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Hormone imbalance and female sexual dysfunction immensely affect

perimenopausal female health and quality of life. Hormone therapy can

improve female hormone deficiency, but long-term use increases the risk of

cardiovascular diseases and cancer. Therefore, it is necessary to develop a novel

effective treatment to achieve long-term improvement in female general and

sexual health. This study reviewed factors affecting syndromes of female sexual

dysfunction and its current therapy options. Next, the authors introduced

research data on mesenchymal stromal cell/mesenchymal stem cell (MSC)

therapy to treat female reproductive diseases, including Asherman’s syndrome,

premature ovarian failure/primary ovarian insufficiency, and vaginal atrophy.

Among adult tissue-derived MSCs, adipose tissue-derived stem cells (ASCs)

have emerged as themost potent therapeutic cell therapy due to their abundant

presence in the stromal vascular fraction of fat, high proliferation capacity,

superior immunomodulation, and strong secretion profile of regenerative

factors. Potential mechanisms and side effects of ASCs for the treatment of

female sexual dysfunction will be discussed. Our phase I clinical trial has

demonstrated the safety of autologous ASC therapy for women and men

with sexual hormone deficiency. We designed the first randomized

controlled crossover phase II trial to investigate the safety and efficacy of

autologous ASCs to treat female sexual dysfunction in perimenopausal

women. Here, we introduce the rationale, trial design, and methodology of

this clinical study. Because aging and metabolic diseases negatively impact the

bioactivity of adult-derived MSCs, this study will use ASCs cultured in

physiological oxygen tension (5%) to cope with these challenges. A total of

130 perimenopausal women with sexual dysfunction will receive two

intravenous infusions of autologous ASCs in a crossover design. The aims of

the proposed study are to evaluate 1) the safety of cell infusion based on the

frequency and severity of adverse events/serious adverse events during infusion

and follow-up and 2) improvements in female sexual function assessed by the

Female Sexual Function Index (FSFI), the Utian Quality of Life Scale (UQOL), and
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the levels of follicle-stimulating hormone (FSH) and estradiol. In addition,

cellular aging biomarkers, including plasminogen activator inhibitor-1 (PAI-1),

p16 and p21 expression in T cells and the inflammatory cytokine profile, will also

be characterized. Overall, this study will provide essential insights into the

effects and potential mechanisms of ASC therapy for perimenopausal

women with sexual dysfunction. It also suggests direction and design

strategies for future research.

KEYWORDS

sexual function impairment, female sexual dysfunction, adipose-derivedmesenchymal
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Introduction

Adipose tissue is an important production site of female sex

hormones outside the ovaries (Ahima and Flier 2000; Hetemäki

et al., 2021). In premenstrual women, adipocytes express a high

level of estrone and metabolic enzymes to convert this form into

estrogen (Si et al., 2019). Adipose tissue is also an abundant

source of mesenchymal stem/stromal cells (MSCs). These

multipotent cells reside in the stromal vascular fraction of

adipose tissue and represent a component of the vascular

niche with an essential role in the regulation of angiogenesis

as well as tissue repair upon injury (Lin et al., 2008; Panina et al.,

2018). Adipose-derived stromal/stem cells (ASCs) are known as

key players in adipogenesis (Matsushita and Dzau 2017; Munir

et al., 2017; Q. Chen et al., 2016). Both MSC-based therapy and

drugs controlling MSCmaturation into white and brown fat have

been studied to manage obesity (Jaber et al., 2021).

In regenerative medicine, ASCs represent a robust and potent

therapeutic candidate that can be used directly after isolation or

expanded on a large scale in vitro (Bateman et al., 2018; Kabat

et al., 2020). Both autologous and allogeneic ASCs have been

licensed for the treatment of several diseases, such as Alofisel to

treat complex perianal fistulas in Crohn’s disease in the EU,

Allosterm for bone regeneration in the United States, and

QueenCell, Cupistem, and Adipocel to treat subcutaneous

tissue defects and Crohn’s fistula in Korea (Najar et al., 2022).

Furthermore, ASC therapy has been applied to treat other

disorders, such as bone and cartilage degenerative diseases,

ischemic disorders, cardiovascular diseases, neurological

disorders, autoimmune diseases, wound healing, and skin

burns (Si et al., 2019; Krawczenko and Klimczak 2022). In the

case of female reproductive diseases, most experimental studies

and clinical trials have used ASCs for patients with premature

ovarian failure and Asherman syndrome (Zhao et al., 2019; Na

and Kim 2020). ASCs were able to improve sex hormone levels

and restore fertility in patients (Polonio et al., 2021). Studies in

animal models also support clinical results demonstrating ASCs

as a promising novel therapeutic opportunity for female

infertility (L. Chen et al., 2018). This study reviews the

mechanisms and outcomes of MSC therapy for female

reproductive disorders. In addition, the authors introduce the

study protocol of a to be initiated clinical trial: “evaluation of

autologous ASC efficacy for the treatment of female sexual

dysfunction: a randomized phase II crossover study”.

Female sexual dysfunction as a
widespread distress

Female sexual dysfunction is highly prevalent–although it is

not limited to–in aged women and widely impacts the health and

quality of life of patients (Anastasiadis et al., 2002). The most

common symptoms of female sexual dysfunction include

diminished vaginal lubrication, pain during intercourse, lack

of desire for sex, and difficulty in achieving orgasm

(“American College of Obstetricians and Gynecologists’

Committee on Practice Bulletins—Gynecology, 2019;

Krakowsky and Grober 2018; Allahdadi et al., 2009). A survey

in the United States showed that 43.1% of women reported

having sexual problems, and 22.2% were diagnosed with

sexually related distress based on the Female Sexual Distress

Scale (FSDS) (Shifren et al., 2008). In four European countries,

including France, Italy, Germany, and the UK, low sexual desire

was the most frequent female sexual dysfunction, ranging from

21 to 36% depending on the country studied, and the prevalence

was closely correlated with increasing age (Graziottin 2007).

