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Abstract: Cancer-induced immunosuppression significantly impacts tumors, rendering them 

the ability to acquire aggressive and treatment-resistant phenotypes. The recent clinical suc-

cess of drugs targeting the immunosuppressive machinery of tumors highlights the importance 

of identifying novel drugs that effectively augment antitumor immunity and elicit clinical 

remission in advanced tumors. T cell immunoglobulin domain and mucin domain-3 (TIM-3) 

is a critical immunoregulatory molecule that links pattern recognition-mediated innate sens-

ing with antigen-specific immune responses. Recent evidence has elucidated the potential 

utility of drugs targeting TIM-3 in inducing antitumor responses, particularly in synergy with 

conventional anticancer regimens. Herein, we provide a comprehensive overview, as well as 

future perspectives, regarding the role of TIM-3 as an emerging target that may improve clinical 

responses for cancer patients.

Keywords:  tumor immunoevasion, antibody, immunosuppression, antitumor 

response, TIM-3

Introduction
Cancer immunoevasion
Emerging evidence has unveiled the indispensable role of the host immune system 

in defending itself from arising tumors. The host immune system acts to detect and 

eliminate tumors in three ways: 1) immune cells protect the host against viral infec-

tion and suppress virus-induced tumors, 2) innate immune cells eliminate cancer cells 

through activation of pattern recognition-mediated sensing systems, and 3) antigen-

specific T cells recognize tumor rejection antigens on cancer cells. These immune 

system processes, which suppress tumor initiation and progression, are collectively 

termed “immunosurveillance.”

However, rare cancer cells escape immunosurveillance and emerge as progres-

sively growing tumors. This ability to escape recognition by the host immune system 

arises via various mechanisms. For example, genetic and epigenetic alterations can 

render tumor cells capable of reducing immune recognition (for example, by a loss 

of antigens). Alternatively, cancer cells may create immunosuppressive states by 

producing immunoregulatory cytokines such as vesicular endothelial growth factor 

(VEGF), transforming growth factor-beta, galectin-1, indoleamine 2,3-dioxygenase or 

by recruiting regulatory immune cells (forkhead box P3 [Foxp3]+ regulatory T cells and 

myeloid-derived suppressor cells) that function as effectors of immunosuppression.1–8 

In addition, host immune systems can also promote tumor progression by the selection 

of cancer cells that thrive, thus supporting tumor progression and anticancer drug 
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resistance in privileged tumor microenvironments (TMEs). 

As a result, cancer cells are able to manipulate host immune 

systems to further enhance tumorigenicity.9,10

Cancer-induced immunoevasion is a major player in the 

suppression of the antitumor efficacy of immunotherapy.11,12 

Moreover, cancer-mediated immunomodulation has a pro-

found impact on many antitumor therapies including che-

motherapy and molecular targeting strategies.13,14 Therefore, 

a deeper understanding of the molecular machineries by 

which cancer-induced immunomodulation influences the 

therapeutic responses to anticancer regimens is necessary 

in order to devise new strategies to improve the clinical 

prognosis of cancer patients.

Recent evidence has revealed that T cell immunoglobu-

lin (Ig) domain and mucin domain (TIM)-3 functions as a 

critical checkpoint, regulating numerous aspects of tumor 

immunomodulation.15 This review provides an overview of 

the immunoregulatory functions of TIM-3 and perspectives 

regarding the potential of a TIM-3-targeted strategy as a new 

option in treating cancer patients.

TIM-3: brief overview  
of physiological functions
TIM-3 was identified as a molecule expressed on interferon 

(IFN) γ-producing CD4+ T-helper type 1 (Th1) and cluster 

of differentiation (CD)8+ T-cytotoxic type 1 (Tc1) cells.15 

TIM-3 belongs to the TIM family of molecules that, in mice, 

contains eight members. Only TIM-1, TIM-3, and TIM-4 

are expressed in humans. TIM-3 consists of an N-terminal 

IgV domain followed by a mucin domain, a transmembrane 

domain, and a cytoplasmic tail (Figure 1). Four noncanonical 

cysteines in the IgV domain are conserved in all TIM-family 

genes across mice and humans, forming a unique binding 

cleft not seen in the Ig domain of any other Ig superfamily 

IgV domain

Mucin domain

Transmembrane region

Cytoplasmic region

O-linked glycosylation N-linked glycosylation

Mouse Human

Figure 1 Schema of human and mouse T cell immunoglobulin domain and mucin domain-3 (TIM-3) protein structures. TIM-3 consists of an N-terminal immunoglobulin (Ig) v  
domain followed by a mucin domain, transmembrane region, and a cytoplasmic region. The Igv and mucin domains contain O- and N-linked glycosylation sites.
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member.16,17 Interestingly, the cleft structure surrounded by an 

