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ABSTRACT
Brain tumors are among the most challenging human tumors for which the mechanisms driving progression
and heterogeneity remain poorly understood. We combined single-cell RNA-seq with multi-sector biopsies
to sample and analyze single-cell expression profiles of gliomas from 13 Chinese patients. After classifying
individual cells, we generated a spatial and temporal landscape of glioma that revealed the patterns of
invasion between the different sub-regions of gliomas. We also used single-cell inferred copy number
variations and pseudotime trajectories to inform on the crucial branches that dominate tumor progression.
The dynamic cell components of the multi-region biopsy analysis allowed us to spatially deconvolute with
unprecedented accuracy the transcriptomic features of the core and those of the periphery of glioma at
single-cell level.Through this rich and geographically detailed dataset, we were also able to characterize and
construct the chemokine and chemokine receptor interactions that exist among different tumor and
non-tumor cells.This study provides the first spatial-level analysis of the cellular states that characterize
human gliomas. It also presents an initial molecular map of the cross-talks between glioma cells and the
surrounding microenvironment with single-cell resolution.
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INTRODUCTION
Gliomas are among the most lethal forms of human
tumors as they are characterized by aggressive be-
haviors and resistance to multiple therapies.The de-
velopment of genetic mutations in malignant cells
and the complex interactions between tumor and
non-tumor cells in the glioma microenvironment
foster intratumoral heterogeneity, thus contributing
to therapeutic failures and the generally poor prog-
nosis of gliomas. A major unmet challenge in neuro-
oncology is our ability to understand glioma hetero-
geneity and progression in gliomas and how they
influence therapeutic resistance [1].

Several studies have reported that malignant
gliomas are characterized by a formidable degree
of intratumoral heterogeneity. For example, mo-
saic amplification of receptor tyrosine kinase genes

(EGFR, MET, PDGFRA) is known to represent a
classical hallmark of genetic heterogeneity affecting
neighboring tumor cells within bulk glioma sam-
ples [2]. Furthermore, single cell-derived clones of
glioma cells have been identified and shown to ex-
hibit divergent proliferation and differentiation abil-
ities [3]. Finally, the multi-region genetic analy-
sis of gliomas with single nucleotide polymorphism
(SNP) array or whole exome sequencing has re-
vealed that divergent glioma subtypes can be recov-
ered from different geographical regions, which to-
gether give rise to a branched pattern of progression
[4,5]. As single-cell RNA-sequencing became a fea-
sible approach to investigate human tumors, glioma
heterogeneity has started to be explored with single-
cell resolution [6–11]. However, most of the stud-
ies that have previously reported single-cell RNA-
sequencing of gliomas did not include analysis of
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either tumor cells and the tumor microenvironment
(TME) frommultiple spatially annotated regions of
gliomas, thus limiting our understanding of patterns
of spatial evolution and brain infiltration, the latter
being one of the most critical hallmarks of aggres-
siveness and progression of malignant glioma.

To delineate the glioma single-cell heterogene-
ity in both spatial and temporal resolution, we per-
formed a glioma single-cell analysis from multi-
sector biopsies informed by precision navigation
surgery. Cell type components of each tumor frag-
ment and temporal relationship of cells in each
individual patient were unbiasedly identified. Our
analysis did not use approaches aimed at selecting
specific tumoror non-tumor cell populations.There-
fore,we report thefirst single-cell-based comprehen-
sive spatial analysis of the geographical structure of
glioma and the dynamic progression of the interac-
tions of tumor cells with individual non-tumor cells
frommultiple tumor locations.

RESULTS
Precision navigation-based multi-sector
biopsies and single-cell RNA-seq of
glioma cells
Tumor sections with potential representative
divergent properties were marked in a presurgical
3D enhanced magnetic resonance imaging (MRI)
model and tumor tissues were precisely collected
during surgery by navigation sampling. Samples
were quickly dissociated and subjected to single-cell
RNA-sequencing (scRNA-seq) library prepara-
tion [12,13] (Fig. 1A). Overall, 7928 single-cell
transcriptomes were generated, and 6148 passed
stringent quality filtering steps after alignment
and reads counting (Fig. 1B and Supplementary
Fig. S1A,B). These cells were collected from 73
regions in 13 patients with glioma covering the
most frequent subtypes (3 WHO grade II, 1 WHO
grade III, 8 WHO grade IV and 1 gliosarcoma).
As a control, we also included one brain metastasis
from a patient with lung squamous cell carcinoma
(Fig. 1C, Supplementary Fig. S2, Supplementary
Tables 1 and 2).

