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Accurately measuring arterial input function (AIF) is essential for quantitative analysis of dynamic contrast-
enhanced (DCE) magnetic resonance imaging (MRI). We used the indicator dilution principle to evaluate the
accuracy of AIF measured directly from an artery following a low-dose contrast media ultrafast DCE-MRI. In
total, 15 patients with biopsy-confirmed localized prostate cancers were recruited. Cardiac MRI (CMRI) and
ultrafast DCE-MRI were acquired on a Philips 3 T Ingenia scanner. The AIF was measured at iliac arties fol-
lowing injection of a low-dose (0.015 mmol/kg) gadolinium (Gd) contrast media. The cardiac output (CO)
from CMRI (COCMRI) was calculated from the difference in ventricular volume at diastole and systole mea-
sured on the short axis of heart. The CO from DCE-MRI (CODCE) was also calculated from the AIF and dose
of the contrast media used. A correlation test and Bland–Altman plot were used to compare COCMRI and
CODCE. The average (�standard deviation [SD]) area under the curve measured directly from local AIF was
0.219 � 0.07 mM·min. The average (�SD) COCMRI and CODCE were 6.52 � 1.47 L/min and 6.88 �
1.64 L/min, respectively. There was a strong positive correlation (r � 0.82, P � .01) and good agreement
between COCMRI and CODCE. The CODCE is consistent with the reference standard COCMRI. This indicates
that the AIF can be measured accurately from an artery with ultrafast DCE-MRI following injection of a low-
dose contrast media.

INTRODUCTION
Dynamic contrast-enhanced (DCE) magnetic resonance imaging
(MRI) has been widely used for cancer diagnosis, as well as to
quantitatively and noninvasively estimate a lesion’s physiolog-
ical characteristics (1-5). Quantitative DCE-MRI analysis is usu-
ally performed by using a pharmacokinetic model to obtain
transfer rate constants, such as Ktrans (forward volume transfer
constant) and kep (reverse reflux rate constant between extra-
cellular space and plasma) to characterize cancers (6, 7). How-
ever, variations of arterial input function (AIF) have a strong
impact on calculations of physiological parameters (8-11). To
extract reliable physiological parameters, an accurate AIF must
be measured for each patient to account for variations in cardiac
output (CO), systemic vascular function, and injection protocol
(8). Unfortunately, there is potential for significant error in AIF
measurements owing to partial volume effects, respiratory mo-

tions, inflow artifacts, dose-dependent T2*, and water exchange
effects (12-14). To avoid problems with accurate measurement
of patient-specific AIFs, a population AIF is often used in quan-
titative DCE-MRI data analysis (15-17). However, this does not
account for the large interpatient and interscan variability,
and this makes it difficult to compare physiological parame-
ters between patients or measure changes in each patient over
time (18, 19).

Several investigators have developed methods for quanti-
tatively measuring patient-specific AIFs with MRI (10, 20, 21).
However, the accuracy of the measured AIF was not verified in
most studies. Previous studies reported that using CO combined
with capillary input function improved the estimation of phar-
macokinetic parameters for liver (22). By applying the indicator
dilution principle (23) to constrain the area under the first pass
of the AIF, Zhang et al. (24) reported a 3-fold higher precision in
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calculating tumor perfusion parameters (Ktrans and ve). Di Gio-
vanni et al. (25) reported a method for estimating perfusion
parameters in patients with breast cancer using a T2*-weighted
DCE data set optimized with CO. All of these studies applied the
indicator dilution principle to optimize (scale) AIF based on each
patient’s CO. The need for this adjustment indicates that there
were significant errors in the directly measured AIFs. Several
studies also compared the AIFs measured from DCE-MRI and
DCE computed tomography (CT) scans (26-28), where the AIF
obtained from CT was treated as gold standard. However, the
accuracy of this comparison was limited because of radiation
dose constraints on temporal sampling with dynamic CT. In
addition, this approach to validation entails radiation and ad-
ditional contrast media.

In the present study, the indicator dilution principle was
used to verify the accuracy of the AIF directly measured at the
iliac arties following injection of a very low-dose contrast me-
dia. The key difference from previous studies is to verify, but not
to optimize (scale), the measured AIF. The CO of each patient was
directly calculated from short-axis cardiac MRI (CMRI) data. A
high temporal resolution (ultrafast) prostate DCE-MRI scan was
acquired with a low-dose contrast media, that is, 15% of the
conventional amount, to avoid errors due to T2* changes and
water exchange.

