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Abstract: In addition to the fundamental role of insulin-like growth factor (IGF)/IGF-1 receptor
(IGF-1R) signaling dysregulation in cancer initiation and proliferation, the IGF/IGF-1R signaling
also plays an important role in the maintenance of stem cell characteristics and enhancement of
stem cell-based therapeutic efficacy. This review focused on the role of IGF/IGF-1R signaling
in preclinical IGF-targeted therapies, including IGF-1R monoclonal antibodies, IGF-1R tyrosine
kinase inhibitors, and neutralizing antibodies of IGFs in multiple tumors and endocrine disorders.
On the other hand, the function of IGF/IGF-1R signaling in stem cell self-renewal, pluripotency
and therapeutic efficacy in regenerative medicine was outlined. Finally, the review summarized
ongoing studies on IGF/IGF-1R signaling blockade in multiple cancers and highlighted the IGF-1R
signaling modifications in stem cells as a potential strategy to improve stem cell-based therapeutics
in regenerative medicine.
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1. Introduction

Insulin-like growth factors (IGFs) play pivotal autocrine, paracrine and endocrine
roles in the promotion of cell proliferation, differentiation and survival [1,2]. IGFs are
members of a ligand family that includes insulin, IGF-1 as well as IGF-2, and they exert
their action by binding to specific glycoprotein membrane receptors, namely, type 1 and
type 2 IGF receptors (IGF-1R and IGF-2R), insulin receptors A and B (INSR-A and INSR-B)
and hybrid receptors (IGF-1R/INSR-A and IGF-1R/INSR-B) [3,4]. Moreover, there is a
noticeable homology among the IGF receptors, implying structural similarity and the
possibility of signaling crosstalk [3]. Notably, IGFs binding to IGF receptors is regulated by
soluble IGF binding proteins (IGFBPs), a family of six homologous molecules with high
binding affinity for IGF-1 and IGF-2; IGFBP-3 is the most important of the homologous
molecules, which binds to 80% of the IGF-1 [5]. IGF-1R has a tetrameric structure that is
comprised of two alpha (α) subunits and two transmembrane beta (β) subunits linked by
disulfide bonds [6]. The α subunits are the extracellular domain that directly binds to IGF,
and each transmembrane β subunit contains an intracellular tyrosine kinase domain [7].
After engaging, the binding of IGFs induces a conformational change that activates the
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tyrosine kinase domain of the β subunit, leading to the autophosphorylation of specific
tyrosine residues, which appears to be a critical step in receptor activation [8].

