and representative sequences OK031028, OK031030, and OK31031, showing the
substitutions G19S and the sequence I18M, G19S, and G19E. (D) BC-Loop was represented as the
electrostatic surface showing in detail the position of the mutations and the five-fold axis, the effect
of Q91Y mutation represented by OK031032, T84A, D87N, and Q91Y by OK31030 and H82Y by
sequence OK149124. (E) The five-fold axis for the Faulkner strain, where VP1 was represented as the
electrostatic surface, shows the central location of DE-Loop and the positive structural patch (blue)
due to the charge of residue K132. (F) The five-fold axis for the sequence OK149124 shows the effect
of the mutation K132Q, eliminating the central positive patch.

The DE-loop is on the five-fold axis, and it shows two high-frequency substitutions in
both genogroups, S125T and K132Q. T130N, T130A, and S136A are three low-frequency
mutations found in genogroup B2. The mutation S125T was detected in all reported
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sequences, showing a slight modification in the hydrophilic character, whereas the mutation
K132Q results in a considerable shift in charge distribution along the five-fold axis.

A central positive patch in the prototypic sequence (Figure 4E—Faulkner strain) is
substituted by a diffuse negative charged patch (Figure 4F (B2_OK149124)). Two low-
frequency mutations in the genogroup B2 that were considered remarkably deleterious
by the PROVEAN algorithm showed a significant charge increase (T130N) and a gain
in the hydrophobic character (T130A). The relative localization of these mutations was
presented in Figure 4F, delimited by the black line, which included the central patch of the
K132Q mutation.

The C-terminus is exposed at the virus surface as an interacting region. The high-
frequency substitutions S268T and G273S were identified in all 46 sequences. S268T remains
the same residue sidechain chemical function with a slight volume change, and G273S
increases the hydrophilic character of the position (Figure 4F and Supplementary Table S1).
D276E also remains the sidechain chemical function, while the T279A mutation shows a
decreased sidechain volume and increased hydrophobicity. The most noticeable changes
in Genogroup A4 in opposition to B2 were (i) the absence of mutations in positions D276
and T279, (ii) the mutation R200K, with a decreased sidechain volume, and (iii) a di-
verging sequence in genogroup A4, OK031031, that includes the low-frequency muta-
tion T275I, showing a dramatic increase in hydrophobicity and sidechain volume change
(Supplementary Table S1).

4. Discussion

Numerous studies about CNS infection have been conducted in recent years, and non-
polio enteroviruses have mostly been reported as an important causative agent associated
with sporadic cases and outbreaks [7,8,36–38]. In this context, we evaluated the epidemio-
logical and molecular characteristics of CVB5 isolated from CNS infections between 2005
and 2018 in Brazil.

The phylogenetic analysis of CVB5 Brazilian sequences revealed the circulation of two
genogroups of CVB5 in the country. The replacement of genogroups over time was evident
in our analyses. Up to 2016, only genogroup B circulated in Brazil. Since the introduction
of genogroup A in 2017, however, a virtual switch took place. Our results show that the
formation of different genogroups A and B determined in this study by Brazilian isolates
was strongly related to the year of isolation. To the best of our knowledge, this is the first
report on a change in the circulation pattern of CVB5 in Brazil.

Due to the high selectivity to escape the immune system, the VP1 gene has low
nucleotide similarity among all EV genes [11]. As a result, the complete or partial VP1
encoding region must share >75% nucleotide identity and >85% amino acid similarity to
be classified as the same EV type [39,40]. The analysis of our sequences showed a low
nucleotide identity (76.3–82.4%). Similar results have already been reported with other EVs,
where the nucleotide identity values were relatively low, but the amino acid similarity was
quite high [40]. It is worth noting that Brazilian isolates belonging to genogroup A showed
a nucleotide similarity higher than genogroup B. Further studies must be conducted to
ascertain the putative biological impact of these differences.