As regional gene expression status can be
affected by copy number variation (CNV) dose
effect, we adopted previously reported methods
to predict large fragment copy number status with
a single-cell gene expression matrix [6,8]. The
generated copy number matrix clustered into five
CNV subgroups (Fig. 1D). Malignant cells were
identified based on this classification. Subgroups
G1 and G2 included glioblastoma multiforme
(GBM) cells sharing a chr7amp/chr10del-driven

transcriptome, whereas a unique CNV pattern
was apparent in GBM patient GS3 (subgroup
G5). The G4 subgroup included low-grade glioma
(LGG) cells with chr1p/chr19q codeletion-driven
signatures. The last subgroup (G3) was composed
of non-malignant cells without obvious CNVs.

Optimized t-SNE map and clustering
identifies 25 cell type clusters
As reported by previous single-cell RNA-seq stud-
ies of human glioma, the malignant cells from dif-
ferent patients showed a fragmented relationship in
clustering analysis, mainly because of the dose effect
of gene expression caused by diverse CNVs [6,8].
Therefore, we argued that removal ofCNVvariances
would optimize the principal component analysis
(PCA) and t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) analysis.

To obtain the CNV status of each tumor sample,
we performed low-depth whole genome sequenc-
ing (WGS) on bulk biopsies. Based on the WGS
data, genes with interpatient large copy number
changes were removed from the clustering analy-
sis (Fig. 2A, Supplementary Figs S3B and S4). The
integrated analysis of tumor cells from our entire
dataset using PCA and t-SNE resulted in an opti-
mizedmapof 25 cell clusters (Fig. 2C,DandSupple-
mentary Fig. S5). Compared to the original t-SNE
map (Fig. 2B and Supplementary Fig. S6A, B and
D), the fragmented cell distribution was resolved to
a map with more concentrated points and clearer
edges (Fig. 2D).This distribution was confirmed by
independent binary regulon activity clustering with
SCENIC (Fig. 2E and Supplementary Figs S6E and
S7) [14]. A combination of these different strategies
could help minimize analyze artifacts in analysis.

Considering the cell source and CNV status with
a global t-SNE map, the non-tumor cells and the
glioma cells lacking extensive genomic rearrange-
ments (such as those derived from LGG) showed
a converged distribution, indicating that our data
were not influenced by batch effects. They also indi-
cated that the LGG-derived tumor cells were more
uniform among different patients (Fig. 2C and Sup-
plementary Fig. S6C). Cell cluster-specific genes
coalesced the 25 clusters into four major groups
(Supplementary Table 2): CNV−MOG+ normal
glial cells [15], KRT5+ lung cancer (LC) metasta-
sis cells [16], CD45 (PTPRC)+ immune cells and
CNV+ malignant tumor cells. In malignant glioma
cells,OLIG2/DLL3 and AQP4/CLU distinguish tu-
mor cells exhibiting transcriptomic features of oligo-
dendrocytes and astrocytes, respectively [17–19].
Cells positive to the general proliferative marker



1308 Natl Sci Rev, 2020, Vol. 7, No. 8 RESEARCH ARTICLE

S1P2_SC32 CGGTAACCGTCTAGAATCCTT…

S6P2_SC76 TTTCTGTATGTGTAGCCTTTG…
S6P2_SC43 CATTGTTCCTTTTGCTATCAC…
S7P4_SC25 AAAGACATGAACGTCTCCATG…
S1P2_SC91 TAGCAGGATGTCATAATAAAT…
S3P2_SC88 GTCTCACCAAGAACACTGAAA…
S1P2_SC22 AGAACTACTATTTTGGGAGAT…
S6P2_SC72 ATTAAGTCAGAGGTATCTTTA…

S3P1_SC16 TCATGTTAGATCACATCACAG…

× × ×

Sequencing and 
data analysis

...

...

...

Multiple point sampling by
precision navigation surgery

Barcoded single-cell 
 cDNA amplification

2nd strand synthesis, 
amplification and

library construction for 
every pooled 96 cells

...

