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Abstract
Many organs and tissues have an intrinsic ability to regenerate from a dedicated, tissue-specific stem cell pool. As organ-
isms age, the process of self-regulation or homeostasis begins to slow down with fewer stem cells available for tissue repair. 
Tissues become more fragile and organs less efficient. This slowdown of homeostatic processes leads to the development 
of cellular and neurodegenerative diseases. In this review, we highlight the recent use and future potential of optogenetic 
approaches to study homeostasis. Optogenetics uses photosensitive molecules and genetic engineering to modulate cellular 
activity in vivo, allowing precise experiments with spatiotemporal control. We look at applications of this technology for 
understanding the mechanisms governing homeostasis and degeneration as applied to widely used model organisms, such 
as Drosophila melanogaster, where other common tools are less effective or unavailable.
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Introduction

Adult organisms maintain their tissues and organs in a 
dynamic equilibrium, where cells die and are constantly 
replaced in a process of tissue homeostasis [1]. Homeosta-
sis maintains the functionality of tissues and organ systems 
through stem cell mediated repair. This repair recruits stem 
cell pools which are maintained in specialized niches and 
regulated by extracellular signals or injury [2]. Stem cell 
niches have a complex, signal-rich environment which pre-
serves tissue-specific stem cells. In aging organisms, these 
stem cell pools are depleted, initiating the degenerative pro-
cess, where tissue homeostasis becomes less active [3, 4]. 
Mutations affecting maintenance signals can lead to disease, 
but recent studies into drug combinations show therapeutic 
potential, as they stimulate symmetric stem cell divisions, 
replenish the stem cell pool, and boost tissue regeneration [5, 
6]. Given the importance of homeostasis in disease progres-
sion and aging, it is important to develop methods to study 
the complex interplay of these processes. Optogenetics is 

one such recent method being applied extensively to this 
field of research.

Optogenetics has been a particular success in Dros-
ophila due to the many tools for gene manipulation. The 
most common approach has been to use the yeast-derived 
GAL4/UAS expression system to drive expression of 
optogenetic transgenes in a variety of tissues [7], especially 
when combined with specific integration sites to assure 
equal expression from different transgenes [8]. These can 
be combined with other binary expression systems such as 
lexA and QUAS to express different transgenes in differ-
ent tissues [9, 10]. Temporal control of transgene expres-
sion can also be achieved using the temperature sensitive 
allele of the transcriptional repressor Gal80ts [11], or drug 
inducible promoters such as RU486 inducible GeneSwitch 
Gal4 system [12]. The ease of fly genetics allows expres-
sion in traditional genetic mutant backgrounds as well as in 
combination with RNAi knockdowns available as a library 
of fly lines; resources which have recently been expanded 
to include guide RNAs for CRISPR/Cas9 and dCas9-VPR 
for gene knockout and overexpression [13]. To manipulate 
genes directly, without overexpression, many genes in the 
Drosophila genome have been modified with a landing site 
for recombination-mediated cassette exchange (RMCE) [14, 
15]. This landing site can be used to introduce any tag as an 
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additional exon allowing expression of a tagged version of 
the protein at endogenous levels, and has been used to intro-
duce an optogenetic cassette directly into the genome [16].

Optogenetics encompass a toolkit of techniques to con-
trol neuronal firing, gene expression, and protein func-
tion through light-responsive proteins or protein domains 
[17–29]. The term “optogenetics” was used to describe 
approaches that combine optical and genetic manipulation 
of specific cell types or specific cellular processes [30]. 
Optogenetic tools have been applied to successfully address 
a number of questions in neuroscience and cell biology that 
require spatiotemporal and neurochemical precision in vitro 
or in vivo. This toolkit has expanded rapidly, generating 
many potential applications for research questions across 
disciplines which were previously difficult to address [31]. 
In this review, we focus on recent advances in optogenetic 
tools for the study of mechanisms behind homeostatic and 
degenerative processes. We discuss how innovative applica-
tions of optogenetics in stem cell biology, neurodegenera-
tive diseases, and homeostasis are being used to fill existing 
knowledge gaps and suggest future directions for the utiliza-
tion of this suite of tools.