Between 70 and 80% of Finnish women aged 55 to 74 had

decreased libido compared to 20% of those younger than 25 years

(McCabe et al., 2016). Of note, menopause occurs in Caucasian

and Asian women on average at age 51 (Boulet et al., 1994; Baber

et al., 2016), and the deceased level of estrogens is associated with

diverse physiological and emotional changes in postmenopausal

women (Graziottin and Leiblum 2005). Along with the natural

aging process, which is hallmarked by altered immune system

functions, increased inflammation, and altered metabolism, the

lack of sex hormones can further negatively impact women’s

general and sexual health (Figure 1).

Many factors might influence female sexual dysfunction,

including the endocrine system, medication side effects,

overall health, and psychological and social life (Basson

et al., 2001; Graziottin et al., 2006; Giraldi and Wåhlin-

Jacobsen 2016). Age-related physical changes, such as a
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decrease in sex hormones, can directly cause sexual

dysfunction (Davis and Tran 2001; R. Basson 2007;

AlAwlaqi et al., 2017; McCoy and Davidson 1985). Several

studies have demonstrated that an insufficient level of

estrogen rather than testosterone is responsible for

increased sexual distress during menopause (Dennerstein

et al., 2002; Aziz et al., 2005; Gerber et al., 2005). Estrogen,

especially estradiol, plays an important role in the

development and regulation of female reproductive organs

as well as the cardiovascular and cognitive system, bone

integrity, and insulin sensitivity (Hall et al., 2001;

Belgorosky et al., 2009; Findlay et al., 2010; Simpson and

Santen 2015). Circulating estrogen is produced mainly by the

ovaries and by the adrenal glands and placenta in smaller

amounts in reproductive females (Hillier et al., 1994; J. Cui,

Shen, and Li 2013). The estradiol level in serum drops after

menopause, resulting in vaginal dryness and atrophy, reduced

genital sensitivity upon stimuli and therefore lower sexual

desire of middle-aged and older women (Bygdeman and

Swahn 1996; Dennerstein et al., 2002; R. Basson 2007).

Furthermore, a low level of estrogen will lead to reduced

physiological needs, menstrual disorders, and difficulties in

conceiving and nurturing the fetus (Nelson 2008; Gracia and

Freeman 2018; Minkin 2019). Parallel to the change in

estrogen, a gradual decline in testosterone belongs to a

natural aging process of the body (Graziottin and Leiblum

2005). Testosterone is critical for sexual desire as well as sense

of well-being in females (Davis and Tran 2001). Indeed,

women with testosterone deficiency, most frequently

observed in surgically menopausal patients, and those

receiving antiandrogens reported low libido, reduced sexual

interest and fatigue (Appelt and Strauss 1984; Adamopoulos

et al., 1988; Bachmann 2002). In addition to decreased sex

hormone levels, physical health conditions such as

inflammatory, metabolic, and cardiovascular diseases also

increase the risk of female sexual dysfunction (AlAwlaqi

et al., 2017; Di Francesco et al., 2019; Lorenz 2019). A

systematic review indicated that sexual dysfunction is

common in patients with arthritis (Restoux et al., 2020).

Patients with inflammatory bowel disease experience

impaired sexuality depending on the disease severity

(Timmer et al., 2008; de Silva et al., 2018; J. Zhang et al.,

2022). Diabetes affects a wide range of patients’ health,

including sexual activity. Many large studies have

demonstrated an elevated sexual dysfunction prevalence

among women with type 1 and type 2 diabetes (Enzlin

et al., 2009; Nowosielski et al., 2010; Copeland et al., 2012;

Shi et al., 2012; Elyasi et al., 2015). Hyperlipidemia, which is

characterized by a pathogenic lipid profile and is known as a

risk factor for vascular diseases, is linked to female sexual

distress in all domains, including desire, arousal, lubrication,

orgasm, satisfaction, and pain (Esposito et al., 2009; Martelli

et al., 2012; Baldassarre et al., 2016). Data reporting a

relationship between systemic arterial hypertension and

sexual dysfunction in females remain controversial. While a

significant correlation was observed in some studies (Doumas

FIGURE 1
Overview of physical and emotional changes in perimenopausal women. Menopause is a natural aging process andmarks enormous changes in
both the general and sexual life of women. These include sex hormone imbalance, impaired immune system, increased inflammation, altered
metabolism, and psychological changes. These changes can lead to accelerated organ degeneration and increased risks of musculoskeletal
diseases, cardiovascular complications, metabolic diseases, and sexual dysfunction.
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et al., 2006; Miner et al., 2012; De Franciscis et al., 2013;

Nascimento et al., 2015), other studies reported no association

between the diseases (Spatz et al., 2013; Foy et al., 2016).

Overall, the data suggest that low serum sex hormone levels as

well as disease-related conditions such as chronic

inflammation, metabolic and cardiovascular diseases and

persistent inflammation increase the risk of developing

female sexual dysfunction.

Due to the complexity of the disorder, effective medical care

for females with sexual dysfunction remains challenging.

Estrogen replacement therapy is commonly prescribed to treat

postmenopausal syndromes (Kovalevsky 2005; Simpson and

Santen 2015; Stuenkel et al., 2015). Potential side effects of

systemic and local use of estrogen include thrombosis,

endometrial hyperplasia, stroke, and the development of

breast and cervical cancer (Writing Group for the Women’s

Health Initiative Investigators 2002; Wentzensen and Trabert

2015; Collaborative Group on Epidemiological Studies of

Ovarian Cancer 2015). Moreover, the therapy negatively

influences the serum testosterone concentration, leading to

complications in sexual and general health, such as reduced

libido and general sense of well-being, and/or increased

muscle and bone loss (J. A. Simon 2002; Sarrel 2002). The use

of androgen supplements for estradiol treatment was capable of

reversing this effect (Davis et al., 1995; J. Simon et al., 1999;

Shifren et al., 2000). Hence, combined therapy of estradiol and

testosterone can be beneficial for the treatment of sexual

dysfunction in menopausal women. However, long-term use

of androgens might induce excessive hair growth in a male-

like pattern (also known as hirsutism), acne, hair loss, decreased

high-density lipoprotein levels, and hepatic toxicity (Abdallah

and Simon 2007; Khera 2015). Flibanserin is the first FDA-

approved drug to treat hypoactive sexual desire disorder,

although there are still debates about its clinical benefit. The

drug acts as a serotonin antagonist while enhancing the effect of

dopamine to enhance the sexual response. In randomized trials,

the treatment of women with hypoactive sexual disorder has

shown modest efficacy compared to the control group (Jaspers

et al., 2016; Lodise 2017). Adverse effects, including dizziness,

sleepiness, nausea, and fatigue, were reported in these trials.