A

B

Peritumoral 
brain edema

Tumor

Biopsy type

2

1
4

53

GS15GS15

1

23
4

5

6 7

8

GS3GS3

1

2

4
7

56
3

GS1GS1 2
1

3
4

GS4GS4

5
4

3

21

GS5GS5

1
2

3

4

5

GS6GS6
1

5

2

3
4

GS7GS7

5

4

3

2

1

GS8GS8

5

4

6
3

2

GS11GS11

5

3

4
1

2

GS12GS12 1

6
5

4

3
2

GS13GS13
5 1

2

3
4

GS14GS14

1
23

4

GS2GS2WHO II

WHO III -> IV

WHO IV

Gliosarcoma

Metastases

P
at

ie
nt

Cell number
10008006004002000 1200

GS2
GS3
GS4
GS5
GS6
GS7
GS8
GS9

GS11
GS12

GS1

GS15
GS14
GS13

258
256

114
326

355
317

254
364

1010
633

377

500
406

978

288
384

272
368
384
384
384

480
1144

960

384

768
576

1152

C

D

-2 0 2

Z-Score

ch
r2

2
ch

r2
0

ch
r1

8

ch
r1

6

ch
r1

4

ch
r1

2
ch

r1
1

ch
r1

0
ch

r9
ch

r8
ch

r7

ch
r6

ch
r5

ch
r4

ch
r3

ch
r2

ch
r1

ch
rX

GBM LGG

NT

G1

G5

G2

G4

G3

CNV subgroups

Figure 1. General information on experimental procedure and generated data. (A) Experimental procedure. Multiple point sampling was done by
precision navigation surgery, followed by single-cell isolation and barcoded single-cell cDNA amplification. After every 96 cells were pooled together,
the sequencing library was constructed by several experimental procedures. (B) Pathology information and cell number of 14 patients collected in this
study. White bars and colored bars represent raw cell number and filtered cell number in each patient, respectively. (C) Medical imaging and biopsy
locations of all sampling points in each patient. Red and yellow dots mark locations of tumoral and peritumoral sampling points in the MRI image.
(D) RNA-derived single-cell CNV information. Hierarchical clustering divided all glioma-related cells into five CNV subtypes.

MKI67+ were present among both glioma cell phe-
notypes. Moreover, PTPRZ1 and SOX2 were sig-
nificantly overexpressed in glioma cells and could
therefore be considered as useful markers to esti-
mate the tumor cell purity in bulk glioma tissues.
Interestingly, clusters 10 and 12 specifically over-
expressed cilium-related markers (HYDIN, FOXJ1,

etc.) [20,21].The tumor cells included in these clus-
ters exhibited astrocyte-like features and expressed
low levels of PTPRZ1 (Fig. 2F, G and Supplemen-
tary Fig. S8).Clusters 10 and12mostly derived from
patient GS13, indicated that this patient developed
a rare form of ciliated glioma for which single-cell
studies have not previously been reported.
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Figure 2. Continued. Clusters had similar distribution with the global 25 cluster t-SNE map. (F) was constructed according to (D). With shared and
specifically expressed patterns as shown in (G), sub-clusters could be divided into normal (MOG+), immune (CD45+), regular glioma tumor (PTPRZ1+,
OLIG2+ or AQP4+), cilia property tumor (HYDIN+), proliferation tumor (MKI67+) and metastasis cells.

Annotation of the glioma
microenvironment and TCGA-based
classification of single glioma cells
Normal diploid cells in the tumor samples were
mainly cells within the tumor TME. To conduct
an unbiased investigation of the TME in glioma,
we did not include flow cytometry-based selec-
tion in our sampling procedure. Normal oligoden-
drocytes, microglia and macrophages accounted
for approximately half of these cells, with rela-
tive homogeneity among patients. Such a conclu-
sion could not have emerged from CD45 selected
samples, as this is the prevailing sampling method
used in previous scRNA-seq studies. We also cap-
tured cells showing specialized activities, such as
interferon-induced oligodendrocytes and polarized
microglia/macrophages (Fig. 3A).

Next, we classified malignant cells according to
the Cancer Genome Atlas (TCGA) GBM classifi-
cation model [19]. Grade II tumor cells with chro-
mosome 1p/19q codeletion had a strong proneural
(PN) signature. Conversely, the individual tumor
cells recovered from GBM were distributed among
each of the three transcriptomic subgroups (PN,
classical (CL) or mesenchymal (MES)). We did
not identify glioma cells that could be assigned to
the neural (NL) subtype but we detected cells ex-
pressing cilium-related signatures that were distinct
from those associatedwith knownTCGAsubgroups
(Fig. 3B and C).