Optogenetic approaches

A series of discoveries enabled the development of optoge-
netics, from basic characterisation of light-activated pro-
tein pumps to applications in neuronal firing. In 1971, 
well before optogenetics was established as a concept, the 
bacteriorhodopsin was among the first protein pumps that 
were characterised as being activated by visible light pho-
tons [32]. One of the earliest applications of a light-induced 
technique was to study gene expression through the ability of 
phytochrome B to bind reversibly to the transcription factor, 
PIF3 [33–35]. Researchers also developed other light-induc-
ible methods which use optically gated ion channels, are 
non-invasive, and are able to control Drosophila behaviour 
[36] and neuronal activity with Rhodopsin [37]. These stud-
ies led to the discovery of several optically sensitive genetic 
proteins that can manipulate cellular physiology. In 2005, 
Deisseroth, Boyden, and colleagues demonstrated the ability 
to precisely control neural activity at a millisecond timescale 
by successfully introducing and activating light-sensitive, 
microbial opsins in mammalian neurons in vitro [38]. Deis-
seroth et al. coined the term “Optogenetics”[30], the short 
history of which was reviewed by Deisseroth [24] and by 
Boyden (from a first-person perspective) [39]. Optogenetics 
in its early stages was applied to behavioural neuroscience, 
but subsequently expanded to cell biology [40].

Optogenetic approaches can be separated into two broad 
categories. The first focuses on the use of photoactivat-
able protein domains to regulate protein localization or 

oligomerization [41]. Examples of these systems include 
cryptochrome 2 (CRY2) [42, 43], phytochrome B (phyB) 
[34, 44, 45], light, oxygen, and voltage (LOV) [46], and 
Dronpa [47, 48]. Another example is the functional expres-
sion of photoactivated adenylyl cyclases (PACs) for light-
induced manipulation of the cAMP messenger molecule in 
animal cells [49]. For a review of these single and dual-
protein approaches for multiscale control of protein func-
tion in signalling biology, please see [50]. The second cat-
egory involves the use of antibody-like recombinant binders 
for a broader range of protein targets using intrabodies or 
nanobodies to bind to endogenous proteins, targets which 
were previously inaccessible by the approaches in the first 
category [51–53]. The light-programmable control of these 
recombinant binders greatly expands the list of potential pro-
tein targets that can be targeted. These protein domains can 
be fused to genes of interest, providing a simple modular 
system, as they require low levels of activation light, are 
reversible, and are often independent of exogenous cofac-
tors [54]. Given the growing number of new optogenetic 
approaches, researchers can keep track of different systems 

Fig. 1   Progression of optogenetic systems in cell biology. a Charac-
terisation of the bacteriorhodopsin protein pump. Light photons acti-
vate the pump to move protons across the membrane of the cell. The 
retinal molecule (highlighted in red) changes its conformation after 
absorbing light photons. b First demonstrated use of microbial opsins 
in mammalian neurons. This use of channelrhodopsins was the first 
to probe neural coding with millisecond precision [37]. c Manipula-
tion of the cellular cyclic AMP (cAMP) messenger molecule using 
photoactivated adenylyl cyclases (PACs). PACs act as modular pho-
toreceptors with blue light-sensing domains and are bound to cata-
lytic domains which produce cAMP activity, allowing cAMP activ-
ity to be modulated in Drosophila neuronal populations [48]. d 
PhytochromeB-PIF system for control of protein–protein interactions 
for cell signalling. The phyB-PIF system can be used to translocate 
target proteins to the membrane and back with micrometre spatial 
resolution [44]. The excitation speed (timescale of when the system 
activates after illumination with stimulatory light) is within seconds. 
The reversion speed (timescale of when the system resets in the dark 
or after illumination with inhibitory light) is within seconds when 
illuminated at 750 nm or hours in the dark [40]. e CRY2/CIB system 
for control of protein dimerization. The CRY/CIB system improves 
upon the phyB-PIF system by not requiring exogenous cofactors (like 
the bilin cofactor) while still maintaining fast temporal and subcel-
lular spatial resolution [156]. f Dronpa fluorescent protein which is 
adapted for use as a light switch for controlling protein interactions. 
Dronpa domains are fused to the ends of the protein of interest. Cyan 
light illumination dissociates the tetrameric form of Dronpa, releas-
ing the domains and uncaging the protein of interest [47]. This switch 
has been applied to studies of adhesion processes and control of pro-
tein kinases [157, 158]. g Optogenetic control of endogenous proteins 
using highly specific intrabodies (iB) [52]. The schematic represents 
light-induced recruitment to the membrane and movement from the 
cytoplasm to the nucleus. This system allows multiplexed protein 
regulation and simultaneous monitoring with visible-light biosensors. 
Previous systems could only target over-expressed exogenous proteins 
which could result in unintended aggregation or competition with 
endogenous proteins
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using the OptoBase database [55]. The suite of optoge-
netic tools available has progressed significantly in the past 
15 years and can be used to tackle complex questions in cell 
biology (Fig. 1).

