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Abstract

An improved method for detecting coronary heart disease (CHD) could have substantial

clinical impact. Building on the idea that systemic effects of CHD risk factors are a conglom-

eration of genetic and environmental factors, we use machine learning techniques and inte-

grate genetic, epigenetic and phenotype data from the Framingham Heart Study to build

and test a Random Forest classification model for symptomatic CHD. Our classifier was

trained on n = 1,545 individuals and consisted of four DNA methylation sites, two SNPs, age

and gender. The methylation sites and SNPs were selected during the training phase. The

final trained model was then tested on n = 142 individuals. The test data comprised of indi-

viduals removed based on relatedness to those in the training dataset. This integrated clas-

sifier was capable of classifying symptomatic CHD status of those in the test set with an

accuracy, sensitivity and specificity of 78%, 0.75 and 0.80, respectively. In contrast, a model

using only conventional CHD risk factors as predictors had an accuracy and sensitivity of

only 65% and 0.42, respectively, but with a specificity of 0.89 in the test set. Regression

analyses of the methylation signatures illustrate our ability to map these signatures to

known risk factors in CHD pathogenesis. These results demonstrate the capability of an

integrated approach to effectively model symptomatic CHD status. These results also sug-

gest that future studies of biomaterial collected from longitudinally informative cohorts that

are specifically characterized for cardiac disease at follow-up could lead to the introduction

of sensitive, readily employable integrated genetic-epigenetic algorithms for predicting

onset of future symptomatic CHD.

Introduction

Heart Disease is the leading cause of death in United States.[1] Coronary heart disease (CHD)

is the most common type of heart disease. Methods to identify those at risk for sudden death
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or a myocardial infarction (MI) have been developed. However, their lack in sensitivity have

contributed to millions of Americans suffering otherwise preventable cardiac events. In fact,

sudden cardiac death is the initial presentation in 15% of patients with CHD.[2, 3] Though cli-

nicians are wary of the potential for cardiac disease at any age, increased attention is paid to

individuals with the classic risk factors for CHD defined in the Framingham Heart Study

(FHS) including family history of CHD, smoking, elevated systolic blood pressure, diabetes, or

anything resembling angina-like chest pain.[4, 5] Depending on the level of suspicion for

CHD, the initial examination typically includes a complete physical exam and a fasting lipid

panel that includes low density lipoprotein (LDL), high density lipoprotein (HDL) and triglyc-

eride levels.[5] The next level of response is normally an electrocardiogram (ECG) followed by

more costly and invasive measures including stress testing and cardiac angiography.[6]

Sadly, most clinically routine tests such as the 12 lead ECG and serum lipid screening are

remarkably insensitive for CHD. For example, in a study of 479 patients admitted for acute

chest pain with creatine kinase-MB isoenzyme (CK-MB) and troponin T (TnT) confirmed MI,

12 lead ECG was positive in only 33% and 28% of these patients at admission and post-admis-

sion, respectively.[7] In the FHS, using a cutoff of 260 mg/dl, elevated serum cholesterol levels

performed at intake failed to identify 2/3 of all the males who developed CHD over the subse-

quent four years. Hence, there is a need for additional methods that could more sensitively

diagnose the presence of CHD prior to the occurrence of acute cardiac events.

While a variety of approaches, including imaging, mechanical and bio-electrical techniques

have been used [8–10], developing blood based methods has its advantages because of the 1)

proof-of-principal provided by prior work with triglycerides and cholesterol, 2) clear involve-

ment of blood components such as platelets and white blood cells in CHD pathogenesis and 3)

the ease of integrating blood based approaches into current medical diagnostics.

In the era where the barrier to profile and access omics data is relatively low, the challenge

shifts to the mining of more sensitive diagnostic biomarkers. To that end, genome-wide associ-

ation and exome/genome sequencing studies (see O’Donnell and Nabel, 2011 for review [11])

have been conducted to identify risk associated variations. To date, these studies have isolated

approximately 10% of the total genetic risk for CHD.[12, 13] Notably, many of the SNPs noted

in these studies map to lipid and inflammation pathways, both of which are known to be

important from prior studies of CHD.[13] However, meta-analyses indicate that at best, the

contribution of pure genetic approaches to CHD prediction will be minimal.[14] As such,

standalone genetic approaches have not been incorporated into routine clinical practice.

Critical to the current work is the observation made in prior smoking associated epigenetic

studies. We observed that, smoking associated methylation markers such as the GPR15marker

cg19859270 [15, 16] did not predict smoking status well in all populations due to confounding

of methylation changes by local genetic variation (i.e. gene-environment interactions).[15]

This suggested that, accounting for the complex interplay between genetic and environmental

factors, latter of which can be measured epigenetically, is vital for increased sensitivity and

generalizability in all populations. Incorporating this complexity can drive the discovery of

CHD biomarkers forward as it is widely known that CHD is a common complex disease with

genetic, environment and gene-environment components.