Recently, the FDA approved bremelanotide for the treatment of

hypoactive sexual desire disorder in premenopausal women

(Mayer and Lynch 2020). The drug stimulates the

neurological activity of the hypothalamic and limbic regions

of the brain, probably via the dopamine signal to engage

sexual activity (Pfaus et al., 2007). Although side effects

appear mild to moderate with nausea, facial flushing, and

headache, administration of the drug requires some effort, as

it must be injected subcutaneously ca. 45 min prior to intercourse

(Kingsberg et al., 2019). Despite the long history of searching for

medication to treat female sexual dysfunction marked by the first

use of estradiol in the 1940s, further research on novel therapy

and the long-term safety of currently approved drugs remains

essential, especially for those unsuitable for hormone

replacement therapy.

MSC therapy for the treatment of
experimental female reproductive
disorders

A potential benefit of cell therapy in the management of

reproductive diseases was first reported for women whose ovaries

were damaged after chemotherapy and whose ovarian function

and fertility were recovered (Sanders et al., 1996; Hershlag and

Schuster 2002). Recently, MSC therapy, including ASCs, has

emerged as a potential candidate to regenerate damaged tissues

and rejuvenate organs. Many studies have demonstrated the

efficacy of MSCs from various sources in the treatment of

diseases related to reproductive function and hormone

deficiency. In a postmenopausal rat model, human umbilical

cord-derived MSC infusion restored estradiol and AMH levels

while decreasing FSH levels in correlation with increased levels of

hepatocyte growth factor (HGF), vascular endothelial growth

factor (VEGF) and insulin-like growth factor 1 (IGF-1), which

play an important role in ovarian function (Jia Li B. et al., 2017).

Human amniotic MSCs were able to restore AMH and estrogen

levels in the ovaries of aging mice 1 week after stem cell injection

(C. Ding et al., 2018a). In a rat model of Asherman’s syndrome,

which is characterized by intrauterine adhesions due to the

formation of scar tissue in the uterus, the administration of

ASCs in combination with estrogen induced endometrial

regeneration in treated animals (H. Sun et al., 2018).

An increasing number of studies have reported positive

effects of MSC therapy on restoring ovarian function in

premature ovarian failure (Zhao et al., 2019; Na and Kim

2020). Premature ovarian failure, also known as primary

ovarian insufficiency, is defined as a loss of reproductive and

hormonal functions of the ovaries in women before the age of

40 years. Premature ovarian failure results in a decline in

women’s physical and mental health, such as amenorrhea,

ovarian atrophy, sexual hypoactivity and infertility in young

women (Beck-Peccoz and Persani 2006). In a rat model of

chemotherapy-induced premature ovarian failure, BM-MSCs

reduced luteinizing hormone (LH) and FSH and increased

serum estradiol levels compared to the control group (Afifi

and Reyad 2013). Placenta-derived MSCs restored serum

estradiol, AMH, and FSH concentrations and recovered

ovarian function in mice with premature ovarian failure (H.

Zhang et al., 2018; Li et al., 2018). ASCs have also demonstrated

promising potential to regenerate ovarian functions. Indeed,

ASCs enhanced angiogenesis and recovered the number of

follicles and corpus luteum defects in damaged ovaries

(Terraciano et al., 2014; M. Sun et al., 2013). Improved serum

estradiol levels and increased pregnancy rates have also been

reported in ASC-transplanted mice (Fouad et al., 2016). Another
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approach was a combined injection of ASCs and collagen

scaffolds. The treated group showed a significant increase in

estradiol levels, granulosa cell proliferation, and both mating and

pregnancy rates compared to the PBS control group (Su et al.,

2016). A study in rabbits showed that MSC therapy improves

ovarian function through direct differentiation into specialized

cells in the ovary or secretion of VEGF growth factor, which helps

ovary regeneration (Abd-Allah et al., 2013).

Recently, MSCs have been investigated for the treatment of

vaginal atrophy. The disease affects more than half of

menopausal women due to decreased estrogen levels resulting

in thinning of vaginal epithelium and reduced local blood flow.

As a result, women with vaginal atrophy often suffer from vaginal

dryness, itching, burning, and pain when urinating and during

intercourse (Naumova and Castelo-Branco 2018). ASCs and

bone marrow-derived MSCs were able to improve epithelial

thickness in a menopause rat model of vaginal atrophy with

superior therapeutic effects in the former group (Kasap et al.,

2019). The expression of estrogen receptor, VEGF and its

receptor was increased in vaginal epithelium and connective

tissue after MSC administration (Kasap et al., 2019). Zhang

et al. performed in situ injection of umbilical cord-derived

MSCs to repair fragile vaginal tissue in an ovariectomized

rhesus macaque model (Zhang et al., 2021). The treatment

successfully induced the formation of extracellular matrix

fibers, especially collagen I and elastin, and smooth muscle in

the vagina. Furthermore, microvascular density was increased

along with more pronounced VEGF expression in the treated

group (Zhang et al., 2021).

Overall, preclinical results support the use of MSCs to

overcome menopausal symptoms and restore the function of

the ovaries and uterus. MSC therapy might add an alternative

therapeutic option to the standard hormone replacement therapy

for the treatment of female reproductive diseases.