Compared to classic genetic tools, optogenetic tools have 
the following advantages: (1) unmatched precision for spa-
tial, temporal, and neurochemical regulation of proteins in 
in vitro and in vivo systems [54, 56, 57]; (2) great flexibil-
ity and reversibility, where the same approach can be used 
to turn pathways on or off in a variety of tissues or brain 
regions [56, 58]; and (3) the possibility of multiplexing [41, 
59].

Applications of optogenetics

Neural signalling

Before optogenetic tools were developed in the 2000s, 
Francis Crick suggested in 1979 that a light-based approach 
would be useful to study neural signalling, so it was only 
natural that it was the first area of application for early 
optogenetics [31]. One of the first optogenetic systems used 
a combination of proteins including photo-reversible Dros-
ophila rhodopsin NinaE, arrestin-2, and the α subunit of 
photoreceptor G-protein to sensitize cultured hippocampal 

Fig. 1   (continued)
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neurons to light stimulation [37]. Expression of channelrho-
dopsins in 2 distinct classes of presynaptic motoneurons, 
which innervate one postsynaptic cell, was used to study 
presynaptic homeostatic plasticity at the neuromuscular 
junction, demonstrating the usefulness of light-activated 
channels for targeted experiments [60]. Newer and improved 
tools, such as the red-light activated channelrhodopsin, 
CsChrimson, have been applied to study dopamine release 
in the ventral nerve cord and medial protocerebrum of the 
larval Drosophila central nervous system [61, 62], nocice-
ptive-like escape behaviour (in response to noxious stimuli 
and painful experiences), and the curling and rolling escape 
response in the larvae [63]. Further improvements such as 
the addition of the Split-Gal4 system were used to map the 
behavioural phenotypes attributed to at least one third of all 
descending neurons in the fly [64]. A wide range of behav-
iours are being dissected using optogenetics, such as sensori-
motor pathways underlying behaviours, back-walking/back-
crawling [65], turning/head casting [66], escaping [67], and 
oviposition [68]. In vertebrates, optogenetics studies address 
motor control [69–72], reward system [73], learning, and 
memory [74, 75].

Neurodegeneration

Optogenetics can be used to study protein misfolding com-
mon in neurodegenerative diseases. For Alzheimer’s dis-
ease (AD) and Parkinson’s disease (PD), existing Drosoph-
ila models can be divided into three broad categories: (1) 
Drosophila orthologs of human disease genes; (2) transgenic 
constructs carrying alleles of human disease-causing genes; 
and (3) models used to study the effects of environmental 
stressors on Aβ toxicity [76]. Studies have also combined 
approaches, developing models that use both Drosophila 
orthologs of human disease genes and overexpression of 
human transgenes. Expression using the GAL4-UAS sys-
tem and accumulation of Aβ-42 peptide alone is sufficient 
to cause neurodegeneration and behavioural defects in Dros-
ophila models [77]. A novel optogenetic approach used the 
Cry2, blue-light sensitive oligomerizing protein to inves-
tigate the consequences of formation of Aβ oligomers in 
Drosophila, C. elegans, and D. rerio [78]. Both expression 
and induced oligomerization of Aβ reduced lifespan and 
healthspan, but the effects could be separated into metabolic 
problems induced by expression alone and physical damage 
caused by light-induced Aβ oligomerization [79, 80].