In that hope, the goal of our study was to demonstrate the viability of an integrated

genetic-epigenetic approach in predicting CHD status as an alternative to routinely used

conventional CHD risk factors (age, sex, blood pressure, total cholesterol, HDL cholesterol,

smoking status and HbA1c to represent diabetes status). Hence, this study was designed to

1) integrate genome-wide genetic and epigenetic data from the FHS obtained using DNA

from blood to develop an integrated CHD prediction model, 2) develop a CHD prediction

model consisting of conventional risk factors, and 3) compare the CHD prediction
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performance of these models. While the models in this study are being used to classify indi-

viduals based on their current CHD status, they will serve as a proof-of-concept and set the

stage for the eventual development of genetic-epigenetic markers for predicting CHD prior

to its occurrence (i.e. forecasting).

Materials and methods

Ethics statement

This study was conducted using fully anonymized Framingham Heart Study data obtained

through dbGAP (https://dbgap.ncbi.nlm.nih.gov). The participants provided written informed

consent to a Framingham Heart Study clinical staff to participate in this study. The University

of Iowa Institutional Review Board approved all analyses described in this study.

Framingham Heart Study

The Framingham Heart Study (FHS) (dbGAP study accession: phs000007) has been described

in detail elsewhere.[17, 18] The clinical, genetic and epigenetic data included in this study

is from the Offspring cohort who 1) attended the eighth examination cycle which was con-

ducted between 2005 and 2008, 2) consented to genetics research, and 3) have peripheral

blood genome-wide DNA methylation data.

Genome-wide DNA methylation

Based on consent and after removing duplicates, DNA methylation data was available for

2,567 individuals. Genome-wide DNA methylation of the Offspring cohort was profiled using

the Illumina Infinium HumanMethylation450 BeadChip.[19] (San Diego, CA) The quality

control steps have been described in detail in a recent publication.[20]

Genome-wide genotype

Genome-wide SNP data was profiled using the Affymetrix GeneChip HumanMapping 500K

(Santa Clara, CA) array. Of the 2,560 individuals remaining after DNA methylation quality

control, 2,406 (1,100 males and 1,306 females) had genotype data. Again, quality control steps

have been described in detail in a recent publication.[20] A total of 111 samples were removed

after these steps were performed. Of the remaining 2,295 individuals, another 696 individuals

were removed due to relatedness (identity by descent >0.1875, which is halfway in between

second and third-degree relatives), leaving 1,599 subjects (722 males and 877 females) for fur-

ther analyses.

Phenotypes

For each individual, the following data were extracted from the FHS dataset: age, gender, sys-

tolic blood pressure (SBP), high-density lipoprotein (HDL) cholesterol level, total cholesterol

level, hemoglobin A1C (HbA1c) level, self-reported smoking status, the use of statins, CHD

status and date of CHD established. Since DNA methylation was profiled using biomaterial

collected during the eighth examination cycle of the Offspring cohort, all phenotype data

obtained during this cycle were used in analyses. An individual was categorized as having

symptomatic CHD if they received a positive diagnosis from the Framingham Endpoint

Review Committee at or prior to their eighth examination cycle (i.e. the CHD established date

was equal to or less than their eighth examination cycle date when biomaterial was collected

for DNA methylation profiling). This categorization criterion reduced the number of individ-

uals from 1,599 to 1,545 (173 and 1,372 with and without symptomatic CHD, respectively).
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DNA methylation analysis

To identify CHD associated genome-wide DNA methylation changes, linear regression analy-

ses were conducted using data from the 1,545 individuals in the training set in R V3.1.2 as

delineated in Eq (1):

Methi � Age þ Gender þ Batchþ CHD ð1Þ

The association between DNA methylation and CHD was determined while controlling for

age, gender and DNA methylation laboratory batch effects. Bonferroni correction for multiple

comparisons at a genome-wide α = 0.05 was performed for every regression analysis.[21] A

total of 472,822 independent tests were conducted and therefore, only those with a nominal p-

value <1e-07 (0.05/472822) were considered to be significantly associated at the genome-wide

level.

Training and testing datasets

As mentioned in the introduction, the goal of this study was to develop an integrated genetic-

epigenetic classifier for symptomatic CHD. To achieve this, training and testing datasets were

prepared to develop the classifier and subsequently test its predictive capability. The 1,545

individuals (173 and 1,372 with and without symptomatic CHD, respectively) that survived all

quality control steps and had a CHD status at their eighth examination cycle were used for var-

iable reduction, variable selection and model training. Since only 173 individuals were diag-

nosed with CHD, an undersampling approach similar to EasyEnsemble of the majority class

was performed to address the class imbalance. [22, 23] Using this approach, eight training sub-

datasets were generated, where controls in each subset were randomly undersampled without

replacement. This resulted in four training sub-datasets with 171 controls and four others with

172 controls, totaling 1,372 controls.