The IGF/IGF-1R signaling has been reported to play an important role in cancer de-
velopment (Figure 1). Previous studies have reported that the activation of IGF/IGF-1R
signaling is essential for cancer initiation and progression through several distinct path-
ways, including phosphorylation of mitogen-activated protein kinase (MAPK), which
subsequently increases cell proliferation, the activation of phosphatidylinositol 3′ kinase
(PI3K), which decreases apoptosis, and the regulation of mammalian target of rapamycin
(mTOR) expression, which results in translational adaptation [9,10]. However, the activa-
tion of signaling pathways is also enhanced by other receptor tyrosine kinases (RTKs). For
example, epidermal growth factor receptor (EGFR) enhances MAPK expression, promoting
tumor cell proliferation and metastasis; fibroblast growth factor receptor (FGFR) increases
PI3K/AKT expression, enhancing tumor angiogenesis; and hepatocyte growth factor recep-
tor (HGFR or MET) enhances phosphorylated extracellular-signal-regulated kinase (ERK)
expression, resulting in tumor survival and growth [11–14]. Notably, IGF-1R signaling
has also been demonstrated to regulate the cancer stemness in various cancer stem cell
(CSC) models, involving colorectal [15], breast [16], liver [17] and lung cancers [18]. IGF-1R
signaling is also implicated in cancer development due to its stemness-related proper-
ties [16,19] and the resistance of radiation therapy and chemotherapy [20]. Furthermore,
several studies showed that the elimination of cancer stemness by inhibiting IGF-1R signal-
ing could be a considered way of targeting IGF/IGF-1R in cancer therapy [19,21]. However,
several clinical trials of IGF/IGF-1R-targeting have experienced difficulty, leading to being
terminated [22]. Hence, specific biomarkers for selecting suitable patients and the precise
targeting of IGF-1R in CSCs are required. For example, the precise targeting of IGF-1R is
feasible through the bioengineering of patient-derived chimeric antigen receptor (CAR)-T
cells in sarcomas [23].
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Figure 1. Downstream signaling of insulin-like growth factor-1 receptor (IGF-1R). Ligand binding
to IGF-1R or IGF-1R/INSR hybrid receptors leads to the phosphorylation of tyrosines that create
binding sites for docking proteins including IRS and Shc. Recruitment of IRS and Shc activates
signaling via the PI3K/Akt and Ras/Raf/MAPK pathways, which regulate cellular proliferation,
survival, migration, and metabolism. In addition to these pathways, interactions between IGF-1R and
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integrins, via scaffolding with RACK1 and FAK proteins, regulate cellular adhesion and motility.
Black arrows indicate activation. Red arrows indicate inhibition. The symbol of P represents the
site of phosphorylation. Akt, protein kinase B; ERK, extracellular-signal-regulated kinase; IRS, INSR
substrate; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase/Erk
kinase; mTORC1, mammalian target of rapamycin complex 1; PI3K, phosphatidylinositol-3-kinase;
PTEN, phosphatase and tensin homolog; Shc, Src homology and collagen domain protein.

On the other hand, regenerative medicine is a major focus to determine novel therapies
as well as to explore the biology and the pathogenesis of disease [24]. Recent advances in the
isolation and development of stem cell have prompted scientists to identify and culture spe-
cific cell types for regeneration in various disorders including Parkinson [25], Alzheimer [26],
or diseases of the heart [27], muscles [28], lung [29] and liver tissue [30]. Therefore, stem
cells are considered efficient tools to treat tissue injuries in regenerative medicine. Several
studies have indicated that growth factors including basic fibroblast growth factor (bFGF)
and IGFs maintain the stemness and pluripotency of stem cells. Notably, the IGF/IGF-1R
signaling has been reported to regulate the self-renewal and stemness of human embryonic
stem cells (hESCs) [31,32] as well as the multipotent differentiation and repair capability
of mesenchymal stem cells (MSCs). In hESCs differentiation, the overexpression of both
IGF-1 and IGF-2 and IGF-1R phosphorylation lead to the differentiation of ESCs into hepato-
cytes [33,34]. In addition, the overexpression of IGF-1 in human bone marrow mesenchymal
stem cells (BMSCs) has been reported to induce CXCL12/CXCR4 signaling in vitro. After
transplantation in a rat model of permanent coronary artery occlusion, IGF-1 overexpres-
sion in BMSCs accelerated cell mobilization and retention in the injured area through the
paracrine action of CXCL12/CXCR4 signaling to improve cardiomyocyte repair [35]. In this
review, we discuss the clinical relevance of therapeutic strategies that target the IGF/IGF-1R
axis in multiple malignant tumors and the applicability of IGF/IGF-1R axis strategies to
improve stem cell-based therapies for human diseases.

2. Therapeutic Strategies Targeting IGF/IGF-1R Axis in Cancer

Recently, a number of different strategies targeting IGF/IGF-1R signaling have been
developed for clinical evaluation, including anti-IGF-1R monoclonal antibodies (mAbs),
small-molecule tyrosine kinase inhibitors (TKIs), and IGF-1 and 2 neutralizing antibodies
(Figure 2). The following sections summarize the physical properties of each class of agents
and their clinical evaluation status.
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tyrosine kinase domain and block the downstream signaling of IGF-1R and INSR. IGF ligand-
neutralizing mAbs bind to both IGF ligands (IGF-1 and IGF-2), thereby blocking the activation of
IGF-1R and INSR-A. IGF-1R, insulin-like growth factor-1 receptor; mAbs, monoclonal antibodies;
TKI, tyrosine kinase inhibitors; INSR, insulin receptor.