CNV accumulation and tumor
progression in patient GS1
As CNVs usually accumulate during tumor progres-
sion, the CNV profile of individual tumor cells has
emerged as an accurate inference to trace tumor pro-
gression [2–4,8,22,23]. We used arm-level scRNA-
seq-derived CNVs to trace tumor cell clones, which
were confirmed by bulk WGS (Fig. 1D, Supple-
mentary Fig. S3A and B) to avoid possible mis-
takes by unravelling single-cell CNV fromRNAdata
with bioinformatics tools alone. Multiple cell sub-
populations with accumulated CNVs were found
in patients GS1, GS13 and GS5 (Supplementary
Figs S3C and S9).

From patient GS1, a female with an IDH-wild
type GBM, single cells were collected from five tu-
mor core locations (P1/4/5/6/7) and two peritu-
moral locations (P2/3). A few cells (P8) were also

collected from an adjacent brain region, which, from
the imaging analysis, lacked evidence of tumor in-
filtration. Ring plots illustrate the tumor and non-
tumor cell components at each site (Fig. 4A). In
this patient, CL glioma cells accounted for most of
the malignant components at all tumor sites, with a
small fraction of PN tumor cells. Interestingly, we
found that macrophages composed the larger frac-
tion of non-tumor cells infiltrating the tumor core
(P1/4/5/6/7) but they were replaced by microglia
in the peritumoral invading front (P2/3). The peri-
tumoral biopsies contained a higher fraction of non-
tumor cells than glioma cells.

As scRNA-seq can be used to infer the under-
lying CNV, we interrogated our dataset to uncover
the spatial dynamics of CNV changes in glioma
cells to reconstruct the trajectory of tumor initiation
and progression. Five CNV-based clusters (CN-1
to CN-5) were found in patient GS1 (Fig. 4B).
CN-1 and CN-2 contained diploid non-tumor cells,
but were divided into two clusters because their
expression profiles differed from those of normal
glial and immune cells. CN-3 to CN-5 clusters con-
tained a series of aneuploid subclones that shared the
chr7/10/19/20 CNVs that are recurrent genomic
alterations in GBM. As they progressed, these sub-
clones first accumulated CNVs on chr2 and later
on chr5 as they transitioned from CN-3 to CN-4
and from CN-4 to CN-5, respectively (Fig. 4C),
therefore highlighting the temporal progression of
this tumor. The combination of spatial and tem-
poral information indicated that the CN-3 popu-
lation was distributed only in P5/P6, whereas the
CN-4 and CN-5 populations were present in all
other tumoral andperitumoral sites (Fig. 4D).These
findings clearly indicate that P5/P6 were the initial
sites of the tumor that progressed towards the loca-
tions of P1/P4/P7 and P3 (Fig. 4A). In the global
t-SNE analysis, as clone CN-3 developed into CN-4
and CN-5, glioma cells also transformed from clus-
ter 9 to 20 (Fig. 4E). Our findings established
that the number of somatic CNVs increased across
the different glioma regions, thus defining a pat-
tern of tumor progression. They are also consistent
with the notion that an increased definition of the
multi-sector sampling of glioma might reveal finer
and more accurate genetic trajectories of glioma
evolution, as shown in recent hepato-carcinoma
studies [24].

To unravel the phenotypic changes that
mark spatial evolution of glioma, we performed
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differential gene expression analysis between the
different clones. As cells classified within the CN-3
clone were replaced by those in the CN-4 and
CN-5 clones, we observed increased expression
of genes implicated in negative regulation of cell
differentiation (HES1,HSPA9, ID2), DNA damage
response (MDM4, SOX4) and chemoattractant
cytokine and neutrophil activation (MAPK14,
S100A11), by general function annotation. The
transition from CN-3 to CN-4 and CN-5 clones
coincided also with increased expression of the
EGFR oncogene. Conversely, genes expressed in
benign astrocytes (CNR1, CHRNA1, LAMA2,
GNG11, GRIA2, GRIA3, GRIA4) and general en-
dothelial cell differentiation markers (ARHGEF26,
CLIC4, APOLD1) were suppressed during the
transition (Fig. 4F and G, Supplementary Table 2).
Considering the functional enrichment of differ-
entially expressed genes, our findings converge
on a model whereby the genetic alterations such
as CNVs that accumulate during turn or invasion
lead to loss of differentiated astrocyte proper-
ties and gain of known features driving tumor
aggressiveness, angiogenesis, dedifferentiation
and oncogenic PI3K/AKT signaling (Fig. 4H),
ultimately resulting in the promotion of glioma

progression towards more aggressive and invasive
phenotypes.