To assess the predictive capability of the trained model, data from the 696 individuals

removed based on their relatedness were used. Again, CHD status and the eighth examination

cycle dates of these individuals were compared to categorize them as either positive or negative

for symptomatic CHD. From doing so, the number of individuals was reduced from 696 to

669 (314 males and 355 females). Since only 71 of these 669 individuals were diagnosed with

symptomatic CHD, the final test dataset was balanced with 71 randomly chosen controls,

resulting in the final test dataset of n = 142.

Variable reduction

The total number of genetic (SNP) and epigenetic (DNA methylation) probes remaining after

quality control measures were 403,192 and 472,822, respectively. Due to the large number of

variables (876,014 total, excluding phenotypes), we implemented steps as discussed below to

reduce the search space and minimized redundancy in the predictors.

Linkage disequilibrium based SNP pruning was performed in PLINK[24] with a window

size of 50 SNPs, window shift of 5 SNPs and a pairwise SNP-SNP LD threshold of 0.5. This

reduced the number of SNPs from 403,192 to 161,474. To further reduce the number of SNPs,

the chi-squared p-value was calculated between the remaining 161,474 SNPs and CHD status.

Those with a chi-squared p-value <0.1 were retained for model training, resulting in 17,532

SNPs (~4%).

To reduce the number of DNA methylation loci, first, the correlation was calculated

between the 472,822 CpG sites and CHD status. CpG sites were retained if the point bi-serial

correlation with CHD was at least 0.1. A total of 138,815 CpG sites remained. Subsequently,
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Pearson correlation between those 138,815 sites was calculated. If the Pearson correlation

between two loci was at least 0.8, the loci with a smaller point bi-serial correlation (i.e. less cor-

related with CHD) was discarded. In the end, 107,799 DNA methylation loci (~23%) remained

for model training.

To systematically feed variables into the classification model, the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve of the top 1% methylation and

SNPs were calculated and used to rank these loci.

Model training and testing

Using a stratified 10-fold cross-validation approach, Random Forest (RF)[25] classification

models were built independently using scikit-learn in Python V2.7.12 [26] on all eight training

sub-datasets consisting of genetic, epigenetic and phenotype data. Based on their ROC AUC,

loci were fed systematically into the model. Feature importance, accuracy and AUC of RF

classifiers were used to select important variables for prediction. A grid search using Grid-

SearchCV was employed to perform 10-fold cross-validation hyper-parameter tuning (maxi-

mum features: auto, minimum samples for each split: 2–10, information gain criterion:

entropy or gini, maximum tree depth: 500–2500, number of trees: 10000–30000) of the mod-

els. The performance metrics of the models were determined. All eight final tuned models

were saved for testing on the test dataset where majority voting was used to ensemble the votes

of these models.

To compare the performance of our integrated genetic-epigenetic model to a model with

conventional CHD risk factors as predictors, a similar approach was employed to build the

model on the training data and subsequently test it on the test dataset. The filtering and model-

ing steps are summarized in Fig 1. Also, net reclassification improvement analysis[27] was per-

formed to compare the improvement in classification using the integrated model.

Additionally, to compare our ensemble approach to a single RF model, an alternative RF

model was developed in R using the randomForest package. The “strata” and “sampsize” argu-

ments were used to perform stratified sampling of the minority class. This is a simpler imple-

mentation of the undersampling ensemble approach described above. The number of trees

(ntree) parameter of this alternative RF classifier was tuned. The same n = 1,545 training set

and n = 142 testing set were used to train and test this classifier.

Statin use analysis

To identify statin use associated genome-wide DNA methylation changes, linear regression

analyses were conducted using data from the 1,545 individuals in the training set in R V3.1.2

as delineated in Eq (2):

Methi � Age þ Gender þ Batchþ CHDþ Statin Use ð2Þ

The association between DNA methylation and statin use was determined while controlling

for age, gender, DNA methylation laboratory batch effects and CHD status. Bonferroni correc-

tion for multiple comparisons at a genome-wide α = 0.05 was performed for every regression

analysis.[21] A total of 472,822 independent tests were conducted and therefore, only those

with a nominal p-value <1e-07 (0.05/472822) were considered to be significantly associated at

the genome-wide level.
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Fig 1. Filtering and modeling. Flowchart summarizing steps performed for Random Forest model training and testing.

https://doi.org/10.1371/journal.pone.0190549.g001
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Results

The clinical characteristics of the 1,545 and 142 subjects used for training and testing, respec-

tively, in this study are given in Table 1. There were more females (n = 851/~55%) than males

(n = 694/~45%) in the training set, but more males (n = 88/~62%) than females (n = 54/~38%)

in the test set. They were all of Northern European ancestry. A total of 115 males (~17%) and

58 females (~7%) in the training set, and 22 females (~41%) and 49 males (~56%) in the test

set were diagnosed with symptomatic CHD. Those with symptomatic CHD on average tended

to be older than those without symptomatic CHD. Also, on average, males in the training set

were older than those in the testing set, while average age of females were more comparable

between both sets.

