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ABSTRACT Mycobacterium tilburgii is a fastidious mycobacterium which has previ-
ously been reported to cause severe disseminated infections. Genome sequencing of
the M. tilburgii MEPHI clinical isolate yielded 3.14 Mb, with 66.3% GC content, and
confirmed phylogenetic placement within the Mycobacterium simiae complex.

Only 13 cases of Mycobacterium tilburgii infection have been reported, highlighting
host immunosuppression as a risk factor for M. tilburgii infection (1–3). M. tilburgii

was never previously isolated in culture; its detection relied on the direct sequencing
of internal transcribed spacer 1 (ITS1), hsp65, rpoB, and 16S rRNA genes from clinical
material (2). We isolated M. tilburgii from a bone marrow sample by using a shell vial
assay, as previously described (4, 5) (Fig. 1A). This organism had been previously
detected in this immunocompromised patient in a biopsy specimen taken from a
duodenal plaque by direct 16S rRNA gene sequencing. DNA (0.2 �g/�l) extracted using
InstaGene matrix (Bio-Rad, Marnes-la-Coquette, France) was sequenced using MiSeq
platform (Illumina, Inc., San Diego, CA, USA) paired-end sequencing and automated
cluster generation with dual-indexed 2 � 250-bp reads. A 535,000/mm2 cluster density
filter and a 96.3% cluster passing quality control filter were applied. A total of 8,690,521
reads were assembled using SPAdes version 3.12.0 with the option “– careful” in order
to reduce the number of mismatches and short indels (6). Default parameters for k
values, i.e., k-mer values of 127, 99, 77, 55, 33, and 21, were applied. A total of 977
human DNA contigs were removed via a BLASTn script that connected remotely to the
NCBI database (nr/nt) (BLAST� 2.3.0). Annotation using Prokka version 1.13 (7) of the
M. tilburgii strain MEPHI genome sequence (mean coverage depth, 6.5�) comprises 102
contigs, with a total assembly size of 3,238,527 bp and 66.3% GC content (N50 value,
56,170 bp; coverage, 5.6�). One 19,595-bp contig (62.9 GC% content), exhibited 77%
nucleotide similarity with Mycobacterium sp. strain KMS plasmid pMKMS02 (GenBank
accession no. CP000520) using BLASTn. The M. tilburgii strain MEPHI genome was
predicted to contain 4,207 genes, including 4,154 protein-coding genes, and 53 RNAs
(49 tRNAs, 3 rRNAs, and one transfer-messenger RNA [tmRNA]). Phylogenetic trees
based on the 3,504-bp rpoB and the 1,523-bp 16S RNA genes confirmed phylogenetic
placement into the Mycobacterium simiae complex (Fig. 1B and C). The genomic
similarities estimated using OrthoANI version 0.93.1 (8) and in silico DNA-DNA hybrid-
ization estimated using the GGDC version 2.0 online tool (9) were 87.17% and 33.8%
with M. simiae (GenBank assembly accession no. GCA_000455305), 87.15% and 33.6%
with Mycobacterium sherrisii (GenBank assembly accession no. GCA_001722325),
82.88% and 26.8% with Mycobacterium triplex (GenBank assembly accession no.
GCA_000689255), 82.76% and 26.6% with Mycobacterium florentinum (NCBI RefSeq
accession no. NZ_LQOV00000000), 82.62% and 26.1% with Mycobacterium genavense
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(NCBI RefSeq accession no. NZ_JAGZ00000000), 82.42% and 26.3% with Mycobacterium
ahvazicum (NCBI RefSeq accession no. NZ_FXEG00000000), and 82.35% and 26% with
Mycobacterium lentiflavum (NCBI RefSeq accession no. NZ_CTEE00000000), respectively.
Roary pangenome analysis (10) of the M. simiae complex including M. tilburgii strain
MEPHI yielded a total of 37,895 genes distributed as 1,077 core genome genes, 403
soft-core genes, and 5,547 shell genes (Fig. 1D). PathogenFinder 1.1 (11) predicted M.
tilburgii strain MEPHI to be a human pathogen (probability, 0.736) with detection of 14
pathogenicity-associated proteins. Analysis using the Resistance Gene Identifier version
5.0.5 database (12) indicated that the M. tilburgii strain MEPHI genome harbored rpbA,
murA (C117D), mtrA, katG (I335T), and pncA (H82R) mutations conferring resistance to
rifampin, fosfomycin, macrolides, penam, isoniazid, and pyrazinamide, respectively. The
whole-genome sequence confirms that M. tilburgii belongs to the M. simiae complex.
Targeted molecular assays could be designed for the detection of M. tilburgii in clinical
specimens.

Data availability. Illumina raw sequences and the assembled whole-genome se-
quence are available at the EMBL/GenBank under accession no. ERR3436035 and
ERP116312, respectively.
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FIG 1 (A) Ziehl-Neelsen stain visualization of Mycobacterium tilburgii MEPHI strain in cell culture. (B and C) Phylogenetic tree based on the 16S rRNA gene
sequence (B) and rpoB gene sequence (C). Sequences were aligned using Muscle v3.8.31 implemented in the MEGA7 software (13, 14). Phylogenetic inferences
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at the nodes. (D, Left) Newick tree of Mycobacterium tilburgii strain MEPHI and other members of the Mycobacterium simiae complex, generated by Roary from
binary gene presence/absence in the accessory genome. (D, Right) Plot of Roary gene presence/absence analysis results (blue, gene presence; white, gene
absence). The continuous blue block at the beginning shows the conserved genes of all members of the M. simiae complex, while regions of discontinuous
blue denote accessory genome content, which varies between members.
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