METHODOLOGY
Patient
This study was approved by the Institutional Review Board.
Patients were enrolled from January 01, 2017, to March 01,
2018. Informed consent was obtained from all patients before
conducting any study procedures. All patients enrolled in
this study had prostate cancer proven by TRUS (transrectal
ultrasound)-guided biopsy and were scheduled for radical prosta-
tectomy at our hospital. Patients with previous treatments (radia-
tion or chemotherapy) for prostate cancer, any type of bioimplant,
moderate or high anxiety and/or claustrophobia, and contraindi-
cations for MRI or CT including impaired renal function (GFR � 60
mL/min) were excluded from the study.

Fifteen patients (average age, 59 years; range, 47–73 years;
average weight, 96.7 kg; range, 79–132 kg) received both car-
diac MRI (CMRI) and a subsequent prostate DCE-MRI scans on
the same day. The cohort comprised Gleason grade 6–9 lesions
including: Gleason score (GS) 3 � 3 (n � 2), GS 3 � 4 (n � 11),
GS 4 � 3 (n � 6), and GS 4 � 5 (n � 1).

CMRI and Prostate DCE-MRI Scan Protocols
Both CMRI and low-dose (0.015 mmol/kg of gadobenate dime-
glumine) ultrafast DCE-MRI were acquired on the same Philips 3
T Ingenia scanner (Philips Healthcare, Best, Netherlands). A
gradient echo sequence (B-TFE) was used for imaging the car-
diac short axis (repetition time [TR] � 3.2 milliseconds, echo
time [TE] � 1.6 milliseconds, flip angle [FA] � 45°, field of view
[FOV] � 30 � 30 cm2, slices � 14, phases � 30–40, gap � 0,
in-plane resolution � 1.0 � 1.0 � 8 mm3, maximum dynamic
time � 800–1025 milliseconds).

Prostate MRI scans were performed approximately 30 minutes
after the CMRI scan. First, clinically required prostate MRI scans,
including high-resolution axial T2-weighted MRI and diffusion-

weighted imaging, were acquired. Then variable FA 3D-FFE-T1
scans (TE/TR � 2.3/12 milliseconds; FA � 3°, 5°, 10°, 15°, 20°,
30°; FOV � 25 � 39 cm2; in-plane resolution � 1.25 � 1.75
mm2; thickness � 3.5 mm) were acquired for the calculation of
native T1. Next, 150 axial ultrafast DCE-MRI using an mDixon
sequence (27, 29, 30) (TE1/TE2/TR � 1.5/2.8/4.2 milliseconds,
FA � 10°, FOV � 18 � 37 � 8 cm3, in-plane resolution � 1.5 �
2.8 � 3.5 mm3, temporal resolution � 1.5 s) were acquired over
225 seconds. A small dose (15% of the conventional dose, 0.015
mmol/kg) of Gd-based contrast media (gadobenate dimeglu-
mine) was injected into the patients’ left arm median cubital
vein with a power injector at an injection duration of �1.5
seconds, and followed by a 20-mL saline flush. The first 10 sets
of ultrafast DCE-MRI images were precontrast scans used as
baseline images. An approximate standard dose of contrast
media was injected �5 minutes after the low-dose contrast
media DCE-MRI. Data from the standard dose were not used in
the work reported here.

CO Measurements from CMRI
Electrodes were attached on the patient’s chest during the CMRI
scan to monitor the patient’s electrocardiogram. The CO from
CMRI (COCMRI) was calculated on the basis of the difference
between ventricular volume at diastole and at systole measured
on the short axis of the heart using the following formula
(31-33):

COCMRI � HR � (VED � VES) (1)

where VED (L) is the volume at the end of diastole, VES (L) is the
volume at the end of systole, and HR (beats/min, bpm) is the
patient’s heart rate recorded from electrocardiogram.

Contrast Media Concentration Measurements from
DCE-MRI
For all DCE-MRI slices, the contrast media concentration as a
function of time was calculated by using a previously published
method (34) based on MRI TR, FA, native T1, and baseline signal.
The native T1 was calculated by using the acquired precontrast
dual-TR and variable flip angle images as previously described
(35-37). The relaxivity of the contrast media of 5.5 L/mmol/s
(38) was used to calculate the Gd concentration in millimolar
units. AIFs were extracted from ultrafast DCE-MRI by manually
tracing the region of interest (ROI) over the left and right iliac
arteries. The shapes of the ROIs changed on different slices
owing to blood vessel visibility variations on DCE-MRI. The
average (�standard deviation [SD]) size of the ROI was 18 � 6
pixels. The vessel walls could be easily excluded from the con-
tour because they had different contrasts compared with the
vessel lumen. The average contrast media concentration from
the left and right iliac arteries was calculated and used as the AIF
for the patient.