2.1. Anti-IGF-1R mAbs

Several studies have declared that IGF-1R is necessary for cellular oncogenes and is
important in modulating the cell survival, motility, adhesion, and metastasis in multiple
tumors and endocrine disorders [36,37]. For example, IGF-1R was frequently overexpressed
in breast tumors, and its overexpression was important in the malignant transformation
of mammary cells [38]. Moreover, the overexpression of IGF-1R provides breast tumors
with an inherent resistance to radiotherapy and worsens the prognosis of patients [39].
These findings suggest that IGF-1R is a potential target for therapeutic interventions.
The initial strategy involves the use of anti-IGF-1R mAbs to block ligand–receptor inter-
actions and cause IGF-1R internalization and subsequent degradation [40,41]. Several
therapeutic mAbs directed against IGF-1R have been developed, and encouraging pre-
clinical outcomes have been observed with figitumumab (IgG2a, phase III) [42–44], gan-
itumab (IgG1, phase III) [45–47], dalotuzumab (IgG1, phase III) [48,49], teprotumumab
(IgG1, phase II) [50,51], cixutumumab (IgG1, phase II) [52,53], robatumumab (IgG1, phase
II) [54,55], and BIIB022 (IgG4, phase I) [56] in many malignant tumors. Moreover, isti-
ratumab is a bispecific mAb that inhibits both IGF-1R and ErbB3 (IgG1 with two scFvs,
phase II) [57] to kill malignant tumors. In addition, even though some IGF-1R mAbs
for INSR exert negligible affinity, these IGF-1R mAbs still bind to their hybrid receptors,
causing signal down-regulation. Some preclinical trials have reported Kirsten rat sarcoma
virus (KRAS)-mutant tumors with high levels of free circulating IGF-1 in patients, and
several reports have suggested that KRAS mutation has varying significance on the effect
of IGF-1R inhibition, depending on the tumor type and/or molecular context. For instance,
dalotuzumab has been used to treat KRAS wild-type colorectal cancer, with no evidence of
anti-tumor activity [43]. However, this report indicated that the KRAS mutation enhanced
IGF overexpression and resulted in PI3K activation, which were suppressed by targeting
IGF-1R using figitumumab in non-small cell lung cancer cells (NSCLCs) [58]. Conversely,
ganitumab was reported to be ineffective in sensitizing patients with KRAS-mutant col-
orectal cancer to folinic acid, fluorouracil and irinotecan (FOLFIRI) chemotherapy [59].
However, several clinical studies showed that the development of IGF-1R mAbs (figitu-
mumab and ganitumab) was terminated, even though they exhibited preclinical activity
against IGF-1R in some tumors, such as myeloma, prostate cancer, colorectal cancer and
pancreatic cancer [22]. It is notable that the two mAbs, ganitumab and teprotumumab,
which are used as monotherapeutic agents or in combination therapies are in ongoing
clinical trials. For example, a combination chemotherapy with ganitumab in patients with
Ewing sarcoma is currently in a randomized phase III trial (NCT02306161). Addition-
ally, teprotumumab was evaluated in patients with moderate-to-severe thyroid-associated
ophthalmopathy (TAO) in active stages, with a response in 69% of patients receiving the
teprotumumab agent compared to a response in 20% of patients receiving a placebo agent
in a randomized Phase II trial (NCT01868997) [60]. Subsequently, positive outcomes of the
Phase III OPTIC trial of teprotumumab (NCT03298867) were reported in April 2019 [61].
Notably, teprotumumab was approved by the United States Food and Drug Administration
(FDA) for use in TAO (2020) [62].