Similarly, PD is characterized by the aggregation of 
α-synuclein, or Lewy bodies, within cells of the central 
nervous system. α-synuclein is hypothesised to contribute 
to toxicity and subsequent death of dopaminergic neurons 
in the substantia nigra pars compacta which is responsible 
for motor control [81]. To study the fixed stages of PD, an 
optogenetic PD model was constructed by introduction of 

the halorhodopsin (NpHR) gene, a light-gated chloride 
channel which inhibits neurons, into the substantia nigra 
compacta [82]. Unlike the classical animal model of PD, 
this novel optogenetic approach avoids causing damage to 
the nigrostriatal system and can be used as a PD model for 
various stages of the disease by adjustment of illumination 
parameters [82].

Other studies looked at TDP-43, a protein excluded from 
the nucleus into insoluble cytoplasmic inclusions, observed 
in post-mortem patient tissue in neurodegenerative disorders 
including Amyotrophic Lateral Sclerosis (ALS) and Fron-
totemporal dementia (FTD) [83, 84]. An optogenetic model 
of TDP-43 proteinopathy was developed by expressing Cry2 
fused to human TDP-43 (optoTDP43). This in vivo model 
induced TDP-43 cytoplasmic aggregation and recapitulated 
important features of patient pathology such as progressive 
motor dysfunction, addressing the link between TDP-43 
cytoplasmic aggregation and toxicity.

Stem cells, development, and tissue regeneration

The process of gastric epithelial homeostasis and regenera-
tion has become an important model for understanding the 
regulation of stem cells [85, 86]. As these are adult tissues, 
genetic approaches must circumvent developmental stages 
using temperature-sensitive or tissue-specific overexpres-
sion, knockdown, or CRISPR/Cas9 [87–89]. One approach 
used signalling pathway components fused to CRY2 to regu-
late signalling using light in the adult fly midgut stem cell 
model [16]. A limitation of traditional overexpression or 
knockout techniques is that they affect stem cell regulation 
across the entire lifespan of the fly. This approach avoided 
the developmental effects of modulated stem cell signalling 
by raising flies in the dark and using light only at adult stages 
to activate the targeted pathway when required. Targeting 
intestinal stem cell signalling pathways with optogenetics 
allows perturbation at specific ages of Drosophila (e.g., 
young, adult, and old) to establish an age-based link to the 
effects of signals on gastric homeostasis.

Developmental processes such as tissue morphogenesis 
can be studied using optogenetic approaches. For example, 
morphogenesis during embryonic Drosophila development 
has been studied using optogenetics in a variety of ways 
[90]. A non-exhaustive list of optogenetic approaches to 
study Drosophila development includes: the structure of 
centrosomes [91], Erk signalling [27, 92–94], Toll signalling 
[95], adhesion [56, 96–98], cell shapes [99], GTPase activ-
ity [45, 100–110], anterior-to-posterior patterning through 
Bicoid [111], Wnt [112], and Notch signalling [113]. One 
approach that looked at phosphatidylinosital-4,5 biphos-
phate [PI(4,5)P2] during Drosophila ventral furrow forma-
tion showed that it was required for apical constriction, an 
essential tissue invagination process [114, 115]. The study 
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observed that optogenetics can be utilized to control cell 
contractility in Drosophila adding tissue mechanics to light-
regulatable processes [116].

Optogenetic control of cell differentiation is also appli-
cable to regenerative medicine and tissue engineering. 
These systems typically provide reversible changes through 
protein–protein interactions or temporary changes which 
only last for the lifetime of the modified proteins. Tissue 
engineering requires long-term changes in gene expression 
through a spatially dependent “on” switch. Polstein et al. 
engineered such an optogenetic switch that would perma-
nently express a transgene upon illumination by blue light 
using the CRY2 system and incorporating a myogenic differ-
entiation factor in vivo in a mouse model [117]. Their result 
demonstrated that sustained transgene activation of in vivo 
cell differentiation and tissue morphogenesis was possible 
after an initial dose of illumination.