The mean and standard deviations of other conventional risk factors are also summarized

in Table 1. While HDL cholesterol, SBP and HbA1c were comparable between individuals in

the training and testing sets, total cholesterol was not. This could be attributed to the use of

statins as outlined in Table 1. Also, a well-known risk factor for CHD is smoking. As shown

in Table 1, based on self-reported current smoking status, more individuals without CHD

reported smoking than those with CHD. However, since self-reported smoking status is

Table 1. Summary of variables. The demographics and CHD risk factors of the 1,545 and 142 individuals included in

the training and testing sets, respectively.

Training Testing

CHD No CHD CHD No CHD

Gender (count)

Male 115 579 49 39

Female 58 793 22 32

Age (years)

Male 71.1±7.4 66.4±8.5 67.5±8.4 59.6±9.2

Female 73.0±8.7 66.4±8.6 72.5±9.0 64.6±10.8

Total Cholesterol (mg/dL)

Male 154±33 176±33 141±25 191±32

Female 172±35 199±36 180±41 187±35

HDL Cholesterol (mg/dL)

Male 45±12 50±14 46±11 51±15

Female 59±17 65±19 62±18 61±18

HbA1c (%)

Male 6.0±0.9 5.7±0.8 5.9±0.9 5.9±1.4

Female 6.0±0.9 5.7±0.5 6.3±1.0 6.0±1.0

SBP (mmHg)

Male 128±19 130±17 124±19 127±17

Female 135±18 129±18 136±17 129±15

Use Statin (count)

Male 94 228 1 3

Female 44 254 0 0

cg05575921 (z-score)

Male -0.15±1.19 -0.07±1.05 -0.46±1.43 -0.26±1.12

Female -0.12±1.11 0.08±0.92 0.10±1.12 -0.13±0.93

Smoker (count)

Male 12 39 6 7

Female 2 64 1 4

https://doi.org/10.1371/journal.pone.0190549.t001
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known to be less reliable, including in cardiac patients[28, 29], we also include the epigenetic

smoking biomarker, cg05575921[30], in Table 1.

Regression of CHD to genome-wide DNA methylation using data from the 1,545 individu-

als in the training set resulted in 11,497 significant methylation sites (2.4%) after Bonferroni

correction for multiple comparisons. The top 30 sites are shown in Table 2, while all sites are

shown in S1 File. All annotations (Illumina) are based on genome build 37 and in S1 File, addi-

tional annotation (uncorrected p-values and mapinfo) are provided for all 11,497 sites.

Integrated genetic-epigenetic Random Forest analyses

Eight RF models were built on the eight sub-datasets consisting of genetic, epigenetic, age

and gender data from the 1,545 subjects in the training dataset. Standard scikit-learn RF

parameters were used to determine the important SNPs and DNA methylation loci. Based on

the average accuracy and AUC of the eight classifiers and the information gain criteria of each

variable, four CpG sites (cg26910465, cg11355601, cg16410464 and cg12091641), two SNPs

(rs6418712 and rs10275666), age and gender were retained for prediction. Using the tuned

Table 2. DNA methylation and CHD status. Top 30 significant methylation sites associated with symptomatic CHD after Bonferroni correction for multiple compari-

sons using training set data.