As a result of the low identity verified in the Brazilian isolates compared to the
prototype strain, we also analyzed the VP1 protein and the possible substitutions in the
different antigenic and receptor binding sites. As previously described, the main changes
observed in VP1 are in the N- and C-termini and in loops regions that connect the beta-
sheets of the protein’s secondary structure present in conical β-barrel commonly seen
in the viral capsid protein [41]. This β-barrel domain is composed of eight antiparallel
β-strands (strand B-I), and it plays a critical role in the stability of the virion [5,41,42].
The loops are located on the surface of the virion and are readily accessible to the host
immune system [5]. Thus, modifications into loop regions can be associated with escape
from neutralization by antibodies and the high antigenic diversity of enteroviruses. Our
results showed substitutions in residues 7, 19, 90, 95, 156, 180, 248, 273, 275, 276, and
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279. These substitutions were also verified in previous studies [11,39]. In addition, other
substitutions were also identified in residues 4, 6, 9, 18, 82, 84, 87, 91, 125, 130, 132, 136,
158, 169, 200, 235, 258, 262, and 268. Some of these substitutions correspond to antigenic
sites located within the loop region, and others are in the CAR receptor-binding domain
(coxsackievirus-adenovirus receptor). Additionally, substitutions were also observed in the
hydrophobic pocket region that may be associated with tropism for neuronal cells [39].

It is worth mentioning that analysis performed through the PROVEAN approach
highlighted important substitutions associated with hydropathy, global charge, and volume
modifications of the VP1 protein with potential impact on the three-dimensional protein
structure. Some were within the loop and βG regions. Additionally, substitutions located
on DE-loop were considered deleterious: T130N and T130A. Although these substitutions
were considered deleterious, we cannot exclude the possibility of a milder infection or even
a loss in viral fitness. These deleterious substitutions in the amino acid residue 130 were
found among sequences belonging to genogroup B. The contribution of this event to a loss
of viral fitness compared to genogroup A viruses and the putative impact on circulation
patterns remains to be established.

Despite the simultaneous change in volume, hydrophobicity, and global protein charge,
these changes presented a neutral effect, according to PROVEAN analysis. It is worth
noting that even neutral mutations can have an effect when combined with substitutions in
other regions of the viral genome. Thus, the biological significance of those substitutions
should be further evaluated.

Three major substitutions (Q91Y, S125T, and K132Q) were present in all Brazilian
isolates compared to the prototype virus. These substitutions, mainly Q91Y, have already
been observed in previous studies with CVB5 and seem to be related to changes in es-
cape/affinity to neutralizing antibodies [43,44]. The substitutions T84A, D87N, A90G,
A90T, and Q91Y were specifically located within the BC loop. Previous studies involving
EV-A71 revealed that only one substitution (L97R) within the BC loop region was able to
increase viral tropism for neuronal cells [45]. Our findings do not allow us to evaluate the
possible role of these mutations in escape to antibody neutralization or affinity to neuronal
cells, as previously suggested [44,45].

Another remarkable finding was the identification of three substitutions characteristic
of Brazilian isolates belonging to genogroup A: A90G, N95S, and R200K. Furthermore,
substitutions S268T, G273S, D276E, and T279A are located at the C-terminus of the VP1
protein and exposed on the viral surface. Thus, they can play a critical role in interaction
with cell receptors [11]. It is worth noting that the D276E and T279A substitutions were not
present in the Brazilian isolates of genogroup A, but their presence in the Brazilian isolates
belonging to genogroup B was remarkable. Indeed, some of the substitutions reported,
such as A90G (genogroup A) and D276E, T279A, V156I, and M180I (genogroup B), can be
the evolutionary pathway of lineages/genogroup [11]. We also identified the substitution
R200K as a fingerprint to CVB5 belonging to genogroup A.