Nutrient and metabolic homeostasis

To optimize their fitness levels, animals vary their food 
choices with their body needs. For lab-raised Drosophila, 
yeast is the primary source of protein and nutrients. When 
investigating the chemosensory channels mediating yeast 
feeding, researchers found that gustatory receptor neurons 
(GRNs) of the taste peg, a sensory structure, and sensillar 
GRNs sustain and initiate yeast feeding, respectively [118]. 
The response of the yeast-sensitive GRNs is intensified fol-
lowing deprivation from amino acids, in turn modulating 
nutrient homeostasis. This result was determined using the 
FlyPAD assay, which allows automated, high-throughput 
analysis of feeding behaviour with temporal resolution 
[119]. Incorporation of optogenetics into the FlyPAD assay, 
known as the optoPAD, led to a high-throughput system that 
allowed direct manipulation of neurons to induce appeti-
tive or aversive effects on feeding by activating or inhibit-
ing GRNs. [120]. The adjustable light pulse of the opto-
PAD system, which can be dynamically linked to observed 
behaviour, makes it ideal for silencing neurons or activating 
reinforcement circuits. OptoPAD allowed “virtual gustatory 
realities” and induced appetitive behaviours by activating 
or inhibiting sweet and bitter neurons, respectively [120]. 
Another system, the Sip-Triggered Optogenetic Behavior 
Enclosure (‘STROBE’), addressed the challenge of manip-
ulating feeding circuits in freely moving animals when the 
timing of sensory inputs is affected by the animals’ behav-
ior. STROBE was able to temporally couple neuron activa-
tion with feeding events to find that coincident activation of 
sweet neurons upon food contact drives appetitive behavior 
and activation of bitter neurons drives aversive behavior 
[121].

Emerging optogenetic tools focus on detection of meta-
bolic pathway components and modulation of whole-body 

energy homeostasis. To control phosphoinositide (PI) 
metabolism, Idevall-Hagren et al. exploited the CRY2 sys-
tem to recruit key catalytic modules (PI3-kinases) to the 
plasma membrane, resulting in lipid gradients and cell 
polarization [122]. To activate fat thermogenesis, Tajima 
et al. designed an implantable wireless optogenetic device to 
selectively trigger Ca2+ [123]. This device enables targeted 
activation, as opposed to systemic activation, which can 
increase overall blood pressure. The device takes advantage 
of the spatiotemporal control allowed by optogenetic tools to 
activate fat thermogenesis without external stimuli, resulting 
in protection against obesity. These studies demonstrate how 
optogenetic systems can target various metabolic modules 
to have broad applications for studying other homeostatic 
processes.

Cardiac homeostasis

Optogenetic pacing of the heart allows non-invasive as 
well as highly precise spatiotemporal electrical stimulation. 
Transgenic flies expressing a light-gated cation channel, 
channelrhodopsin-2 (ChR2), paced contractions optogeneti-
cally at different developmental stages, including the larval, 
pupal, and adult stages. Cardiac function and its response 
to pacing stimulation were tracked using a high-speed and 
ultra-high-resolution optical coherence imaging system, 
serving as a powerful tool for basic heart research [124]. 
A hypersensitive variant of ChR2 (ChR2.XXL) was able 
to elevate the Drosophila larval heart rate over a range of 
temperatures and calcium levels, showing the potential of 
using light as a pacemaker in mammalian heart transplant 
conditions [125]. Further optogenetic studies using this vari-
ant showed that activation of cholinergic, dopaminergic, and 
serotonergic neurons also causes the release of cardioactive 
substances that increase heart rate over a range of tempera-
tures [124–128].

Future directions in application of optogenetics 
to study homeostasis

Targeting regulatory signalling pathways of intestinal stem 
cells

Moving forward, optogenetic fusion constructs can be 
used with major components in signalling pathways to 
apply spatiotemporal control of homeostasis. For exam-
ple, the Keap1–Nrf2 regulator pathway has potential for 
perturbation with optogenetics. Nrf2 is a master regula-
tor of the cellular redox state. It controls the proliferative 
activity of ISCs and promotes intestinal homeostasis. Loss 
of Nrf2 in ISCs causes reactive oxygen species (ROS) 
accumulation and accelerates age-related degeneration of 
the intestinal epithelium [129]. In ISCs, loss of Keap1, a 
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negative regulator for Nrf2, decreases intracellular ROS 
levels and regulates redox balance to control ISC prolif-
eration as Keap1 homodimers promote proteasomal deg-
radation of Nrf2 in the cytoplasm [130]. Post-translational 
modification of Keap1 by ROS (or electrophiles) leads to 
the release of Nrf2, and its translocation into the nucleus 
[131]. Nrf2 enters the nucleus, where it dimerizes with 

Maf family transcription factors, inducing expression of 
target genes [132].