MSC therapy for female reproductive
disorders: Clinical trials

Clinical trials investigating MSC therapy in the landscape of

female reproductive disorders are still in an early stage

(Takahashi et al., 2021; Zhao et al., 2019; L. Chen et al.,

2018). Some studies have performed stem cell injection into

the uterus followed by hormone replacement therapy for women

with severe Asherman syndrome or endometrial atrophy (Cao

et al., 2018; Lee et al., 2020; Ma et al., 2020; Singh et al., 2020).

Overall, they showed superior endometrial regeneration and

higher pregnancy rates after treatment. Menstruation was

restored in amenorrhea women and prolonged or increased in

menstrual amounts in the other patients (Lee et al., 2020; Ma

et al., 2020; Singh et al., 2020).

Furthermore, MSC therapy has been investigated for the

treatment of primary ovarian failure in phase I and II trials

showing improved follicular development after intraovarian

injection of MSCs (L. Ding et al., 2018b; Edessy et al., 2016;

Gupta et al., 2018; Herraiz et al., 2018; Igboeli et al., 2020;

Mashayekhi et al., 2021; Mohamed et al., 2018; Yan et al.,

2020). Estradiol was elevated after umbilical cord and bone

marrow-derived MSC administration (Igboeli et al., 2020; L.

Ding et al., 2018b). Reduced menopausal symptoms and

return of menstruation were also commonly reported (Edessy

et al., 2016; Igboeli et al., 2020; Mashayekhi et al., 2021). Two of

14 umbilical cord-derived MSC-injected patients were pregnant

after years of infertility (L. Ding et al., 2018b). Gupta reported a

case of a perimenopausal woman with primary ovarian failure

who delivered a healthy baby after receiving autologous bone

marrow-derived MSCs (Gupta et al., 2018). Mashayekhi et al.

infused autologous ASCs into nine women with primary ovarian

failure at three different doses of 5 × 106, 10 × 106, or 15 × 106

cells/kg body weight (Mashayekhi et al., 2021). During the 24-

months follow-up, no side effects or complications occurred. In

the group receiving the highest dose, two of three patients

resumed menstruation after 2 months, and menstruation was

observed again 1 month after infusion in two of six patients in the

other groups. Serum FSH levels decreased to less than 25 IU/l in

four patients, while ovarian size did not differ between the groups

(Mashayekhi et al., 2021). Recently, we performed an intravenous

infusion of ASCs in 16 women with sexual hormone deficiency at

a dose of 1 × 106/kg body weight and followed up for 12 months

after the infusion (Nguyen LT. et al., 2021). The study showed

that no serious adverse events or adverse events occurred in the

patients. Women reported satisfaction with their sex lives;

however, there was no significant change in AMH, FSH and

estradiol levels (Nguyen T. et al., 2021).

Because these studies were performed in only small numbers

of patients without control groups, the power of their results

remains limited. Therefore, larger randomized controlled trials

will be necessary to investigate the safety and potential efficacy of

MSC-based therapy in the management of female reproductive

disorders.

Potential mechanisms of ASCs for the
treatment of female sexual dysfunction

ASCs might act in different ways to improve sexual

dysfunction in premenopausal women (Figure 2).

Homing, retention, and differentiation
GFP-labeled ASCs resided in the ovarian interstitial tissue

surrounding oocytes 7 days after in situ transplantation

(Terraciano et al., 2014). In concordance with this

observation, GFP+ ASCs were retained in ovaries 14 days after

injection, but most of them disappeared after 4 weeks (Su et al.,

2016), while Sun et al. was able to detect GFP + ASCs in ovaries

1 month after both intravenous and in situ injection (M. Sun

Frontiers in Cell and Developmental Biology frontiersin.org05

Hoang et al. 10.3389/fcell.2022.956274

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.956274


et al., 2013). The cells did not differentiate into oocytes or

granulosa cells but rather took part in the microenvironment

of these cells. Indeed, ASCs gave rise to the basal lamina and the

theca layer to support granulosa cell function in a rat model of

primary ovarian failure (Su et al., 2016). Similarly, ASCs and

ASCs on collagen scaffolds differentiated into epithelial and

stromal cells of the endometrium in an Asherman’s syndrome

model with a longer retention time in the latter group (H. Sun

et al., 2018). ASCs were also able to be differentiated in vitro into

vascular endothelial cells when cultured with umbilical vein

endothelial cells (Fischer et al., 2009; Bekhite et al., 2014).

Elevated follicle numbers and estradiol levels
Viable follicles increased in the ASC-injected group

compared to the control, but estradiol concentration in serum

was similar between the two groups (Terraciano et al., 2014).

Fouad et al. reported that ASCs induced the development of

ovarian follicles and yellow bodies in concordance with higher

serum estradiol levels and reduced FSH (Fouad et al., 2016).

Injection of ASCs with collagen scaffolds resulted in a better

estrous cycle and an increase in estradiol (Su et al., 2016).