α-loop in TIM-3 has been shown to be important for binding 

phosphatidylserine (PS), which mediates uptake of apoptotic 

cells by macrophages and dendritic cells.18,19

TIM-3 interacts with multiple ligands, including galec-

tin-9 (Gal9) and cell-surface PS, leading to various biological 

consequences. The binding of TIM-3 to Gal9 or high mobility 

group protein B1 (HMGB1) generates an inhibitory signal 

that results in the apoptosis of Th1 cells.20,21 Continuous 

exposure to interleukin 12 induces TIM-3 expression on 

intra-tumor T cells, triggering functional impairment and 

exhaustion.22 TIM-3 expressed on other immune cells such as 

natural killer cells and dendritic cells (DCs) is also involved 

in immunoregulatory functions. For example, TIM-3 

regulates the differentiation and immunogenic activities of 

natural killer cells.23,24 TIM-3 expressed on DCs promotes 

the phagocytosis of apoptotic cells through interaction 

with PS, which enhances antigen presentation and triggers 

immune tolerance,18,19 whereas it negatively regulates  pattern 

recognition-mediated innate immune  systems.25 Further, 

TIM-3 synergizes with Toll-like receptors to induce inflam-

mation by activating the transcription factor nuclear factor 

kappa B and enhancing the secretion of pro-inflammatory 

mediators.26

Together, these findings suggest that TIM-3 controls both 

the tolerogenic and immunostimulatory properties of various 

subsets of immune cells. These dual TIM-3 functions may be 

regulated differentially at various stages of tumorigenicity 

and/or by distinct TME subtypes (Figure 2).

Role of TIM-3 in cancer 
immunosuppression
Accumulating evidence has revealed that TIM-3 plays 

a critical role in negatively regulating T cell-dependent 
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TIM-3
PD-1

T cell stimulation Expressions of 
PD-1 and TIM-3
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Figure 2 Role of T cell immunoglobulin domain and mucin domain-3 (TIM-3) in cancer immunosuppression.
Notes: (A) Exhaustion of T cells by TIM-3 and programmed cell death protein 1 (PD-1). Tumor-infiltrating T cells secrete interferon-γ (IFNγ) upon binding of tumor antigens 
by T cell receptors (TCR). However, TIM-3 and PD-1 are upregulated on tumor-infiltrating T cells upon chronic exposure to antigenic stimuli, and interact with galectin-9 
(Gal9) and programmed cell death 1 ligand 1 (PD-L1) expressed on tumors or tumor-infiltrating stromal cells. These interactions impair the effector activities of tumor-
infiltrating T cells, leading to cancer immunosuppression. (B) Immunosuppression of dendritic cells (DCs) by TIM-3. TIM-3 expression on DCs is induced via stimulation by 
interleukin (IL) 10 and vascular endothelial growth factor A (VEGF-A), which are mainly secreted from tumor microenvironments (TMEs). TIM-3 on DCs binds high mobility 
group box 1 (HMGB1) from inflammatory TMEs, and negatively regulates the HMGB1-mediated recruitment of TMR-derived nucleic acids, thereby suppressing the innate 
immune systems. As a result, TIM-3 on DCs enables tumors to acquire immunosuppressive capabilities.
Abbreviations:  TCR, T cell receptor, veGF, vascular endothelial growth factor; DC, dendritic cells.
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immunosurveillance. For example, the exhausted pheno-

type of tumor-infiltrating T cells is manifested by the co-

expression of TIM-3 and programmed cell death protein 1 

(PD-1), which is closely correlated with dampened tumor 

antigen-specific responses.27,28 In addition, TIM-3 expres-

sion may represent a distinct immunosuppressive feature of 

Foxp3+ regulatory T cells, although the relative importance 

of this population compared with other subsets requires 

clarification.29 These findings collectively suggest that TIM-3 

functions as a critical negative regulator of tumor-specific 

recognition by T cells.