2.2. IGF-1R TKIs

An alternative approach to suppress IGF-1R signaling involves the treatment with
small molecule IGF-1R TKIs that block IGF-1R kinase activity. As mentioned previously,
approximately 85% of sequence homology was observed between the IGF-1R and INSR-
A/B kinase domains, including the ATP-binding site [63]. Some studies indicated that
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ATP competitive antagonist of IGF-1R also inhibited the kinase activity of INSR [64,65];
therefore, linsitinib and BMS-754807 were frequently described as dual IGF-1R/INSR in-
hibitors [64,65]. For instance, linsitinib was reported to exert a superior anti-tumor activity
of IGF-1R TKI and significantly blocked the compensatory INSR-A signaling. However,
owing to the influence of linsitinib on metabolic insulin signaling through INSR-B, side
effects including insulin resistance and hyperglycemia ensue [40,66]. Several studies have
indicated the high expression of IGF signaling in many tumors and the sensitivity of
tumors to IGF-1R inhibition. For example, the overexpression of IGF-1 in breast cancer
cells in vitro was associated with poor prognosis of clinical cancers and correlated with
the sensitivity to BMS-754807 in patients with triple-negative breast cancer in vivo [67,68].
Moreover, BMS-754807 has been known to have off-target effects in inhibiting the activation
of tropomyosin-receptor-kinase A and B (TrkA and TrkB) and aurora kinases in pancre-
atic cancer [65], which influenced their therapeutic efficacy. However, some TKIs have
exhibited promising preclinical activity in vitro; a few TKIs, including NVP-AEW541 [69],
AZ12253801 [70] and BMS-536924 [71], have undergone clinical evaluation, and the results
obtained have resulted in their termination. In addition, some TKIs belong to non-ATP
competitive antagonists, which only inhibit IGF-1R; the INSR signaling is not affected,
and these TKIs also suppress additional related genes. For instance, picropodophyllin
(AXL1717) exhibits noticeable anti-tumor activity in multiple tumors through IGF-1R inhi-
bition, leading to tumor regression [72,73], and AXL1717 also interferes with microtubule
dynamics, which arrests G2/M phase [74]. Notably, the safety and efficacy of AXL1717
was demonstrated in a phase I clinical trial on patients with NSCLCs [75]. The other
non-ATP competitive antagonist, nordihydroguai- aretic acid (masoprocol), was reported
to inhibit cell proliferation of prostate tumor both in vitro and in vivo, but the clinical trial
of nordihydroguaiaretic acid was terminated (NCT00678015) due to its hepatotoxicity and
nephrotoxicity adverse effects [76].

2.3. IGF-Neutralizing Antibodies

This therapeutic approach involves neutralizing antibodies that directly target IGF-1
and IGF-2, thereby inhibiting survival signals through IGF-1R, INSR-A, and IGF-1R/INSR-
A without interfering with INSR-B signaling and insulin action [77,78]. Therefore, these
agents exhibit higher anti-tumor efficacy in multiple tumors and have a lower potential to
cause hyperglycemia compared to IGF-1R TKIs [79–81]. Two IGF-neutralizing antibodies,
including dusigitumab, a human IgG2λ monoclonal antibody with a high binding affinity
for IGF-1 and IGF-2, inhibiting IGF-1R phosphorylation and INSR-A signaling, respectively,
have been used in clinical trials [77]. Notably, dusigitumab suppresses the activation of
IGF-1R and INSR-A, without binding to insulin, and thus retains insulin/INSR signal-
ing [77]. Moreover, the phase I/II clinical trial of dusigitumab (NCT01446159) evaluated its
anti-tumor efficacy and safety in combination with aromatase inhibitor in patients with
metastatic breast cancer (hormone receptor (HR)-positive, and epidermal growth factor
receptor 2-negative) [78]. The other antibody is xentuzumab, a IgG1 monoclonal antibody
modified by humanization that binds to IGF-1 and IGF-2 with high affinity and blocks the
IGF-1R and INSR-A functions [79]. Several studies showed that xentuzumab, in combina-
tion with other RTK inhibitors, was used in early clinical trials, including in EGFR-mutant
NSCLC with afatinib (NCT02191891), in metastatic prostate cancer with enzalutamide
(NCT02204072) and in HR-positive metastatic breast cancer with everolimus and exemes-
tane (NCT02123823). Therefore, these combination agents demonstrated anti-tumor efficacy
and a favorable safety profile, and they may serve as new promising therapeutic strategies
in cancer therapy.