CpG Beta Gene Chr Position Island Status Corrected p-value

cg26910465 6.48E-01 ADAL 15 TSS200 Island 8.01E-18

cg13567813 6.60E-01 NR1H2 19 TSS200 Island 2.05E-17

cg09238957 5.98E-01 ORC6L 16 TSS200 Island 7.97E-17

cg04099813 6.12E-01 TSSC4 11 TSS1500 S_Shore 1.45E-16

cg07546106 6.29E-01 TAP2 6 5’UTR N_Shore 2.40E-16

cg20808462 6.01E-01 HAUS3 4 5’UTR Island 5.42E-16

cg16968115 5.92E-01 WDTC1 1 TSS200 Island 1.25E-15

cg24475210 5.84E-01 MRFAP1 4 TSS200 Island 1.26E-15

cg03031660 5.84E-01 MRPS7 17 1stExon Island 1.45E-15

cg22605179 5.97E-01 EWSR1 22 5’UTR Island 3.81E-15

cg02357877 5.71E-01 GBAS 7 TSS1500 Island 4.04E-15

cg22111723 5.65E-01 13 Island 4.57E-15

cg06117184 5.67E-01 CKAP2L 2 1stExon Island 4.87E-15

cg07478100 5.85E-01 MIS12 17 TSS1500 Island 5.36E-15

cg15318396 5.83E-01 21 Island 5.52E-15

cg00544901 5.76E-01 RPS11 19 TSS1500 Island 5.62E-15

cg24478630 5.88E-01 MOGS 2 TSS200 S_Shore 5.65E-15

cg04022019 5.90E-01 DCAF13 8 1stExon Island 5.86E-15

cg12124516 5.81E-01 MCM6 2 TSS200 Island 6.41E-15

cg20935862 5.96E-01 C9orf41 9 TSS1500 Island 6.62E-15

cg07377675 6.00E-01 USP1 1 TSS200 Island 7.79E-15

cg07734253 5.83E-01 CORO1A 16 TSS1500 N_Shore 8.16E-15

cg03699307 5.94E-01 GABARAPL2 16 TSS1500 Island 8.44E-15

cg17360140 5.79E-01 C4orf29 4 TSS1500 Island 9.10E-15

cg25632648 6.06E-01 KCTD21 11 TSS200 Island 9.83E-15

cg06339248 5.83E-01 ZDHHC5 11 5’UTR Island 1.10E-14

cg24275354 6.24E-01 NDUFA10 2 Body N_Shore 1.52E-14

cg25261764 5.93E-01 NARS 18 1stExon Island 1.69E-14

cg14172283 5.83E-01 TOMM5 9 1stExon Island 2.00E-14

cg01089095 5.69E-01 CHCHD1 10 TSS200 Island 2.02E-14

https://doi.org/10.1371/journal.pone.0190549.t002
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parameters, all eight models were re-fitted to the training dataset. The performance metrics

(mean and standard deviations) of these stratified 10-fold cross-validated models are shown in

Table 3. As depicted in this table, the accuracy ranges from 70–80% between these eight mod-

els, which is between a 20–30% increase from the 50% accuracy baseline. More importantly,

the sensitivity of the model ranged from 70–82%, while the specificity ranged from 70–79%.

The ROC AUC of the eight models ranged from 0.77–0.87. The 10-fold ROC AUC of the best

performing model (model 7) is shown in Fig 2. All eight models were saved for testing on the

test dataset (n = 142).

An ensemble of the eight models was used to perform CHD classification in the test dataset.

An individual was classified as having CHD if at least four of the eight models voted in favor of

Table 3. Integrated genetic-epigenetic training metrics. The 10-fold cross-validation performance metrics of the eight integrated genetic-epigenetic models within the

ensemble on the training set.

Model Accuracy AUC Sensitivity Specificity

1 0.78±0.09 0.82±0.09 0.79±0.12 0.77±0.08

2 0.75±0.05 0.83±0.06 0.78±0.10 0.72±0.08

3 0.79±0.05 0.85±0.07 0.83±0.07 0.76±0.08

4 0.78±0.07 0.84±0.07 0.79±0.12 0.76±0.07

5 0.75±0.06 0.78±0.06 0.70±0.09 0.79±0.09

6 0.70±0.05 0.77±0.05 0.70±0.12 0.70±0.10

7 0.80±0.06 0.87±0.04 0.82±0.08 0.77±0.07

8 0.78±0.06 0.85±0.05 0.82±0.07 0.74±0.08

https://doi.org/10.1371/journal.pone.0190549.t003

Fig 2. Integrated genetic-epigenetic model ROC curve. The Receiver Operating Characteristic curves of the

integrated genetic-epigenetic model with the largest average 10-fold cross-validation area under the curve value.

https://doi.org/10.1371/journal.pone.0190549.g002
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CHD. Of the 142 individuals (71 with and 71 without symptomatic CHD) in the test dataset,

the CHD status of 110 individuals was predicted correctly, resulting in a test accuracy of

77.5%. The confusion matrix of the prediction is shown in Table 4. The test set sensitivity and

specificity of the ensemble was 0.75 and 0.80, respectively. When the ensemble was tested on

the full test set of n = 669, the sensitivity held and the specificity increased to 0.82.

To understand the variance of each of the four CpG sites captured by the conventional risk

factors, using training set data, regression analysis was performed and the results are summa-

rized in S2 File. Briefly, as shown in this supporting file, these four CpG sites are significantly

associated with age, gender, total cholesterol, cg05575921 smoking or HbA1c. This suggests

that each CpG site can be linked to risk factors that commonly assessed. Furthermore, to deter-

mine if relatedness may have contributed to the observed performance of the models, addi-

tional analysis and results are described in S3 File. Results provided in the form of visualization

and logistic regression in this supporting file suggest that relatedness did not influence the pre-

diction accuracy of the model in the test set.