The Keap1–Nrf2 pathway could be perturbed with 
optogenetics at each of these three points: (1) during the 
homodimerization of Keap1 (as illustrated in Fig. 2a); (2) 
the nuclear translocation of Nrf2 (Fig. 2b); or (3) the dimeri-
zation of Nrf2 with a transcriptional activator. In this path-
way, an optogenetic approach which can take advantage of 

Fig. 2   Potential optogenetic manipulation of the Keap1–Nrf2 path-
way. The Keap1–Nrf2 pathway can progress to degrade Nrf2 in the 
cytoplasm after ubiquitination. Alternatively, if Nrf2 is activated by 
ROS or electrophiles, it will dissociate from the Keap1 dimer and 
translocate into the nucleus. Subsequently, Nrf2 will dimerize with 
the transcriptional activator, Maf. It will begin transcription of target 
genes that contain the antioxidant response element (ARE) motif. a 
Potential optogenetic perturbation of Keap1 (with a fused optogenetic 

construct such as CRY2/CIB) could induce clustering [16, 137] and 
prevent Keap1 from forming a homodimer and functioning normally. 
This perturbation could act as a potential gain-of-function of Nrf2 tar-
get gene transcription. b Potential optogenetic perturbation of Nrf2 
(with a fused construct such as CRY2/CIB) could cause Nrf2 to clus-
ter and prevent movement through the nuclear membrane. Such reg-
ulation would act as a potential loss-of-function of Nrf2 target gene 
transcription
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protein dimerization would be appropriate (to prevent Keap1 
dimerization, induce Nrf2 clustering to modify its size and 
ability to move into the nucleus, or prevent Nrf2 binding to 
a transcriptional activator). For example, CRY2-based tools 
would be useful here, because the light-sensitive CRY2 pro-
tein, fused to the protein of interest, can bind to a partner 
protein (such as CIB) and modulate dimerization. Alterna-
tively, another approach to knockdown Nrf2 is to use light-
controlled degradation tools which regulate protein stability 
by fusing the protein of interest to a degradation module 
and light-responsive domain like LOV [133–135]. Given the 
interaction of ROS with Keap1, future studies could com-
bine this application with existing optogenetic tools of ROS 
production [136].

As summarized in Table 1, stem cell signalling path-
ways that have already been studied using optogenetics 
include Wnt [137], RTK (receptor tyrosine kinase) [138], 
Ras/ERK (extracellular signal regulated kinase) [22], Toll, 
EGFR (epidermal growth factor receptor) [16, 139], BMP 
(bone morphogenetic protein) [140], and FGF (fibroblast 
growth factor) [141]. Conversely, a non-exhaustive list of 
other potential signalling pathways which have not yet been 
studied with optogenetics (at the time of this review), but 
have significant potential include Notch, Hedgehog, Hippo/

YAP (Yes-associated protein), and JAK/STAT (Janus kinase/
signal transducers and activators of transcription) (Table 2). 
The application of optogenetics to regulate Nrf2 and other 
pathways involved in stem cell activity will provide research-
ers with more precise tools to study age-related degenera-
tion and aging (for example, comparing median-age flies to 
elderly flies).