The accuracy of the measured AIF was verified by using the
indicator dilution theory, which states that the area under a
curve of the blood plasma contrast media concentration during
the first-pass perfusion is constant in every vessel (25). The CO
measured from CMRI versus DCE-MRI should be the same if the
AIF is accurately measured.

Indicator Dilution Principle to Evaluate AIF
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Figure 1. Cardiac output (CO)
calculation from cardiac magnetic
resonance imaging (CMRI) where
(A) is a a section of short-axis
CMRI during a full CO. Row 2,
column 2, image shows the mini-
mum cross-section area during the
end of the systolic period; row 4,
column 8, image shows the maxi-
mum cross-section area during the
end of the diastolic period; (B) is
the plot of ventricular volume mea-
sured from short-axis CMRI.

Figure 2. The ultrafast dynamic
contrast-enhanced (DCE) image
following a low dose of contrast
media from the same patient (at
the 40th dynamic scan) (A), the
subtracted dynamic image from
baseline shows early enhance-
ment in prostatic carcinoma (red
arrow) (B), and the AIF generated
from iliac artery (red circle) from
the ultrafast DCE-MRI data (C).
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CO Measurements from Ultrafast DCE-MRI
The CO from ultrafast DCE-MRI (CODCE) was calculated from the
AIF and the dose of contrast media (24):

CODCE � Q ⁄ � Cp(t)dt (2)

where Q (mmol) is the amount of the contrast media injected,
and CP(t) (mM) is the contrast media concentration in the blood
plasma. The area under the “first pass” of contrast media circu-
lation was used for integration, that is, from baseline immedi-
ately before bolus arrival to the end of the first pass of the
contrast media bolus.

Data Analysis
Paired Student t-test was used to compare the COCMRI and
ultrafast CODCE. Pearson correlation test was performed to ex-
amine whether there is a linear relationship between COCMRI and
CODCE. The agreements between COCMRI and CODCE values were
evaluated using Bland–Altman analysis. P � .05 was considered
significant.

RESULTS
CMRI was acquired first for calculating CO as a reference stan-
dard. Figure 1A shows typical images of the short axis of the
heart during a cardiac cycle. The image in row 2, column 2, has
the minimum cross-sectional area during the end of the systolic
period; the image in row 4, column 8, has the maximum cross-
sectional area during the end of the diastolic period. The corre-
sponding plot of ventricular volumes measured from short axis
of the heart as a function of time is shown in Figure 1B. The VED

and VES used in equation (1) for calculating COCMRI were the
maximum and minimum values, respectively, in the plot.

After CMRI, prostate DCE-MRI was acquired, and the AIF was
measured directly from the iliac arteries. Figure 2A shows the
ultrafast DCE image (at the 40th dynamic scan) from the same
patient as shown in Figure 1. The subtracted dynamic image (Figure
2B) from the baseline (averaged from all baseline frames) shows
early enhancement in prostatic carcinoma (red arrow), and the AIF
traced from the iliac artery (red circle) is shown in Figure 2C. The
first and second pass peaks of the contrast bolus can be clearly seen
in the AIF despite limited signal-to-noise ratio owing to injection of
the low-dose contrast media.

This data analysis procedure was applied to data from all 15
patients. Table 1 lists the patients’ heart rate, the area under the
curve measured directly from local AIF, and the calculated
CODCE and COCMRI as the reference standard. The average (�SD)
area under the curve measured directly from local AIF obtained
from ultrafast DCE-MRI is 0.219 � 0.07 mM·min. The average
(�SD) COs calculated from CMRI and DCE-MRI are 6.52 � 1.47
L/min and 6.88 � 1.64 L/min, respectively. Both COCMRI and
CODCE vary by over a factor of 2 in this group of patients. Figure
3A shows the scatter plot of the COCMRI vs CODCE. There are
strong positive correlations (r � 0.82, P � .01) between the
COCMRI and CODCE. The corresponding Bland–Altman plot shows
good agreement between the two CO measurements (Figure 3B)
with bias of 0.37 (L/min) and limits of agreement between �1.14
to 1.87 (L/min).