Additionally, the list of genome-wide DNA methylation signatures associated with statin

use, controlling for age, gender, batch and CHD status, which was obtained using training set

data was compared to the list of the four CpG sites. As shown in Table 5, after correction for

multiple comparisons, statin use was significantly associated with seven CpG sites. However,

this list did not include any of the four CpGs contained within the integrated genetic-epige-

netic model. The nominal p-values prior to correction for multiple comparisons of the four

CpG sites were 0.002, 0.908, 0.109 and 0.015 for cg26910465, cg11355601, cg16410464 and

cg12091641, respectively.

Conventional CHD risk factor model

To compare the performance of our integrated genetic-epigenetic model to the performance

of conventional CHD risk factors in predicting CHD status, another eight RF models were

built using age, gender, SBP, HbA1c, total cholesterol, self-reported smoking and HDL choles-

terol as predictors. Again, using tuned parameters, the eight RF models were built on the

training dataset and tested on the test dataset. The performance metrics (mean and standard

Table 4. Testing of integrated genetic-epigenetic ensemble. The confusion matrix of the integrated genetic-epige-

netic ensemble of eight models on the test dataset consisting of 142 individuals.

Predicted

TRUE CHD absent CHD present

CHD absent 57 14

CHD present 18 53

https://doi.org/10.1371/journal.pone.0190549.t004

Table 5. DNA methylation and statin use. All significant methylation sites associated with statin use after Bonferroni correction for multiple comparisons using training

set data.

CpG Beta Gene Chr Position Island Status Corrected p-value

cg17901584 -4.59E-01 DHCR24 1 TSS1500 S_Shore 3.53E-12

cg06500161 4.43E-01 ABCG1 21 Body S_Shore 9.30E-11

cg05119988 -3.30E-01 SC4MOL 4 5’UTR S_Shelf 5.22E-04

cg19751789 -3.23E-01 LDLR 19 TSS200 N_Shore 1.54E-03

cg27243685 3.01E-01 ABCG1 21 Body S_Shelf 1.87E-02

cg01185530 -2.58E-01 DNAJC3 13 5’UTR Island 2.81E-02

cg11072882 -2.74E-01 FAM47E 4 Body Island 4.97E-02

https://doi.org/10.1371/journal.pone.0190549.t005
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deviations) of the eight models are summarized in Table 6. Accuracies of these models on their

respective training datasets ranged from 70–76%, while the sensitivity and specificity ranges

were 67–74% and 72–79%, respectively. The range of the ROC AUC was 0.72–0.79. While the

accuracy and specificity is quite comparable with the integrated genetic-epigenetic models, the

conventional risk factors models underperformed with respect to sensitivity and ROC AUC.

The 10-fold ROC AUC of the best performing model (model 7) among the eight models is

shown in Fig 3.

When the ensemble of the eight models was tested on the test dataset, the test accuracy was

65.4%, which is approximately 12% less than that of our integrated genetic-epigenetic ensem-

ble. The confusion matrix is shown in Table 7. However, the more important metric is the

Table 6. Conventional risk factor training metrics. The 10-fold cross-validation performance metrics of the eight conventional risk factor models within the ensemble

on the training set.

Model Accuracy AUC Sensitivity Specificity

1 0.73±0.03 0.77±0.05 0.71±0.07 0.75±0.10

2 0.73±0.07 0.75±0.08 0.74±0.08 0.72±0.09

3 0.75±0.07 0.79±0.06 0.73±0.12 0.77±0.10

4 0.70±0.06 0.75±0.08 0.68±0.10 0.72±0.07

5 0.70±0.06 0.72±0.08 0.67±0.09 0.73±0.10

6 0.71±0.10 0.75±0.10 0.68±0.14 0.75±0.10

7 0.76±0.04 0.79±0.05 0.73±0.11 0.79±0.09

8 0.71±0.10 0.76±0.12 0.68±0.15 0.75±0.11

https://doi.org/10.1371/journal.pone.0190549.t006

Fig 3. Conventional risk factors model ROC curve. The Receiver Operating Characteristic curves of the conventional

risk factors model with the largest average 10-fold cross-validation area under the curve value.

https://doi.org/10.1371/journal.pone.0190549.g003
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sensitivity since it shows the degree to which a person with CHD is classified correctly. The

sensitivity on the test dataset was only 42%, which is 33% less than that of our integrated

genetic-epigenetic ensemble. However, the specificity of the conventional risk factor ensemble

was 0.89. When the ensemble was tested on the full test set of n = 669, the sensitivity held and

the specificity increased to 0.92. The net reclassification improvement using the integrated

genetic-epigenetic model instead of this conventional risk factors model was 0.25.