Models for protein‑folding diseases

Given the recent success of optogenetics-based models, 
these tools have significant potential to create models of 
protein-folding diseases or proteopathies. One potential new 
model would involve optogenetically induced aggregation 
of amylin to study Type 2 diabetes. One of the pathological 
hallmarks of Type 2 diabetes is the presence of islet amyloid 
deposits composed of amylin (human islet amyloid polypep-
tide precursor or hIAPP) [142]. Amylin is a 37-amino-acid 
polypeptide that is toxic to pancreatic islet cells [143]. Lev-
els of human amylin cause different extents of oligomeriza-
tion, which correspond to diabetes disease stages. Diabetes 
phenotypes differ according to amylin overproduction levels 
[144], and there are similarities between Type 2 diabetes and 
Alzheimer’s disease [145]. The toxicity of amylin fibrils is 

Table 1   Stem cell signalling pathways already targeted with optogenetics

Each pathway plays a unique but interconnected function in regulating stem cell and homeostatic activity. With an understanding of the protein 
interactions for each pathway, specific optogenetic systems have been applied, optimized, or developed to regulate activity

Signalling pathways Function Protein interaction Optogenetic system used

Wnt/Wg ISC maintenance [159], cell fate specification, 
cell polarity [160]

Beta-catenin (Arm) oligomerization CRY2 [137]

RTK Cell proliferation, differentiation, cell cycle 
control, cell metabolism [161]

Membrane receptor oligomerization CLICR [138]

Ras/ERK Cell proliferation, cell cycle arrest, differentia-
tion [162]

Plasma membrane recruitment OptoSOS [22]

Toll Immune response, cell proliferation [163] Membrane receptor oligomerization CRY2 [16]
EGFR Cell division, survival, migration [164, 165] Membrane receptor oligomerization CRY2 [16]
BMP Embryogenesis, adult tissue maintenance [166] Dimerization, recruitment of SMAD proteins optoBMP [140]
FGF Cell proliferation, migration, patterning [167] Membrane receptor homodimerization OptoFGFR1/CRY2 [141]

Table 2   Stem cell signalling 
pathways with potential for 
optogenetic manipulation

This non-exhaustive list highlights signalling pathways which have not yet been targeted with optogenetics, 
despite their important roles in homeostasis. The specific protein interactions of these signalling pathways 
inform the type of optogenetic system that researchers can use for spatiotemporal control and investigation

Signalling pathways Function Protein interaction

Nrf/Keap1 Redox regulation [129, 168] Dimerization, nucleartranslocation
Notch Neural differentiation, ISC maintenance, 

enterocyte differentiation [169, 170] 
Nuclear translocation

Hedgehog Embryo pattern formation, progenitor and stem 
cell proliferation [171] 

Protein–protein interactions

Hippo/YAP Cell proliferation, apoptosis [172] Phosphorylation
JAK/STAT​ Cell proliferation, stem cell maintenance [173] Dimerization, nuclear translocation
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similar to the toxicity of Amyloid-β proteins in Alzheimer’s 
disease [143]. Amylin oligomerization in the pancreas and 
amyloid formation in the brain contributes to the degenera-
tion in AD and Type 2 diabetes [146].

Since the fat body organ in Drosophila plays a similar 
function in energy storage and metabolism to the human 
liver, it is a useful in vivo model to study amylin aggre-
gation. Expression of human and mouse amylin to induce 
amylin aggregates in central nervous system (CNS) and 
fat body regions have been completed [147]. In addition, 
researchers have completed a 3D crystal structure analysis 
of hIAPP in Drosophila fat body tissue [148], providing 
useful insights for manipulation of the aggregation process. 
Future studies could apply optogenetic systems which regu-
late protein oligomerization, such as CRY2, PhyB, and LOV, 
to induce amylin aggregation. The optogenetic advantage of 
spatiotemporal control enables three variables for research-
ers to control when studying amylin and its effects: (1) lev-
els of amylin aggregation; (2) age or time points at which 
aggregation is induced;, and (3) chosen areas of fat body tis-
sue or central nervous system (CNS) to induce aggregation. 
Optogenetics would enable control of these three important 
dimensions for a useful Type-2 diabetes in vivo model of 
amylin-based pancreas degeneration in Drosophila.

Optogenetics can also augment models of neurodegenera-
tive diseases, where protein misfolding plays a major role. 
The mechanisms by which protein aggregation relates to 
neurodegeneration are still subject to debate. Optogenetic 
control of protein aggregation can help to provide some 
insight into this gap. For example, in Huntington’s disease 
patients, the Huntingtin protein mis-folds and aggregates 
because of an expanded polyQ sequence in the gene [149]. 
Studies could take advantage of the control and visible read-
outs of protein aggregation with models that use optogenetic 
fusion constructs with the Huntingtin protein or any other 
proteins that aggregate. These models would adopt a similar 
approach to previously developed Amyloid models.