It is worth mentioning that although the inferred substitution CVB5 rate is 0.77 × 10−2

substitutions per site per year [46], we cannot disregard the possibility the impact of the
isolating in cell cultures changes the genome, leading to the identification of sequences that
were not due to circulation in human populations.

The difficult access to patient records in order to putatively associate amino acid
substitutions with a clinical presentation of the patients, as well as a more thorough patient
follow-up to track sequelae emergence in CNS disorders, constituted limiting factors in
this investigation.

In conclusion, the present study reveals the circulation pattern of CVB5 in Brazil, as
well as the introduction of a new genogroup from 2017 associated with SNC syndromes. We
also have demonstrated a higher variation among CVB5 sequences with a potential impact
on the three-dimensional protein structure that can be critical for CVB5 neurovirulence and
resistance to antibody neutralization. Sequence analyses have led to the identification of a
number of viral determinants in enterovirus associated with viral fitness and virulence [47].
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Many of these determinants consist of amino acid residues located in the VP1 protein,
affecting the early events of virus-host interaction. The putative impact of the substitutions
in VP1 sequences, mainly genogroup-specific, is ongoing for a better understanding of
virus-host cell interaction. Considering that EV infections are an important public health
concern and taking into account their high mutation/recombination rate, EV surveillance
policies must improve to timely detect and characterize at the molecular level the circulating
of novel emergent viruses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14050899/s1, Table S1. In silico Analysis of Virus Asymmetric
Unit Mutations [29].
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Abbreviations

A6S Replacement of alanine by serine at position 6 of the VP1 protein
A90G Replacement of alanine by glycine at position 90 of the VP1 protein
A90T Replacement of alanine by threonine at position 90 of the VP1 protein
D87N Replacement of aspartic acid by asparagine at position 87 of the VP1 protein
D276E Replacement of aspartic acid by glutamic acid at position 276 of the VP1 protein
G4E Replacement of glycine by glutamic acid at position 4 of the VP1 protein
G19E Replacement of glycine by glutamic acid at position 19 of the VP1 protein
G19S Replacement of glycine by serine at position 19 of the VP1 protein
G273S Replacement of glycine by serine at position 273 of the VP1 protein
H82Y Replacement of histidine by tyrosine at position 82 of the VP1 protein
I7V Replacement of isoleucine by valine at position 7 of the VP1 protein
I18M Replacement of isoleucine by methionine at position 18 of the VP1 protein
K132Q Replacement of lysine by glutamine at position 132 of the VP1 protein
M180I Replacement of methionine by isoleucine at position 180 of the VP1 protein
N95S Replacement of asparagine by serine at position 95 of the VP1 protein
N262S Replacement of asparagine by serine at position 262 of the VP1 protein
Q91Y Replacement of glutamine by tyrosine at position 91 of the VP1 protein
Q258E Replacement of glutamine by glutamic acid at position 258 of the VP1 protein
R9Q Replacement of arginine by glutamine at position 9 of the VP1 protein
R200K Replacement of arginine by lysine at position 200 of the VP1 protein
S125T Replacement of serine by threonine at position 125 of the VP1 protein
S136A Replacement of serine by alanine at position 136 of the VP1 protein

https://www.mdpi.com/article/10.3390/v14050899/s1
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S268T Replacement of serine by threonine at position 268 of the VP1 protein
T84A Replacement of threonine by alanine at position 84 of the VP1 protein
T130A Replacement of threonine by alanine at position 130 of the VP1 protein
T130N Replacement of threonine by asparagine at position 130 of the VP1 protein
T275I Replacement of threonine by isoleucine at position 275 of the VP1 protein
T279A Replacement of threonine by alanine at position 279 of the VP1 protein
V156I Replacement of valine by isoleucine at position 156 of the VP1 protein
V235I Replacement of valine by isoleucine at position 235 of the VP1 protein
V235A Replacement of valine by alanine at position 235 of the VP1 protein
V248A Replacement of valine by alanine at position 248 of the VP1 protein
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