Alternative Random Forest model

To determine if our ensemble approach consisting of eight models performs better than a sin-

gle RF model, as described in the methods, one RF model that includes stratified sampling

based on the minority class was built in R. The results are discussed in S3 File. Briefly, these

results suggest that the ensemble approach results in higher prediction sensitivity than the sin-

gle stratified modeling approach.

Discussion

A better understanding of the relationship of epigenetic changes to the pathogenesis of cardio-

vascular diseases is essential for the development of improved diagnostics and therapeutics.

In our analysis to uncover epigenetic signatures associated with CHD, cg26910465 from the

ADAL gene was the most significantly differentially methylated with respect to CHD status.

This gene is part of the adenosine deaminase family.[31] Previous studies have examined the

relationship between genes in the adenosine deaminase gene family and CHD [32–34], given

the important cardioprotective role of adenosine.[35] The inclusion of epigenetic signatures is

particularly attractive given the challenges and limitations in using multivariate risk models

consisting of conventional risk factors to predict the risk for CHD. For instance, the Framing-

ham Risk Score for CHD [36] which incorporates conventional risk factors and was developed

using the FHS cohort consisting of individuals of European ancestry, performed well for white

men and women, but hardly generalized to all other ethnic groups. Specifically, in a study that

validated this algorithm in an ethnically diverse cohort, the prediction model held for black

men and women, but overestimated risk of Japanese Americans, Hispanic men and Native

American women.[37] Hence, there is a need for models that can be used for all members of

our society.

One plausible reason for the lack in generalizability is the possible confounding effects of

genetic variation. The concept of the potential for genetic confounding of epigenetic signal is

widely accepted.[38] Therefore, the goal of our study was to integrate genetic and epigenetic

data to develop a classifier to predict symptomatic CHD as a step towards demonstrating the

ability to use this integrated approach for future risk models as an alternative to existing algo-

rithms. This approach that mines predictive signal from large and complex genetic and epige-

netic datasets is made possible by the advancements in high performance computing systems.

Computational techniques such as machine learning have been successfully employed in the

fields of genomics and epigenomics.[39, 40] While logistic regression is the commonly used

Table 7. Testing of conventional risk factors ensemble. The confusion matrix of the conventional risk factors

ensemble of eight models on the test dataset consisting of 142 individuals.

Predicted

TRUE CHD absent CHD present

CHD absent 63 8

CHD present 41 30

https://doi.org/10.1371/journal.pone.0190549.t007
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method for developing binary classification models in medical applications and have been

used to analyze microarray data [41], it lacks the ability to capture implicit complex nonlinear

relationships. Hence, algorithms capable of detecting complex relationships such as interac-

tions between genetic variation and DNA methylation have an added advantage. In our study,

the use of a Random Forest ensemble allowed for a highly accurate, sensitive and specific clas-

sification of individuals with CHD. However, since some genetic risk variants co-sort with eth-

nic background and may not map to pathways associated with conventional risk factors, it will

be necessary to build, test and extend these Random Forest approaches using subjects from all

ethnic groups to develop more generalizable prediction tools.[42]

While a similar integrated genetic and epigenetic study is not available for comparison, our

integrated model clearly outperforms the classifier that uses the conventional risk factors. The

conventional risk factors model demonstrates the limited predictive value of these risk factors

as indicated by a number of studies.[43–45] In a study consisting of over 2000 older black and

white adults, the Framingham risk score, which uses conventional risk factors, was only capa-

ble of distinguishing those who experienced a CHD event versus those who did not after an

eight year follow-up at a C-index of 0.577 and 0.583 in women and men, respectively.[46] The

conventional risk factors may not perform as well due to hourly variations of factors such as

serum cholesterol level and the use of a single blood pressure measurement instead of an aver-

age recorded throughout the day.[47, 48]

As demonstrated in this manuscript, there are several approaches to building classifiers. In

comparing the two methods delineated in this manuscript, the ensemble model performed

better than the single RF model (S4 File) with respect to sensitivity and vice versa for specific-

ity. Our reason to favor a model with higher sensitivity is simple. For the classification of dis-

eases such as CHD, a false positive would require further testing but a false negative result

could be detrimental to the patient. However, a test with high sensitivity and specificity is

ideal. To achieve that, a larger sample consisting of diverse ethnic groups encompassing both

genders is required. Also, while we used the RF algorithm, there are many other algorithms

such as Support Vector Machines that can be used as the algorithm underlying a classifier.

Nevertheless, our RF model clearly shows non-linearity between methylation sites and SNPs as

depicted in the partial dependence plots.