DISCUSSION
The indicator dilution principle was used to verify the accuracy
of AIF measured at iliac arties from ultrafast DCE-MRI scan after
injection of the low-dose contrast media. The subject’s CO was
directly measured from CMRI before the prostate DCE-MRI scan.
We showed that the CO measured from ultrafast DCE-MRI is
consistent with the “gold standard” CO measured from the short-
axis CMRI. Our results show that AIF can be accurately mea-
sured directly from an artery with ultrafast DCE-MRI following
injection of a low-dose contrast media. Accurate measurement
of AIF for individual patients is critical for pharmacokinetic
analysis.

The present results also suggest some clinical and diagnos-
tic advantages for use of a low-dose contrast media DCE-MRI
(39). The association between Gd-based contrast media admin-
istration and nephrogenic systemic fibrosis has been a concern
for patients with renal failure. In a retrospective study, acute
renal failure was reported after high-dose (�0.2 mmol/kg) Gd
injection for patients with an eGFR lower than 30 mL/min (40).
It has also been reported that high-dose Gd injection contributed
to an increased risk of nephrogenic systemic fibrosis (41). There
are increasing concerns regarding intracellular accumulation of
Gd-based contrast media (42). Therefore, a low-dose contrast
media is preferred to minimize the risk (39). In addition, a
standard dose of contrast media may lead to erroneous estima-
tion of AIF owing to the high concentration of the contrast,
water exchange effects, and T2* effects (12-14). The AIF mea-
sured from a low-dose contrast media may reduce such errors, as
demonstrated by the present study results. In addition, this was
previously shown by comparing results from ultrafast DCE-MRI
with those from DCE-CT with 120-mL Iohexol in 20 patients
with prostate cancer (27). Previous work from this group showed

Table 1. Patients’ Heart Rate, Area Under
the Curve Measured Directly from Local AIF,
and CODCE and COCMRI

No.
Heart Rate
(beats/min)

AIF (AUC)
(mM·min)

CODCE

(L/min)
COCMRI

(L/min)

1 66 0.228 5.92 5.90

2 68 0.252 5.63 5.90

3 73 0.203 6.37 5.70

4 53 0.189 6.88 7.70

5 47 0.440 2.73 3.99

6 82 0.175 7.20 6.54

7 60 0.174 7.47 5.80

8 63 0.170 8.24 7.74

9 67 0.225 6.67 6.01

10 60 0.229 6.81 5.50

11 65 0.163 8.56 7.90

12 61 0.149 8.66 7.92

13 65 0.266 5.64 5.10

14 58 0.169 9.67 9.96

15 51 0.247 6.80 6.10

Indicator Dilution Principle to Evaluate AIF
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that low-dose Gd contrast distinguishes prostate cancer from
benign prostate tissue more effectively than a standard dose on
the basis of the signal enhancement rate; this diagnostic accu-
racy is similar on qualitative assessments (39).

CO is an important physiological parameter that directly
relates to the metabolism of the entire organism (43). Results
from the current group of patients show that there is a wide
variation in CO (over a factor of 2) and this will result in large
errors in pharmacokinetic parameters if it is not properly ac-
counted for. A separate magnetic resonance sequence is often
used to obtain CO. Our method with a low-dose contrast media
and ultrafast DCE of the abdomen can provide accurate AIF and
measure CO simultaneously, without performing additional
scans, and with minimal exposure to contrast media.

Our measurements of CO and AIF are not perfect. For ex-
ample, the native T1 measurement has a strong effect on Gd
concentration calculation and AIF curve shape. This is because
other parameters used in the calculation of contrast media

concentration are dependent on MRI acquisition parameters. In
addition, the native T1 must be determined from additional MRI
scans that can contribute error. The CMRI slice thickness (8 mm)
can be reduced to more accurately measure the diastolic and
systolic volume for more accurate CO calculation. The measure-
ment errors in VED and VES would only linearly affect COCMRI

calculations, which were naturally smaller than errors in CODCE

calculations owing to the many calculations involved.
In conclusion, accurately measuring of the AIF is essential for

quantitative DCE-MRI. Here we compared the CO measured from
CMRI as reference standard with the CO determined from measure-
ment of the AIF with ultrafast DCE-MRI. The results validated the
accuracy of the AIF measured at iliac arties following injection of a
low-dose (0.015 mmol/kg) Gd contrast media. The low dose chosen
for this study may not be optimal for measuring AIF and/or for the
diagnosis of cancers. More studies are needed to determine the
optimal low dose for both accurately measuring the AIF and esti-
mating physiological parameters.
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