Trajectory of tumor cell states reveals
branched progression in patient GS13
Patient GS13 was a male with an IDH-wild type
GBM characterized by high expression of genes as-
sociated with motile cilium activities (e.g. FOXJ1,
FAM183A, HYDIN, DNALI1, etc.) (Supplemen-
tary Figs S8 and S10). We noted that only about
5% of TCGA GBM patients exhibited high expres-
sion of cilium-related genes. Therefore, the par-
ticular type of GBM analyzed from patient GS13
belongs to a rare type of glioma that was not pre-
viously investigated at single-cell level. However,
cilium-specific gene expression was not associated
with a specific pattern of survival (Supplementary
Fig. S11). From this patient, we acquired 978 cells
from three core and twoperitumoral sites, and found
that the cells at core locations consisted of PN and
cilium-positive cells (Fig. 5A). CNVs were also ev-
ident in this case. The clonal CNV reconstruction
revealed two CNV clones (CN-2 and CN-3) and
the transition from CN-2 to CN-3 was marked by
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Figure 4. Continued. (E) CNV subclone distributions in t-SNE coordinates. When CN-3 developed into CN-4/5, cells translocated from cluster 9 to cluster
20. (F) Heatmap of differentially expressed genes between CN-3/4/5 CL glial cells. Differential genes could be divided into two gene-sets, marked with
the left color bar. (G) Box plot of differential genes. The increased (upper) and decreased (lower) gene expression profiles followed CNV accumulation.
Boxes were colored by CNV subgroup. (H) Functional enrichment of increased and decreased gene-sets.

accumulation of chr1amp and chr19del. Furthermore,
as cells transitioned to CN-3, the expression profile
changed from global cluster 6 (PN) to global clus-
ters 10 and 12 (cilium) (Fig. 5B–E).We also applied
hierarchical clustering of CN-2 andCN-3malignant
cells and identified differentially expressed genes be-
tween these two groups. Interestingly, after cells
transitioned to CN-3, they formed two branches
with distinct gene expression profiles (Fig. 5F and
H, Supplementary Table 2). The functional gene-
set enrichment analysis showed that the transition
from CN-2 to CN-3 was associated with decreased
expression of group 1 genes, which were implicated
in glial cell differentiation and adhesion. Conversely,
the expressionof genes in groups 2 and3 (implicated
in cell cycle/DNA replication and cilium regulation,
respectively) increased (Fig. 5G and Supplementary
Fig. S12).

To define the pattern of progression of this
branched trail, we analyzed the single-cell tra-
jectory of these cells with Monocle2 [25]. In a
pseudotimemodel, this trail started fromglobal clus-
ter 6, which overexpressed oligodendrocyte progen-
itor cell marker OLIG1. Then, the trail branched
into two directions when CN-2 became CN-3, and
branches 1 and 2 correspond to global clusters 10
and 12, respectively. Branch 1 exclusively expressed
ciliummarkers (e.g.HYDIN, FOXJ1,DNALI1, etc.)
(Fig. 5H and I), while branch 2 maintained the PN
nature but showed high proliferative ability. Over-
expression of TP73 and HYDIN was validated by
immunohistochemistry (IHC) staining experiments
(Supplementary Fig. S13). Moreover, expression of
the TP73 gene at chr1p36 increased in chr1amp cells
(Fig. 5H). From previous studies, a protumorigenic
activity of TP73 has recently emerged, especially
in the context of the N-terminal truncated TP73
isoform [26]. Furthermore, TP73 overexpression
has been reported in several tumor types, including
breast cancer, melanoma, prostate cancer and neu-
roblastoma, and was shown to induce metastasis,
chemo-resistance and other hallmarks of tumor pro-
gression that confer poor clinical outcome [27]. By
RT-qPCR detection, both full length and�N-TP73
existed in GS13 tumor (Supplementary Fig. S14).