Paracrine effects of ASCs to promote
angiogenesis and cell growth

ASCs signal to other cells through the synergistic action of

soluble proteins and extracellular vesicles. ASCs are superior

sources of growth factors such as vascular endothelial growth

factor (VEGF), hepatocyte growth factor (HGF), fibroblast

growth factor 2 (FGF-2), epidermal growth factor (EGF),

platelet-derived growth factor (PDGF), angiopoietin-1 and

-2 (Ang-1 and Ang-2), brain-derived neurotrophic factor

(BDNF), glial cell-derived neurotrophic factor (GDNF), and

FIGURE 2
Potential mechanisms of ASCs. ASCs might act through multiple mechanisms to improve the functions of the female reproductive system. The
cells can home and be retained in the reproductive tract for a short time. In the ovary, they differentiate into theca cells and form basal lamina to
support oocyte development. In the uterus, ASCs give rise to stromal and epithelial cells of the endometrium. Similar to MSCs from other tissue
sources, ASCs exhibit a profound secretome and immune regulation activity. The cells secrete many growth factors, cytokines, and miRNAs in
the form of both soluble proteins and extracellular vesicles. Growth factors, such as HGF, VEGF, IGF, FGF-2, EGF, GFNF, and BDNF, trigger cell
proliferation, inhibit apoptosis, and promote wound healing in many organs, including the reproductive system. VEGF, PDGF, HGF, Ang-1 and Ang-2
orchestrate angiogenesis. Moreover, ASCs produce many strong anti-inflammatory factors, such as PGE2, IDO, TGF-β, and PD-L1, to regulate
immune cells. ASCs inhibit Th1-cell proliferation and promote regulatory T-cell differentiation. They induce quiescence of B cells and alter antibody
production. They shift macrophages from a proinflammatory M1 to an anti-inflammatory M2 phenotype and interfere with dendritic cell maturation.
Hence, ASCs might reverse the aging process by restoring reproductive organ functions and increasing estradiol levels, modulating the immune
system, and reducing inflammation.
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insulin-like growth factor (IGF) (Rehman et al., 2004; Sadat

et al., 2007; Kingham et al., 2014; Dabrowski et al., 2017; Y.-H.

An et al., 2021; Jiao et al., 2021; Ngo et al., 2021; Sumarwoto

et al., 2021). These factors mediate ASCs to promote

angiogenesis (Jiao et al., 2021; Krawczenko and Klimczak

2022), cell survival (Rehman et al., 2004), cell proliferation

(Jiao et al., 2021), and wound healing processes (Y.-H. An

et al., 2021) in many disease models. The role of growth factors

produced in the reproductive system was reviewed previously,

suggesting a complex regulated network of signaling pathways

orchestrated in ovarian development and function (Evron

et al., 2015). IGF signaling is essential for follicular

development (Giudice 1992), in which IGF-1 stimulates the

proliferation of human granulosa cells and induces estradiol

and progesterone production in the ovary (Zhou et al., 2013).

It also cooperates with FSH to regulate germ cell

differentiation (Zhou et al., 2013). FGF-2 accompanied by

progesterone maintains the survival of granulosa cells and

epithelial cells on the surface of ovaries (Trolice et al., 1997;

Peluso and Pappalardo 1999). FGF-2 and EGF can stimulate

granulosa cell proliferation (Gospodarowicz and Hugh 1979).

VEGF and neurotrophic factors, such as BDNF and GDNF,

also protect follicular cells from apoptosis and therefore

regulate oocyte maturation (Shin et al., 2006; Linher-

Melville and Li 2013). VEGF plays a multipotent role

during follicular development. Inhibition of VEGF-A

interfered with theca and granulosa cell proliferation,

diminished follicular angiogenesis, disrupted ovulation, and

led to miscarriage (Wulff et al., 2001; Fraser et al., 2010). In a

mouse model of vaginal atrophy, ASC administration induced

increased expression of VEGF and its receptor in both

connective tissue and the epithelial layer of the vagina in

correlation with a higher anti-apoptotic factor bcl2 and

reduced epithelial damage (Kasap et al., 2019).

In addition to soluble proteins, extracellular vesicles are

another form of cell communication (Mittelbrunn and

Sánchez-Madrid 2012; Turturici et al., 2014). Their cargos

include lipids, growth factors, cytokines, membrane proteins,

and genetic materials, especially microRNAs (Zhang et al., 2019;

Wei et al., 2021). Mitchel et al. identified more than

20,000 miRNA sequences of the ASC secretome and

extracellular vesicles, of which half of the target mRNAs were

linked to signal transduction, response to stress, and regulation of

cell differentiation and proliferation (Mitchell et al., 2019). The

proangiogenic let-7 family, miR16, miR-23a, and miR-23b were

highly expressed in their analysis (Landskroner-Eiger et al., 2013;

Mitchell et al., 2019). Overexpression of mRNA-21, which is a

key regulator of cancer angiogenesis, enhanced vascularization

by upregulating HIF-1α, VEGF, Akt and Erk signaling (Y. An

et al., 2019). Moreover, miR-21 activated the PI3K/AKT

signaling pathway to promote cell migration and proliferation

during the wound healing process (C. Yang et al., 2020).

Immunomodulatory potential of ASCs
ASCs demonstrate a superior immunomodulatory capacity

compared to MSCs from other tissue origins, such as bone

marrow, dental pulp, and umbilical cord (Melief et al., 2013;

Ribeiro et al., 2013; Mattar and Bieback 2015). The cells regulate

the innate and adaptive immune systems through both direct

cell‒cell contact and secretion of cytokines and other soluble

factors (Al-Ghadban and Bunnell 2020; Ceccarelli et al., 2020).

ASCs secrete many anti-inflammatory factors, including

prostaglandin E2 (PGE2), indoleamine-2,3-dioxygenase (IDO),

transforming growth factor-beta (TGF-β), and programmed cell

death ligand (PD-L1) (J.-H. An et al., 2018; Bulur and Dietz 2018;

Cho et al., 2015; Eljaafari et al., 2021; Kawada-Horitani et al.,

2022; Mckinnirey et al., 2021; Yañez et al., 2010; Zheng et al.,

2017). The cell also produces highly anti-inflammatory miRNAs,

especially the let7 family, miR-26a-5p and miR-16-5p, which are

involved in immune cell regulation (Mitchell et al., 2019; Ragni

et al., 2019).

ASCs inhibited Th1-cell proliferation and downregulated the

expression of proinflammatory cytokines such as TNF-α, IFN-γ,
and IL-12, while they stimulated regulatory T-cell differentiation

(Yañez et al., 2006; Gonzalez-Rey et al., 2010; Engela et al., 2013).

ASCs also have multiple effects on B cells, as they induce the

quiescence of B cells, inhibit the formation of plasmablasts and

activate IL-10-expressing regulatory B cells (Franquesa et al.,

2015; Peng et al., 2015). Consequently, IgM, IgG, and IgA

production was significantly impaired in the presence of ASCs

(Corcione et al., 2006). Therefore, ASCs have been successfully

applied to treat graft-versus-host disease, which is caused by the

cytotoxicity of donor-derived T cells against recipient and

autoimmune diseases and is mediated by B-cell misdirection

toward the patient’s own cells (González et al., 2009; Peng et al.,

2015; Panés et al., 2016; Fernández et al., 2018; Castro et al.,

2020).