Immune regulation by innate immune cells has emerged 

as an indispensable defense system against tumor growth 

and progression.30 Consistent with the role of TIM-3 in 

regulating antitumor innate immune responses, together 

with colleagues, we recently showed that TIM-3 functions to 

suppress the nucleic acid-mediated innate immune responses 

of tumor-infiltrating DCs.26 TIM-3 is expressed on DCs in 

tumors at much higher levels than on DCs in normal tissues, 

and preferentially binds HMGB1, which has a critical role in 

stimulating nucleic acid-mediated innate immunity.31,32 TIM-3 

negatively regulates the HMGB1-mediated recruitment of 

nucleic acids to the endosomal compartment of DCs, thus 

shutting down the downstream signaling cascades mediated 

by Toll-like receptors and cytosolic sensors. These results 

demonstrate that TIM-3 on DCs enables tumors to evade 

immunosurveillance by attenuating the sensing of nucleic 

acids that are potentially released upon anticancer treatment 

and/or endogenous tumor-associated inflammation.26

More importantly, recent clinical studies have revealed 

that TIM-3 may serve as a prognostic marker to predict poor 

responses to anticancer therapies and, therefore, poor survival 

in patients with non-small cell lung carcinomas and clear-cell 

renal-cell carcinomas.33,34

Together, TIM-3 serves as a negative regulator of both 

innate and antigen-specific immune responses, thereby 

establishing an ideal environment for tumor immunoevasion 

and tumorigenicity.

Targeting immunoevasion  
by anticancer drugs: brief  
overview of current status
Recent advances in clarifying the molecular and cellular 

mechanisms of immune regulation of tumors have led to 

breakthroughs for developing novel drugs that specifically 

target the immunoregulatory functions of lymphocytes and 

myeloid cells.35,36 In particular, the targeting of immune 

checkpoint molecules is currently at the forefront of 

cancer immunotherapy.37 Treatment with an anti-cytotoxic 

T-lymphocyte antigen 4 (CTLA-4) (ipilimumab) has extended 

the overall survival of patients with advanced melanomas 

compared with vaccination with gp100 peptide, and the 

combined regimens of anti-CTLA-4 with dacarbazine signifi-

cantly improved the overall survival of previously untreated 

melanoma patients compared with dacarbazine alone.38,39 

Moreover, early clinical studies revealed that monoclonal 

antibody (mAb)-mediated targeting of PD-1 (nivolumab), 

programmed cell death 1 ligand 1, or the combination of PD-1 

and CTLA-4 elicited potent antitumor immune responses 

and improved clinical responses in patients with metastatic 

melanomas, non-small cell lung carcinomas or renal-cell 

carcinomas.40–42 The activation of CD40 by an agonistic mAb 

(CP-870,893) promoted immunogenic activities of tumor-

infiltrating macrophages, which led to the differentiation 

of tumoricidal stromata and triggered clinical responses in 

patients with pancreatic cancer.43 These results decisively 

provide a proof-of-concept that the reversal of tumor-induced 

immunomodulation by mAb changes the clinical prognosis 

in patients with treatment-refractory cancers. Additionally, 

adoptive transfer of T lymphocytes engineered to express 

chimeric antigen receptor targeting tumor-specific antigens 

resulted in potent antitumor immune responses and long-term 

remission in some patients with chronic lymphoid leukemia 

and solid malignancies.44,45

More importantly, the profound effects of several 

immune-targeting drugs have prompted researchers and 

pharmaceutical industries to develop novel immunothera-

peutic drugs that target tumors and their immunosuppressive 

microenvironments. These are mainly comprised of mAbs 

targeting immune checkpoint and regulatory T cell func-

tions, such as anti-OX40 antibody, anti-CD137 antibody, 

anti-glucocorticoid-induced tumor necrosis factor receptor-

related protein antibody, etc.36,46–48 Together, these advances 

in the clinical development of immune-targeting drugs 

in coordination with scientific advances in understanding 

tumor immune responses should have a profound impact on 

constructing new strategies to combat malignant diseases in 

clinical settings.

The potential for targeting TIM-3  
as a new anticancer drug
Recent studies have identified TIM-3 as a promising can-

didate for a therapeutic target that may effectively trigger 

antitumor immune responses and clinical remission in cancer 

patients. In a preclinical study utilizing murine tumor models, 

treatment with an anti-TIM-3 mAb (RMT3-23) resulted in 
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substantial tumor regression by stimulating tumor-specific 

T cell immunity.49 Further, the anti-TIM-3 mAb synergized 

with anti-PD-1 mAb to augment antitumor responses by elim-

inating exhausted T cells in tumor tissues.25,26,50 Therefore, the 

pharmacological manipulation of TIM-3 functions results in 

the reversion of immunosuppressive TMEs and thus leads to 

profound improvements in anticancer responses in coordina-

tion with other treatment regimens including immunotherapy, 

chemotherapy, radiotherapy, and certain subsets of molecular 

targeting.