In conclusion, the expression of a motile cilium
signature is not an unusual event in GBM, but little
is known about this particular GBMphenotype.The
branched model revealed that glioma cells may go

throughdifferent spatial destinationsdespite sharing
similar CNV profiles.

Characterization of the TME in glioma
In the glioma TME, tumor-associated macrophages
(TAM) communicate through ligand/receptor
cross-talks with tumor and non-tumor cells to
promote tumor aggressiveness [28,29]. As our
single-cell platform exhibits high sensitivity with
a higher number of average detectable genes ex-
pressed in single cells compared to other glioma
datasets (4470 genes/cell versus <2000 genes/
cell), we sought to build a ligand/receptor interac-
tion map for reconstruction of the most important
chemoattractant relationships that exist between
glioma tumor cells and TAM in the glioma TME
(Fig. 6A and Supplementary Fig. S15). Overall, we
detected 16 chemokine ligands and nine receptors
in 13 patients.

Microglia and M2a/c macrophages, which ex-
pressed theCX3CR1 receptor, coexistedwith glioma
cells that expressed the CX3CL1 ligand. Lympho-
cyte infiltrates expressed CXCR3/6 and CCR6,
but the CXCR3 ligands CXCL9/10/11 were rarely
detected in glioma samples with the exception
of interferon-activated microglia. These ligand–
receptor pairs were previously reported to recruit
tumor-infiltrating lymphocytes and inhibit tumor
growth [30]. CXCR6 ligand CXCL16, which exists
in both transmembrane and soluble form [31], was
highly expressed in TAM cells, andmildly expressed
in the malignant cells. Lymphocytes also expressed
CXCR4 like TAM cells, whereas the ligands were
expressed in microglia cells. Their binding was re-
ported to mediate glioma chemotaxis and regulate
cell survival through activating AKT-related path-
ways [32].

CCL5/CCL8 and CCR5was another chemokine
axis between lymphocytes and TAM. Besides in-
flammatory chemoattractant functions, this can also
mediate NK cell activation, which promotes tu-
mor genesis and metastasis [33]. Another recep-
tor of CCL8 is CCR2, which is expressed in mono-
cytes, and highly expressed in TAM cells and
MES cells.

A strong impact from the CXCL family and
related receptors was found in M2b macrophages
and neutrophils (Supplementary Fig. S16A and B).
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Figure 5. Glioma clonal evolution of Patient GS13 at spatial and temporal resolution. (A) MRI image of Patient GS13. Yellow and red markers in zoomed
image represent peritumoral and tumoral sampling points. Ring plot in the right and bottom displays cell components of each point. Color of the inner
ring shows classified glial cell subtypes, and the outer ring shows detailed immune cell subtypes. Cell numbers are labeled in the center of these ring
plots. (B) Single-cell CNV heatmap, cells are divided into three groups by hierarchical clustering. (C) Clonal evolution trail followed by accumulating
CNV events. Each color represents a CNV subclone and chromosomes are labeled in which copy number alterations occurred during clonal transition.
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Figure 5. Continued. (D) CNV subclone components in each sampling point, P6 had a lower CN-3 ratio than P4/5. (E) CNV subclone distribution in t-SNE
coordinates. When CN-2 developed into CN-3, cells translocated from cluster 6 to cluster 12/10. (F) Heatmap of differentially expressed genes between
CN-2/5 glial cells. Hierarchical clustering was applied in both gene and cell dimensions. Differential genes could be divided into three gene-sets,
marked with the left color bar. (G) Functional enrichment of three gene-sets in (F). (H) Single-cell trajectories of malignant cells in GS13. Top left subplot
colored by global t-SNE clusters, two branches of cells were developed from OPC cells. The top right subplot is colored by CNV group. The remaining
four subplots were relative expression patterns of marker genes (OLIG2, HYDIN, MKI67, DNALI1 and TP73). (I) Branched clonal developing model of
GS13.

CXCL1/2/3/5/6/8 were overexpressed in M2b
cells, generating a chemoattractant environment
that might recruit CXCR1+/CXCR2+ neutrophils.
In glioma, M2b polarization and recruiting neu-
trophils have been connected with pro-tumoral
functions [34–36]. Based on their common gene
expression signals, we calculated an enrichment
score from 38 genes (Fig. 6B and Supplementary
Fig. S16C) and used this signature to deconvolute
the presence of these cells from gene expression
profiles of bulk tissues and predict clinical outcome.
This method had been validated with TCGA glioma
RNA-seq datasets (Supplementary Fig. S16D
and E).