ASCs can shift macrophages from the M1 phenotype to the

M2 phenotype via their secretomes, such as PGE2, IL6, TSG-6,

and miR-451 (Song et al., 2017; C.-Y. Yang et al., 2021; R. Li et al.,

2022; Yuan et al., 2022). M2 macrophages secrete

immunosuppressive and anti-inflammatory cytokines IL-10

and TSG-6 to modulate immune reactions and activate tissue

repair (Kim and Hematti 2009; Heo, Choi, and Kim 2019; R. Li

et al., 2022). Similar to macrophages, dendritic cells are also a

target of ASCs. A coculture of these cells resulted in blockade of

dendritic cell maturation and changed them into an anti-

inflammatory phenotype with enhanced phagocytosis

(Anderson et al., 2017; Ortiz-Virumbrales et al., 2020). ASCs

have been shown to be superior in suppressing dendritic cells

compared to their bone marrow-derived counterparts (Ivanova-

Todorova et al., 2009; Zaza et al., 2019). On the other hand, the

interaction between MSCs, including ASCs, and NK cells is

complex and remains controversial depending on the

coculture conditions and prestimulation of NK cells. There are
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studies showing that ASCs were able to alter NK functions

(DelaRosa et al., 2012; Najar et al., 2019). However, they are

less potent in inhibiting NK-cell cytotoxic activity than

bone marrow-derived MSCs (Valencia et al., 2016; Najar

et al., 2019).

Study protocol for a randomized
controlled phase II clinical trial to
investigate the therapeutic potential and
mechanisms of autologous ASCs in female
sexual dysfunction

This is a randomized controlled phase II clinical trial with a

crossover design to evaluate the safety and potential efficacy of

autologous ASC therapy to treat sexual dysfunction in females. A

total of 130 female patients with sexual dysfunction will be

recruited at the Regenerative Medicine Department at Vinmec

Times City International Hospital, Hanoi, Vietnam, between

September 2022 and December 2024. The inclusion and

exclusion criteria of the study are presented in detail in the

supplementary information. Enrolled patients will be randomly

divided into two groups (Figure 3). Patients in group A will

receive two infusions of autologous ASCs at day 0 and day 90 ± 7,

while those in group B will be followed-up for 180 ± 14 days and

then receive two infusions of autologous ASCs at day 180 ±

14 and day 270 ± 14.

Autologous ASCs used in this study were harvested from

autologous fat tissue through an enzyme method and expanded

using our in-house optimized serum-free and xeno-free culture

under a physiological oxygen concentration of 5% as described in

the supplementary information (Hoang et al., 2020). For clinical

use, cells at passage 3 will be harvested in 100 ml Ringer’s lactate.

Therapeutic ASC products must pass the following releasing

criteria: 1) negative for bacteria, fungi and mycoplasma; 2) more

than 90% viability; 3) expression of more than 95% positivity for

CD105, CD73, and CD90 and less than 2% positivity for CD45,

CD34, CD11b, CD19, and HLA-DR; and 4) endotoxin <
5 EU/kg. The patient will be infused with 1 × 106 cells/kg

body weight within 60 min via the intravenous route.

The patients will be monitored within 12 months after the

first cell infusion (Table 1). Here, the authors use a

comprehensive study plan to evaluate the efficacy of

autologous ASC therapy in the management of female sexual

dysfunction through three levels: 1) self-assessment

questionnaires; 2) female sex hormones; and 3) biomarkers of

inflammation and cellular senescence.

The improvement of sexual function and overall quality of

life will be assessed through the FSFI and the Utian Quality of Life

Scale (UQOL). The FSFI is a self-assessment questionnaire to

FIGURE 3
Research diagram. A total of 130 enrolled patients will be randomly assigned to two groups: group A will receive two infusions of autologous
ASCs at day 0 and day 90 ± 7; group B will receive two infusions of autologous ASCs at day 180 ± 14 and day 270 ± 14. All patients will be monitored
for 12 months after the first cell infusion. During this period, AEs will be recorded every week after the ASC infusions and every month in the next
months by the study team. Patient visit schedules are depicted, in which physical examination, laboratory tests and FSFI and UQOL
questionnaires will be administered. Furthermore, cytokine profiles will be analyzed at baseline and on days 30 ± 2, 90 ± 7, and 180 ± 14. Cellular
aging biomarkers will be quantified at baseline and at 180 ± 14 and 365 ± 14.
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TABLE 1 Study timeline and clinical procedures during the trial.

Study
procedure

Prescreening
(If applicable)

Screening
phase*

Baseline Day
30 ±
3

Day
90 ±
7

Day
180 ±
14

Day
270 ±
14

Day
365 ±
14

Day
365 ±
14

Day
545 ±
14

ASC Infusion

Group A

Group B

Concomitant therapy**

Informed consent

Inclusion and exclusion
criteria

Demographic information

Patient’s medical reports

Physical examination

Female sex hormone
evaluation (FSH, E2)

Cytokines and aging
biomarkers evaluation#

Hematology analysis***

Infectious disease
examination/test##

Thrombotic analysis§

Quality of life evaluation†

Adverse events (AEs/SAEs)
evaluation

Monitoring of mortality/
complications

Blood sample for molecular
and cellular analyses of
sexual function impairment

Notes: ASC, autologous adipose-derived mesenchymal stem/stromal cell, AEs, adverse events; SAEs = serious adverse events; FSH, Follicle-Stimulating Hormone, E2 = Estradiol

Hormones, FSFI, Female Sexual Function index; HBV, hepatitis B virus, HIV, human immunodeficiency virus; UQOL , Utian quality of life Scale.

*If the results of the screening phase for ASC, groups are within 30 days of ASC, administration, they will be automatically considered as the baseline level.