3. Activation of IGF/IGF-1R Signaling Improves Stem Cell-Based Therapeutic
Strategies in Regenerative Medicine

Regenerative medicine is a new promising strategy to improve the treatment of tissue
injury caused by trauma, disease, or aging. Owing to their self-renewal ability and pluripo-
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tency, stem cells are considered as efficient tools in preventing and treating diseases as well
as tissue injuries. Moreover, several studies indicated that some factors and signaling path-
ways, such as bFGF [82], transforming growth factor β1 (TGF-β1) [83], leukemia inhibitory
factor (LIF) [84], bone morphogenetic proteins (BMPs) [85], Wnt/β-catenin signaling [86],
SMAD signaling [85], and MAPK signaling [87], maintain the stemness and pluripotency
of stem cells. Notably, several studies suggest that IGF/IGF-1R axis activation is a possible
regulator of the self-renewal and pluripotent capacities of stem cells through autocrine,
paracrine, and receptor crosstalk. The following sections focus on IGF/IGF-1R signaling
modification as a promising strategy to improve stem cell-based therapies for human
diseases, including heart failure, neurodegenerative and neurological diseases, as well as
bone disorders (Table 1).

Table 1. Therapy efficacy in stem cells and MSCs that overexpress IGF-1R in regenerative medicine.

Overexpression of
IGF/IGF-1R in Stem Cells Function Pathway Disease Ref.

hESCs Promoting self-renewal
and survival

Self-renewal through HRG/ERBB2,
and anti-apoptosis through PI3K/AKT - [31,88]

UMSCs Adipogenic differentiation bFGF induces IGF and FGF receptor - [89]

BMSCs Osteogenic differentiation Hedgehog pathway - [90]

PMSCs
Increasing cell

proliferation and
maintaining multipotency

Induce OCT4 expression - [91,92]

BMSCs
Promoting cell survival
and neural progenitor

cell recruitment
- Ischemic stroke [93]

DPSCs Promoting neuroplasticity Crosstalk between IGF-1/IGF-1R and
CXCL12/CXCR4 pathway Ischemic stroke [94]

hNSCs Promoting
neuroprotection - Amyotrophic lateral

sclerosis (ALS) [95]

CSCs
Promoting cardiomyocyte

survival and
myocardial regeneration

FOXO3/p27/p51 pathway Myocardial infarction [96,97]

hESCs, human embryonic stem cells; UMSCs, umbilical cord-derived MSCs; BMSCs, bone marrow-derived MSCs;
PMSCs, placental mesenchymal stem cells; DPSCs, dental pulp-derived MSCs; hNSCs, human neural stem cells;
CSCs, cardiac stem cells.