In our spatial cell distribution data, macrophages
were the most abundant non-tumor cell in core
biopsies, but were replaced by larger fractions of
microglial cells in biopsies from the tumor mar-
gins (Fig. 6C). Thus, a switch from macrophage to
microglia infiltration from the glioma core to the
periphery was a general event that likely marked
the microenvironmental changes. The microenvi-
ronment changes are likely to be dictated by dif-
ferent requirements of glioma cells as they mi-
grate from core tumor regions to the invading
front at the tumor periphery. This pattern was
also recapitulated in the IVY GAP dataset [37]
(Supplementary Fig. S17).

Finally, a lineage trajectory was built with TAM
cells (Fig. 6D–F), showing the gradual change
of three transitional states. The pattern of TAM
development in glioma started first with a microglia
phenotype (P2RY12+/TMEM119+), then it turned
to polarized macrophage (CD163+), and finally
converged into M2b macrophages (IL1RN+)
with activated expression of strong angiogenesis
signaling molecules (VEGFA). In the middle of this
trajectory, we detected a small branch of cells that
expressed high levels of the bone-marrow-derived
macrophage (BMDM) TAMmarker ITGA4. These
findings suggest a model whereby TAM cell polar-
ization in glioma is the result of two independent cell
sources: resident microglial cells and BMDM cells
(Fig. 6G–N). As we have also been able to compare
the cell fates of TAM between the different grades
of glioma, we found that they exhibited lower M2
polarization in LGG samples (GS8/9/14) when
compared to GBM (Supplementary Fig. S18).

DISCUSSION
As malignant gliomas are characterized by high de-
gree of intratumoral heterogeneity, single-cell ge-
nomic technologies have rapidly emerged as a cru-
cial approach to disentangle glioma heterogeneity.
However, most of the previous single-cell RNA-
seq glioma studies relied on the analysis of a sin-
gle biopsy from each tumor specimen, thus lack-
ing information on the special heterogeneity of the
analyzed tumor lesions [6–9]. Although one study
reported the multi-regional analysis of glioma with
single-cell sequencing, the number of cells analyzed
in that studywas very limited andcouldnotprovide a
comprehensive picture of the geographical structure
of glioma at the single-cell level [10].

Here, we presented a comprehensive single-cell
landscape of multiple subtypes of gliomas, each of
which was analyzed by multi-region samplings, and
provided the first spatial-level analysis of the cellu-
lar states that characterize human gliomas. We de-
signed multi-sector biopsies with a 3D-enhanced
MRI model, and collected them during surgery by
navigation sampling. For each biopsy, we generated
and functionally annotated transcriptomes of hun-
dreds of single tumor and non-tumor cells collected
from multiple core and periphery tumor locations.
Together, they provide a coherent map of the dy-
namic states and interactions between the different
cell types that integrate the key features of glioma
homeostasis at each tumor location. We found that
both thenumber and the transcriptomic subtypes as-
signed to individual glioma cells frequently change
dramatically between biopsies collected from differ-
ent locations, evenwhen they originated fromneigh-
boring glioma regions.Wealsomade theunexpected
observation that whereas core biopsies contained
a high number of macrophages, this configuration
of the core TME was replaced by a comparatively
higher number of resident microglia at the glioma
periphery, which represents the invading front of the
tumor towards the normal brain.

Asmalignant glioma cells share high proliferation
capacity, they readily accumulate multiple types of
genetic alterations that trigger an increasing degree
of aneuploidy with constant adaptation to the de-
mands created by the growing tumor mass in rela-
tion to the TME [38]. A glioma cell CNV-driven



1316 Natl Sci Rev, 2020, Vol. 7, No. 8 RESEARCH ARTICLE

M2bNeu

M2b
neutrophil

gene        
set 

enrichment 
score

B D

Cluster 3
Macrophage

(n=453)

Cluster 19
Microglia (IFI)

(n=133)

Cluster 2
Microglia
(n=724)

Cluster 17
M2b

(n=144)