**The concomitant therapy administered to both groups included Hightamin, total Calcium, Bioflex, Cic-Zinc.
§The thrombotic analysis included measurement of the D-dimer, fibrinogen, prothrombin, thrombin, and APTT, levels prior to ASC, administration and 24-h post-administration.

***The hematological analysis included measurements of the white blood cell count, platelet count, red blood cell count, hemoglobin, and percentages of lymphocytes, neutrophils,

monocytes, eosinophils, basophils, C-reactive protein, pro-BNP, and troponin-T.
#Blood samples will be collected for cellular andmolecular analysis, including analyses of cytokines, chemokines, and aging biomarkers in the patient’s plasma: TNFa, IFN-γ, IL1, IL-6, IL-8,
IL-4, IL-10, and IDO, plasminogen activator inhibitor-1 (PAI-1), p16 and p21 expression.
##Infectious diseases include hepatitis, syphilis, HIV, HBV, and tuberculosis.
† The quality of life evaluation includes the self-assessment questionnaires: FSFI and UQOL.
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quantify female sexual function. The FSFI index has high to very

high reliability and repeatability (Rosen et al., 2000; Meston 2003;

Wiegel et al., 2005), and a score of ≤ 26.55 is classified only as

female sexual dysfunction (FSD) (Wiegel et al., 2005. The UQOL is

a modern instrument to measure the quality of life of menopausal

women (Utian et al., 2018). It has been clinically proven effective

and has been applied across many countries (Abay and Kaplan

2016; Balanian et al., 2020; Moravcova et al., 2022).

Furthermore, changes in the levels of FSH and estradiol will

be examined. FSH stimulates granulosa cells in ovarian follicles

to synthesize aromatase, which converts androgens produced by

thecal cells to estradiol (Steinkampf et al., 1987; Hillier et al.,

1994). Estradiol is a steroid hormone associated with the female

reproductive organs and is responsible for the development of

female sexual characteristics (Findlay et al., 2010). Elevated FSH

and decreased estradiol concentrations are responsible for

menopausal symptoms, including decreased functions of

reproductive organs (Mason 1976). Therefore, levels of FSH

and estradiol would reflect female sexual health in general and

during the perimenopausal period.

To study ASC effects at the cellular and molecular levels, the

serum concentrations of cytokines (TNFa, IFN-γ, IL1, IL-6, IL-8,
IL-4, IL-10, IDO) will be quantified. In addition, the expression of

senescence biomarkers, including plasminogen activator

inhibitor-1 (PAI-1), p16, and p21, is also of interest. Since

chronic inflammation and the natural aging process increase

the incidence of female sexual dysfunction, the analysis might

provide a hint for the mechanisms of action of cell therapy.

Rationales of the crossover design of the
proposed clinical trial

A randomized crossover trial is a prospective study in

which participants received two or more sequential

interventions in a random order, often separated by a

washout period (Senn 2002). It allocates participants to

different treatments over two or more periods, while in a

parallel trial, participants are randomized to the same

intervention over a single period (Mills et al., 2009).

In this study, we choose a two-sequence crossover design

since the AB/BA design has some advantages over the parallel-

group design. First, the two-sequence crossover design is

robust and applicable when there is considerable between-

patient variability and less within-patient variability

(Gewandter et al., 2019). Second, fewer participants needed

to be recruited for similar statistical power (Senn 2002; Chow

and Liu 2009; Wellek and Blettner 2012). A crossover trial is a

“within-subject” study design where each participant acts as

his or her control (Sedgwick 2014). Crossover trials may offer

more precise intervention effect estimates than parallel trials

because they would remove any biological and methodological

variation (Mills et al., 2009).

However, the crossover design also has some weaknesses. The

time to conduct a crossover trial is longer than that to conduct a

parallel-group trial. Moreover, the cross-sectional designmay even

induce bias, such as confounding, which can also arise from

sequential randomization of an insufficient number of clusters

(Goldstein et al., 2018) or the effects of attrition (Moerbeek 2020).

In addition, proper statistical methods are required to analyze

crossover trials to reduce treatment effects, carryover effects, and

period effects (Nason and Dean 2010; Wellek and Blettner 2012;

Sturdevant and Lumley 2021).

Discussion

Potential side effects of ASC therapy in
general medicine including female sexual
dysfunction

A meta-analysis investigated adverse events after MSC

administration based on 62 prospective studies with the longest

follow-up of 5 years (Wang et al., 2021). There was no connection

between the therapy and cancer and mortality incidence. The most

common major side effect was transient fever, which developed

within 48 h after cell administration, followed by administration

site adverse events such as bleeding, swelling, pain, itching and

infection at the injection site. Minor side effects that were associated

withMSC therapy included sleeplessness, fatigue, and constipation.

Other events, such as seizure, vomiting, anemia, and nausea, were

significantly associated with the therapy. Moreover, AD-MSCs

more frequently caused headache and dizziness than bone

marrow-derived MSCs (Wang et al., 2021). An update of the

largest phase 3 randomized, double-blind control trial

investigating the safety and efficacy of a single local

administration of allogenic ASCs (Cx601) in patients with

Crohn’s disease and perianal fistulas was reported (Panés et al.,

2018). Although the treatment group experienced more frequent

serious treatment-emergent adverse events during the 52-weeks

follow-up than the control group (24,3% versus 20,6%,

respectively), treatment-related serious events were comparable

(6.8% versus 6.9%, respectively). The events included anal

abscess/fistula in the treatment group and anal abscess/fistula,

proctalgia, anal inflammation, and liver abscess in the control

group (Panés et al., 2018).

The administration of allogenic MSCs might trigger immune

reactions and immune rejection. This could be a cause of

transient fever observed in patients after treatment (Wang

et al., 2021). On the other hand, because ASCs express only

low levels of major histocompatibility complex (MHC) class I

molecules and are absent in MHC class II and costimulatory

molecules, including CD40, CD80, and CD86, their

immunogenicity remains low (L. Cui et al., 2007). Their

strong immunosuppressive capacity further favors these cells

to escape the host immune system (Yañez et al., 2006). In the
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Cx601 phase trial, no immune reactions or adverse events related

to the development of donor-specific antibodies were observed.