Adopting a closed‑loop approach

In addition to new models of disease, a closed-loop approach 
to designing optogenetic tools for cell signalling networks 
will also be an important step for the future of optogenetics 
in homeostasis (Fig. 3). Closed-loop control is an engineer-
ing concept that is defined as using the difference between 
the measured output and a desired target to guide changes 
in the control inputs to a system [150]. This stands in con-
trast to open-loop control, where the measured output of a 

Fig. 3   Open- and closed-loop approaches for optogenetics. a Open-
loop approach. The control input is the light stimulus and the output 
is a selected measure of interest for pathway activity. The measured 
output of interest has no impact on the control input. b Closed-loop 
approach. The target is a predetermined level of a measure of inter-
est (e.g., pathway activation). When the measured output level differs 

from the expected target level, the controller considers the “error mar-
gin” between both levels, and adjusts the input accordingly. Examples 
of adjustments include changing the light wavelength or pulse fre-
quency of illumination. The measured output influences the control 
input via a feedback loop
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system has no effect on the control input. In neuroscience, 
this approach has been adopted and involves perturbing neu-
ral systems to have real-time control over neural dynamics 
and animal behaviour [120, 121, 150, 151].

Given the complexity of cell signalling networks, a simi-
lar closed-loop approach would yield important insights for 
the interplay between signalling pathways. A closed-loop 
approach requires three parts: (1) availability of a target; 
(2) system control inputs; and (3) measured system outputs 
[150]. The system control input would be light stimulus 
that is modulated based on measured output [150]. In cell 
signalling networks, the measured system output could be 
any of the downstream proteins or effects of the signalling 
pathway (such as protein activity, gene expression or mem-
brane modification). The target would be a selected level of 
downstream activity of the signalling pathway. “Closing the 
loop” with optogenetics would help to elucidate the delicate 
feedback mechanisms involved in homeostatic signalling.

In cell biology, the future challenge will be to develop 
accurate readouts of the output of interest. For example, in 
the Wnt signalling pathway, a potential measured output 
would be the recruitment of Dishevelled (Dvl) proteins to the 
plasma membrane or stabilization of β-catenin when canoni-
cal Wnt signalling is activated [152]. This activity would 
then be used to create automatic feedback for modulating 
the optogenetic light stimulus. The diverse range of output 
types to measure and target in cell signalling will remain a 
challenge to be solved when applying a closed-loop control 
approach.

Even though optogenetics provides unparalleled spa-
tiotemporal control, researchers should keep in mind the 
limitations of this tool, controls required and alternate 
approaches to ensure experiments are designed appropri-
ately and data are interpreted carefully. Some examples 
include: (1) excitation with high frequency blue light is toxic 
to tissues, causes excessive heating [153], and has limited 
penetration to deeper tissues [154]. (2) Light can affect 
normal physiological processes such as brain function and 
temperature changes associated with light illumination dur-
ing in vivo optogenetic manipulations could have both elec-
trophysiological and behavioural consequences [155]. (3) 
This can be overcome by targeting optogenetic tools that are 
excited by near-infrared light (780–1100 nm) which causes 
less thermal heating and damage, in addition to displaying 
deep penetration [154]. (4) Careful experimental design 
to control the time course of light-driven responses, such 
as using pulses of light instead of continuous illumination 
which generates more heat, can help to remove confounding 
factors [155]. (5) The use of controls is required to substan-
tiate that the optogenetic manipulations are physiological. 
(6) Different optogenetic constructs have inherent limita-
tions such as specific on/off kinetics, excitation and reversal 

time (Fig. 1) that might render them unsuitable for certain 
applications.

Conclusion

In this review, we discussed recent advancements and 
applications of optogenetic approaches in homeostasis. The 
rapidly growing optogenetic toolkit is enabling the pertur-
bation of a diverse range of targets and in vivo processes. 
Where other approaches and techniques may fail or lack in 
spatiotemporal control and specificity, optogenetics yields 
significant potential to uncover new insights for stem cells, 
developmental biology, protein-folding diseases, and cell 
signalling circuitry.
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