3.1. Human Embryonic Stem Cells (hESCs)

Human ESCs are derived from the inner cell mass and contribute to multiple types
of cells in the body [98]. Although many factors have been reported to maintain hESC
populations, including bFGF [82,99], TGF-β1 [83,100], activin A [101], neurotrophins [102],
Wnt/β-catenin signaling [86] and sphingosine-1-phosphate (S1P) [103], knowledge on the
receptor activation required for the self-renewal of hESCs is limited. Notably, this study
displayed the activation of IGF-1R signaling upon the co-culture of hESCs in the conditional
medium of mouse embryonic fibroblast [31]. Furthermore, IGF-1R was overexpressed along
with specific markers such as OCT4, SSEA4, and SSEA3. In addition, suppressing IGF-1R
activation using IGF-1R mABs and knocking down IGF-1R expression by siRNA not only
limits cell expansion but also promotes cell differentiation [31]. Moreover, the activation
of IGF/IGF-1R signaling in hESCs promotes self-renewal by HRG/ERBB2 signaling and
enhances cell survival through the PI3K/AKT pathway [31]. In addition, another study
indicated that the activation of IGF-2/IGF-1R signaling is also essential for self-renewal,
and high levels of IGF-2 maintain hESC proliferation and promote cell survival via a bFGF-
dependent pathway [32]. Furthermore, IGF-1R signaling was implicated in the regulation
of the pluripotency of hESCs. For example, this study indicated that IGF-1R signaling in-
duced the proliferative ability of cardiomyocytes that differentiated from hESCs. Likewise,
blocking IGF-1R activation using a IGF-1R mAbs decreased cardiomyocyte proliferation,
while the addition of recombinant protein of IGF-1 or IGF-2 induced cardiomyocyte pro-
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liferation through the PI3K/AKT pathway [88]. However, this study demonstrated that
microRNA-223 directly targeted IGF-1R and inhibited the AKT signaling, leading to hESCs
differentiation [104]. The study also indicated that suppressing the activation of IGF-1R
and its downstream signaling pathway induced hepatocyte differentiation from hESCs [34].
Therefore, these studies demonstrate that IGF-1R signaling is required for the maintenance
of the stemness of hESCs, but the role of IGF-1R signaling in the differentiation of hESC
needs to be elucidated.

3.2. Human Neural Stem Cells (hNSCs)

Human NSCs are derived from regions such as the subgranular zone (SGZ) in the
hippocampal dentate gyrus and subventricular zone (SVZ) adjacent to the lateral ven-
tricles. The hNSCs function as an additional tool for the development of regenerative
therapy, and several clinical trials have indicated hNSCs as a promising target to treat
neurological disorders, including amyotrophic lateral sclerosis (ALS) [105,106]. ALS is a
lethal neurodegenerative disease that causes the rapid loss of motor neurons and mus-
cular paralysis [107]. The report indicated that the overexpression of IGF-1 on hNSCs
cultures enhances neural differentiation and promotes neuronal development by neurite
outgrowth [95]. Furthermore, IGF-1-overexpressing hNSCs exhibit augmented neuropro-
tective effects against excitotoxicity, suggesting the potential of stem cell-based therapy in
ALS [95]. In addition, another study indicated that hNSCs transplantation with IGF-1 trans-
duction demonstrably improved injury-induced spatial learning deficits and decreased the
activation of astroglial and microglial accumulation while enhancing the mobilization of
oligodendrocyte precursor cells [108].

3.3. Cardiac Stem Cells (CSCs)

Although the reports on cardiac stem cells have been controversial in recent years, the
IGF/IGF-1R axis has been reported to play a role in activating cardiac repair by govern-
ing CSCs survival, proliferation, migration and differentiation [109]. The IGF-1/IGF-1R
activation is a basic cardioprotective mechanism associated with survival that improves
ischemic cardiac function [96]. Moreover, a study indicated that c-kit+ expression in hu-
man CSCs promoted IGF-1 secretion, thereby enhancing IGF-1R signaling and ultimately
improving cardiomyocyte survival [110]. IGF-1 overexpression in a subset of CD90+ CSCs
was shown to activate IGF-1R signaling, promote stem cell survival, and protect sur-
rounding cardiomyocytes from apoptosis after myocardial infarction. In intramyocardial
transplantation, IGF-1-overexpressing MSCs are transplanted into the injured area, leading
to preserved CSCs in the injured region; this enhances myocardial regeneration without
differentiating into cardiac myocytes, smooth muscle, or endothelial cells [111]. More-
over, a study demonstrated that the mechanism of IGF-1 signaling activation promotes
c-kit+ murine CSCs proliferation through the down-regulation of FOXO3/p27/p57 signal-
ing [97]. Furthermore, the overexpression of IGF-1 promotes c-kit+/CD45- CSCs survival
in obese mice, leading to significant improvements in cardiomyopathy caused by Western
diet-induced obesity [112].