On the other hand, the ASC-treated group had a higher risk of

developing IgG HLA class I antibodies, with a rise from 16% at

baseline to 34% at week 12, in contrast to no change in the control

group. The presence of donor-specific antibodies did not

correlate with treatment outcome (Panés et al., 2016).

ASCs might activate coagulation when exposed to blood and

increase the risk of thrombosis in patients undergoing stem cell

therapy (Jung et al., 2013). Pulmonary embolism and infarct in

the right lung were observed in a patient after being intravenously

infused with three doses of autologous ASCs to treat the cervical

herniated intervertebral disc. His parents, who received a similar

therapy for knee osteoarthritis, also developed multiple

embolisms in both pulmonary artery branches with right

pleural effusion (Jung et al., 2013). The use of anticoagulants

such as heparin and EDTA is recommended to prevent

thrombogenesis (Liao et al., 2017; Moll et al., 2019).

A link between ASC therapy and tumorigenesis is still under

investigation. Preclinical data suggest that ASCs can activate

pathways involved in tumor formation and progression (Sabol

et al., 2019). In most scenarios, ASCs interacted with the tumor

microenvironment and mediated cell growth, metastasis, and

chemoresistance of tumor cells in experimental breast, ovarian,

cervical cancers, etc. (Zhang et al., 2015; Goto et al., 2019; Castro-

Oropeza et al., 2020). However, clinical data supporting a

connection between MSC treatment and tumor development

are still lacking. In patients with hematologic malignancy,

cotransplantation of bone marrow-derived MSCs with

hematopoietic stem cells reduced graft-versus-host disease

severity; however, it was associated with a higher relapse rate

and increased patient mortality over a 3-year observation period

(Ning et al., 2008). As a balance between graft-versus-leukemia

and graft-versus-host reactions is required for a durable response

of transplant patients, it remains unclear whether the disease

recurrence was due to lower anti-leukemia activity of graft-

derived T cells or MSC-induced leukemia stimulatory effects

(Munker et al., 2004; Munker and Kolb., 2006).

Overall, clinical data suggest that ASC therapy is well

tolerated with considerable side effects. However, long-term

observations, especially in terms of tumorigenesis and the

identification of risk factors/risk populations, remain elusive.

Using autologous versus allogenic ASCs:
pros and contras

MSCs are suitable both in an autologous and an allogenic

setting. Autologous cell transplantation is generally safer.

There is no concern of infectious disease transmission

and host versus graft incompatibility (Kot et al., 2019).

Although MSCs express only a limited level of MHC class I

and lack MHC class II and its cofactors (Samadi et al., 2021;

J. Chen J-m et al., 2021), inflammatory reactions, graft rejection,

and the development of graft-versus-host disease have been

reported in animal models (Poncelet et al., 2007; Pezzanite

et al., 2015; Owens et al., 2016). The choices between

autologous versus allogenic cells often depend on the disease

background, availability of cells (and donors), cost and window

of delivery. Many factors can negatively impact MSC

quality. Cells exhibit altered cellular functions leading to

decreased regenerative bioactivity with increasing age (Peffers

et al., 2016; Marędziak et al., 2016; Y.-H. K. Yang 2018).

In addition, the authors have demonstrated that long-term

type II diabetes mellitus could induce remarkable changes

in mtDNA genetic profiles and negatively interfere with

cell metabolism and bioactivity (Nguyen T. et al., 2021). On

the other hand, potential genetic changes in the reproductive

system need to be considered when allogenic cells are applied

for the management of reproductive health (X. Chen et al.,

2021b). Thus, challenges such as the maintenance of healthy

MSC sources and boosting of their potency remain to be

addressed in the case of autologous cell therapy, while

immune reactions, graft rejection, and ethical concerns are of

interest for allogenic use.

Enhancing the therapeutic activity of ASCs
via hypoxic culture conditions

Physioxia (also known as hypoxia compared to the ambient

oxygen concentration of the atmosphere) is a promising strategy

to accelerate MSC functions both in vitro and in vivo. Under

this condition, MSCs maintained a longer undifferentiated

state (Basciano et al., 2011) and a longer proliferative lifespan

before reaching senescence (Grayson et al., 2006). Furthermore,

physioxia enhances MSC secretion of proangiogenic factors

such as VEGF, IGF, HGF, and bFGF, as well as the

immunomodulatory molecule TGF-β (Kinnaird. et al., 2004;

Crisostomo et al., 2008; Ranganath et al., 2012; Noronha

et al., 2019). In animal models, physioxia-cultured human

MSCs demonstrated enhanced in vivo survival (Beegle et al.,

2015). Physioxia successfully boosted MSC potencies in the

treatment of ischemia (Han et al., 2016; Noronha et al., 2019)

and lung damage induced by radiation or bleomycin (Lan

et al., 2015; B. Li J. et al., 2017) compared to those cultured

in ambient oxygen concentration. Thus, physioxia culture

might improve the therapeutic potential of MSCs. However,

implementation of physioxia culture in clinical settings remain

to be investigated.

Summary

ASCs are a potent candidate for cell therapy with high growth

factor secretion activity and superior immunomodulatory
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capacity. The side effects of ASC therapy are manageable,

and there was no connection between the treatment and

incidence of cancer and mortality in treated patients.

However, longer follow-ups are required to study late events,

especially in tumor formation and progression. ASC therapy for

female reproductive diseases has been investigated preclinically

and in some phase I clinical trials, suggesting a potential activity

of ASCs in female sexual dysfunction. Based on our current

knowledge about the benefits and challenges of ASCs, the

authors have introduced the design of our phase II trial to

study the safety and efficacy of autologous ASCs in the

management of sexual dysfunction in perimenopausal women.

The results of the proposed study will provide profound

insight into MSC actions in this disease. It might also

encourage a transition of MSC culture from high to

physiological oxygen conditions in future research.
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