In accordance with our assumptions about the role of 

TIM-3 in the regulation of anticancer drug responses, with 

colleagues, we demonstrated that treatment with murine or 

human anti-TIM-3 mAb (RMT3-23 and ATIK2a, respec-

tively) augmented antitumor responses to cytotoxic che-

motherapy or immunotherapy by increasing the antitumor 

immunogenicity of nucleic acids released from TMEs.25,51 

Anticancer chemotherapies trigger the release of endogenous 

inflammatory mediators termed “damage-associated molecu-

lar pattern” (DAMP) molecules, such as HMGB1, adenosine 

triphosphate, and DNA, which serve as enriched sources for 

innate immune signals.52 Thus, the drugs targeting TIM-3-

mediated anti-inflammatory responses enhance the antitumor 

effects of chemotherapy by sensitizing DAMP molecule-

dependent innate immune surveillance. Moreover, recent 

evidence has revealed the importance of innate immune 

sensing systems in effectively triggering antigen-specific 

effector responses and differentiating memory T cells.53 Thus, 

it is tempting to speculate that TIM-3 stimulates antitumor 

innate sensing and immunological memory in synergy with 

inflammatory responses evoked by conventional anticancer 

regimens, thus opening new perspectives in the field of 

chemo-immunotherapy.

Despite these promising findings, which may pave the 

way for developing new and innovative immune targets 

and therapies for cancer patients, several issues remain 

unresolved regarding the role of TIM-3 in the regulation 

of antitumor responses to tumor immunotherapy in the 

course of tumor immunosurveillance and tumorigenic 

inflammation. Since TIM-3 serves as a negative regulator 

of both the innate and adaptive arms of immunity, block-

ade of TIM-3 should improve the therapeutic efficacy of 

immunotherapies in the early phase of tumor immuno-

surveillance. In contrast, the inhibition of TIM-3 may be 

detrimental in augmenting antitumor responses induced 

by immunotherapy in the background of pro-tumorigenic 

inflammation. Thus, our hypothesis highlights the com-

plex and dual features of TIM-3 in the regulation of 

therapeutic responses to anticancer modalities including 

immunotherapy.

In addition, the expression and function of TIM-3 in TME 

components other than immune cells, such as endothelial 

cells, fibroblasts, and so on, remains largely, un explored. 

Recent studies have identified TIM-3 as a functional marker 

that is specifically expressed on acute myeloid leukemia stem 

cells, raising the possibility that TIM-3 controls tumorige-

nicity by creating complex networks formed by tumorigenic 

cells and tumor-associated non-transformed cells.54–56 Further 

studies of the origins, inducers, and functional specialization 

of TIM-3-expressing cells in the tumor environment will help 

to clarify how TMEs regulate the balance between antitumor 

immunosurveillance and tumor-promoting inflammation.

It also remains unclear how ligation of TIM-3 on differ-

ent cell types can mediate the multiple immunoregulatory 

effects of different immune cell subsets. One key feature 

of TIM-3-mediated immune regulation is that TIM-3 has 

many ligands through which to exert multiple aspects of its 

biological activities. For example, Gal9 interacts with TIM-3 

through amino-linked carbohydrates, whereas HMGB1 and 

PS bind to TIM-3 through a metal ion-dependent ligand-

binding site in the FG loop of the Ig variable domain.17,18,26 

The binding of each ligand to the extracellular site of its 

receptor leads to conformational changes in the cytoplasmic 

tail, which activate alternative signaling pathways and thus 

exert distinct biological actions. Alternatively, it is tempt-

ing to speculate that post-translational modifications such 

as glycosylation may have a great impact on altering the 

immunological functions of TIM-3 in TMEs. Further studies 

should elucidate whether TIM-3 regulates pro- and anti-

inflammatory responses by selecting distinct ligands and/or 

that such regulation is mediated through post-transcriptional 

modification of TIM-3 itself.

Conclusion
Tumor immunosuppression has emerged as an important hall-

mark of tumorigenicity.57 Therapeutic intervention to correct 

immunosuppressive micro-environments may greatly improve 

the antitumor effects of cancer treatments, which include 

non-immunotherapeutic regimens such as chemotherapy 

and molecular target therapy.58,59 Given the recent impressive 

achievements in developing novel cancer immunotherapies, 

the therapeutic strategies of combining conventional antican-

cer modalities with the modification of immunosuppressive 

TMEs is a profoundly promising strategy for establishing 

long-term regression of aggressive tumors. Importantly, 

TIM-3 has been specifically detected on tumorigenic acute 
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myeloid leukemia cells and tumor-associated myeloid cells in 

contrast to non-tumor counterparts, justifying the targeting of 

TIM-3 as a new tumor-specific antitumor strategy.26,53,56 Thus, 

further understanding of the mechanisms for cancer-induced 

immunoevasion and the additional development of methods 

to overcome this evasion are critical to improve clinical remis-

sion in cancer patients in the future.
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