3.4. Mesenchymal Stem Cells (MSCs)

MSCs are multipotent adult stem cells with a great potential to differentiate into
adipocytes, osteocytes, chondrocytes, neurons, and glial cells [113–115] and to maintain
the self-renewal capability [116]. Several studies have demonstrated that IGF-1R signaling
regulates MSC differentiation and maintains multipotency. For example, the addition
of IGF-1 in adipocyte induction culture medium promotes adipogenesis in BMSCs by
stimulating peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and lipid
accumulation [117]. A report also indicated that IGFs positively regulate the activation
of AKT signaling, induce PPAR-γ expression and contribute to the maintenance of adi-
pogenic differentiation in an AKT-1- and AKT-2-depleted animal model [118]. Moreover,
the addition of bFGF enhances the autocrine IGF-1 and IGF-2 induction and induces IGF-1R
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activation, resulting in the adipogenesis and osteogenesis of UMSCs [89]. In addition to
adipogenesis, IGF-1R signaling reportedly participates in osteogenic differentiation [90].
This study demonstrated that the autocrine IGFs/IGF-1R loop in BMSCs was activated and
up-regulated through hedgehog signaling, which is required for osteoblast differentiation
in skeletal development. Moreover, IGF-1R and its downstream AKT/mTOR signaling
stabilize Gli2 protein and enhance the hedgehog-mediated effect on osteogenic differentia-
tion [90]. Signaling via both IGF-1 and Runx2, which are osteogenic transcription factors,
was up-regulated by serum response factor (SRF) to control bone remodeling. In mice with
SRF-deleted osteoblasts, the transactivity of IGF-1 and Runx2 was restored through SRF
overexpression, promoting osteoblastogenesis [119]. In addition, a few studies indicated
that adding IGF-1 to hPMSCs under low-oxygen condition increased OCT4 expression,
leading to cell proliferation and maintenance of the multipotency of hPMSCs through the ac-
tivation of IGF-1R signaling [91,92]. In an animal model of acute myocardial infarction, the
transplantation of adipose-derived MSCs (ADSCs) that overexpressed both IGF-1 and HGF
to the injured area promoted neovascularization and suppressed inflammation. Although
this report showed that both IGF-1 and HGF were overexpressed in ADSCs, significant car-
diac regeneration was not observed [120]. Furthermore, several studies also demonstrated
that IGF-1R activation in MSCs induces crosstalk and influences neighboring cells as well
as their surrounding microenvironment, which could aid in tissue regeneration in human
diseases. Stroke causes nervous system damage via ischemic and hypoxic changes to the
injured brain, inducing muscle weakness and paralysis. Therefore, MSCs are considered as
a promising therapeutic tool to treat stroke. For example, this study demonstrated that the
intravenous injection of BMSCs in the brains of rats with stroke-induced middle cerebral
artery occlusion increased IGF-1 expression and enhanced the activation of IGF-1/IGF-1R
signaling, which corresponds to enhanced cell survival and neural progenitor cell recruit-
ment to the injured area, leading to improved neurological functions [93]. Furthermore, the
study reported that the transplantation of IGF-1R-overexpressing hDPSCs that crosstalk
with CXCL12/CXCR4 signaling exhibited greater anti-apoptotic and anti-inflammatory
effects as well as neural differentiation capacity in a cerebral ischemic animal model [94].
In addition, MSCs are consider to be a potential target in treating muscular injury and
myocardial infarction. For example, IGF-1 addition to MSCs in vitro displayed the potential
target for reducing scar formation, enhancing angiogenesis, promoting the reconstitution
of muscle structure, and improving muscle function [121]. Furthermore, the in vivo trans-
plantation of IGF-1-primed BMSCs represses cardiac dysfunction, increases the survival
ability of engrafted BMSCs in the injured heart, leads to decreased cardiomyocytes cell
apoptosis, and suppresses the expression of several inflammatory cytokines such as tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 [122]. In addition, IGF-2 is an
essential factor of the stem cell niche and has been reported to modulate the proliferation
and differentiation of ADSCs. The study showed that the IGF-2/IGF-1R axis significantly
induced the cell proliferation of ADSCs and increased the expression of stemness markers,
such as Nanog, Oct4 and Sox2. Notably, IGF-2 had been reported to have a pivotal role in
the differentiation of ADSCs to adipocytes and osteoblasts [123].