Pseudotime

Cluster Biopsy type

PeritumoralNormal Tumoral

C

Normal Peritumoral Tumoral
E F

G H

I J

K L

M N

CD163

ITGA4

P2RY12

VEGFA

IL1RN

MKI67

TMEM119

CD44

Glioma TAM

TAM
MES

Lymphocyte

TAM (M2b)

TAM

TAM
TAM (M2b)

Monocyte

TAM
Lymphocyte

Lymphocyte

TAM (M2b)
TAM (M2b)

TAM (M2b)

TAM (M2b)

TAM
TAM (M2b)
Neutrophil

TAM (M2b)

Microglia
(IFI)

Lymphocyte

Neutrophil

Neutrophil

TAM
TAM (M2b)
Lymphocyte
Neutrophil

Lymphocyte

Glioma

Microglia
Glioma

TAM
TAM (M2b)

Ligand

Receptor

CXCL1
CXCL2

CXCL3

CXCL5

CXCL6

CXCL8

CXCL10

CXCL11

CXCL12 CXCL16

CXCR1

CXCR2

CXCR3

CXCR4

CXCR6

CX3CL1 CX3CR1

CCL2

CCL5

CCL7

CCL8

CCL20 CCR2

CCR5

CCR6

A

Figure 6. Characteristics of M2b macrophages and neutrophils and their potential in prognosis prediction using M2bNeu score. (A) Major chemokine
and chemokine receptors relationship inside glioma tissue. (B) Dot plots show the M2bNeu score distribution in the optimized global t-SNE map. These
scores were calculated by M2bNeu genes listed in Supplementary Fig. 14C. (C) Biopsy type distribution of tumor associated microglia and macrophage
cells. (D) Trajectory analysis of macrophage/microglia evolution on TAM cells from all patients, colored by (D) pseudotime, (E) optimized global t-SNE
clusters, (F) biopsy types and (G–N) marker genes expressed in the pseudotime trajectory map.



RESEARCH ARTICLE Yu et al. 1317

progression trajectory we uncovered that was espe-
cially highlighted by the dynamic changes in the tu-
mor from patient GS1 was marked by progressive
loss of the astrocyte-like hallmarks of glioma cells
with gain of multiple tumor cell phenotypes (loss
of differentiation, competence to migrate and in-
vade through the extracellular matrix, etc.), which
together drive glioma progression and invasion of
the normal brain. Another progression trajectory
we uncovered was well represented in the tumor of
patient GS13, in which the pseudotime trajectory
produced by Monocle2 identified a drastic switch
in the major tumor cell population with gain of
an intriguing ciliated phenotype that likely con-
tributes to glioma aggressiveness.These transforma-
tion models indicate that the constant rearrange-
ment of the genome of glioma tumor cells leads
to continuous gain of new capacities, all of which
converge towards the acquisition of more aggres-
sive tumor phenotypes for always more deregulated
proliferation, anaplasia and invasion of the normal
brain.

An important, novel finding contributed by our
work is the deconvolution of the cross-talks between
tumor and non-tumor cells in the glioma TME. We
found that the active communications between the
different cell types are primarily implemented by
multiple combinations of chemokine ligands with
their corresponding receptors that we have charac-
terized within different regions of individual tumors
and among the different types of glioma we studied
[39]. In particular, we found that the communica-
tion between non-tumor cells was dominated by the
prominent role of the CXCL family of chemokines
and related receptors, which was especially apparent
in M2b macrophages and neutrophils. We followed
up on this finding and determined the enrichment
score of M2b/neutrophil cells in bulk gliomas to
evaluate the consequences of the infiltration of these
cell types for clinical outcome of glioma patients.
The analysis, which was performed with TCGA-
derived gliomaRNA-seq datasets, was able to distin-
guish patients with divergent clinical outcome based
on the predicted level of infiltration of the two cell
types.

In conclusion, we used the single-cell RNA-seq
technology to generate an extensive complete map
of the geographical molecular structure of gliomas.
The trajectories of reciprocal genomic and func-
tional changes that accompany glioma cells as they
move within the tridimensional space of the tumor
mass, combinedwith the deconvolutionof the cross-
talks between different cells in the glioma TME,
paint an unprecedented scenario that elucidates
the intratumoral heterogeneity of this lethal tumor
type.

METHODS AND MATERIALS
Thedetailed descriptions ofmethods are available as
Supplementary Materials atNSR online.
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