It is important to realize that the combination of methylation sites and SNPs in our ensem-

ble (cg26910465, cg11355601, cg16410464, cg12091641, rs6418712 and rs10275666) is only

one of large number possible combinations that could be highly predictive. The first three

CpG sites, cg26910465, cg11355601, and cg16410464, map to genes ADAL, JOSD1, and

CCT6P1, respectively, while cg12091641 does not map to a specific gene. ADAL has been

described above. The gene, JOSD1, has been reported to be upregulated in peripheral blood

mononuclear cells in those with asymptomatic myocardial dysfunction.[49] CCT6P1 is the

pseudogene of the Chaperonin Containing TCP1 (CCT) Subunit 6 gene. The protein of this

gene is one of the subunits of the CCT complex. While CCT6P1 has not been directly impli-

cated in CHD, the CCT complex has been shown to interact with LOX-1, a receptor involved

in atherogenesis.[49] The first tag SNP, rs6418712, maps to an X chromosome locus (giving us

absolute gender), containing a poorly characterized transcript whose highest expression is in

blood; NHS, which is an actin remodeling regulator, and several microRNAs. The second,

rs10275666, is in very tight linkage disequilibrium (LD) with HUS1, a gene involved in CVD

related oxidative DNA repair [50–53] and in strong LD with MIR590, a putative microRNA

biomarker for CVD and established regulator of cardiac development/regeneration.[54–56]

Based on the permutation results (Fig 2 in S4 File), we demonstrate that the variable reduc-

tion step undertaken to enrich for highly predictive methylation and SNP probes provide an

edge with respect to sensitivity. However, the current ensemble was built using data only from
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individuals of Northern European extraction. Because the current set of markers used in our

ensemble may not be as highly predictive in subjects of other ethnicities or cultures, the poten-

tial combinations will have to be parsed in order to provide a highly predictive yet generaliz-

able classifier for all members of our society. Nevertheless, as shown in S2 File, the methylation

sites included in our model can be linked to conventional risk factors, suggesting that a portion

of the variance of these sites can be explained by a combination of risk factors.

Our analyses did not take into account the possible effects of medications. This is notable

because the current armamentarium of cholesterol lowering agents can have a dramatic

effect on the levels of certain risk factors, such as serum cholesterol, that are associated with

risk for CHD. Indeed, the presence of these medications may be the reason why the serum

cholesterol level is actually lower in those in the training set who have CHD than in those in

the training set without CHD. Unfortunately, it is very difficult to incorporate these types of

data into the current analytical approach for several reasons. Even if the subjects self-report

of prescriptions were accurate, critical information needed to account for their effects, such

as medication compliance and the treatment history length are not available. In the future,

having data such as “pill count” and serum drug level information will be critical if we are to

fully understand the effect of medical interventions on epigenetic signatures used for disease

prediction.

Although it is possible that a portion of model variance is secondary to the effects of medi-

cations, we will note that to date, an epigenetic signature of statins on peripheral DNA methyl-

ation has not been identified. However, our statin use analysis show that none of the four

methylation probes in our integrated genetic-epigenetic model are significantly associated

with statin use. This may be due to 35% of the non-CHD subjects also taking statins. Neverthe-

less, it is without question that future studies must be wary of the potential for medication

effects to alter predictive capacity.

There are several other limitations in our study. First, our study includes only individuals of

European ancestry. However, the incorporation of genetic variation in our model allows for

the generalizability between ethnic groups. Nevertheless, additional studies are required to

demonstrate this. Second, testing of the ensemble models were not performed on an indepen-

dent cohort. Third, while our approach predicts symptomatic CHD, the goal is to use this

study as a proof-of-concept towards building a multivariate model capable of forecasting risk

for a future CHD event. Extensive exploration in prospectively biosampled cohorts will be nec-

essary to achieve that goal. Yet, it is important to note that this integrated genetic-epigenetic

approach has its advantages. The use of conventional risk factors in calculating risk requires

cumbersome testing procedures, the collection of considerable amounts of blood and multiple

lab tests. Conceivably, the need for these often cumbersome tests and procedures will be

greatly reduced by using a single genetic-epigenetic assay procedure that uses a microgram or

less of DNA. More importantly, the pathways associated with specific epigenetic loci with high

predictive value could be very useful in guiding therapeutic interventions, management of risk

factors and monitoring efficacy of treatments and lifestyle modifications.

Supporting information

S1 File. All CHD associated significant CpG sites after correction for multiple compari-

sons.

(TXT)

S2 File. Variance of each CpG site captured by conventional risk factors.

(PDF)
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S3 File. Contribution of relatedness to performance of models.
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S4 File. Performance of Random Forest model with stratified sampling based on the

minority class.
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