4. Conclusions

Studies on the role of IGFs in cancer have been conducted mainly on solid tumors
including colon [124], prostate [124,125] and breast cancers [126]. For instance, high levels
of IGF-1R in patients with colon cancer, as compared to healthy control, could indicate
poor prognosis [127]. Therefore, a deeper understanding of cancer biology has led to
the development of anti-tumor drugs targeting the specific oncogenic substrate IGF-1R.
Since the IGFs/IGF-1R signaling is often dyseregulated in cancer development, it has been
considered an attractive pharmacological target for solid tumors. This review summarizes
the contribution of IGFs/IGF-1R signaling in the treatment of cancer and stem cells and also
highlights the relevance of IGFs/IGF-1R signaling in potential strategies for cancer or stem
cell-based therapies, respectively. In cancer, the dysregulation of IGFs/IGF-1R signaling
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can induce several hallmark genes of cancer and contribute to malignant transformation,
tumor progression and resistance to a number of anti-tumor therapies such as radiation
therapy and chemotherapy. Hence, the suppression of IGF-1R signaling is considered to be
a promising strategy to inhibit tumor growth and improve survival in multiple cancers.
Currently, several strategies have been developed to inhibit IGFs/IGF-1R signaling in cancer
therapy. For example, teprotumumab, introduced in 2020, was the first licensed anti-IGF-1R
agent for TAO treatment [62]. However, most anti-tumor IGF-1R mAbs or TKIs have not yet
displayed significant benefits in patients randomly recruited to phase II/III clinical trials,
which is probably due to the paucity of reliable predictive biomarkers of IGF-1R inhibition.
Therefore, studies that target IGFs/IGF-1R in multiple tumors with suitable molecular
contexts, including IGF-1R suppression, are being conducted to efficiently treat triple-
negative breast cancers rather than HR-positive metastatic breast cancers [128–130] as well
as treat KRAS-mutant NSCLCs rather than wild-type lung cancers [58]. Moreover, because
the activation of IGFs/IGF-1R signaling results in the bypass pathway, the combination of
IGF-1R mAbs/TKIs and other RTKs as anti-tumor agents is considered to a more effective
strategy in cancer therapy.

On the other hand, IGFs are among the earliest growth factors to be found in a develop-
ing embryo and putatively act as autocrine and paracrine factors on several developing cells
such as stem cells. This review emphasizes that IGF-1/IGF-1R signaling is an important
functional pathway to identify stem cells and MSCs with superior self-renewal capacities as
well as to determine the pluripotency of these cells. Furthermore, regulating IGF-1/IGF-1R
signaling is a promising strategy to maintain stemness and improve the efficacy of stem
cell-based therapies in several disease conditions. Moreover, IGF-1R signaling is also
implicated in cancer development due to its stemness-related properties and resistance
of radiation therapy and chemotherapy. Therefore, the activation of IGF-1R signaling in
stem cell-based therapies wherein the stem cells differentiate into tissue-specific cell types
in vitro deserves attention. Additionally, it is also imperative to research the use of the
in vivo transplantation of genetically modified IGF-1R stem cells or MSCs to minimize the
adverse consequences of tissue regeneration therapy and improve the therapeutic efficacy
of regeneration in human diseases.
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