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ABSTRACT

Despite the prevalence of long noncoding RNA
(lncRNA) genes in eukaryotic genomes, only a small
proportion have been examined for biological func-
tion. lncRNAdb, available at http://lncrnadb.org, pro-
vides users with a comprehensive, manually curated
reference database of 287 eukaryotic lncRNAs that
have been described independently in the scientific
literature. In addition to capturing a great proportion
of the recent literature describing functions for indi-
vidual lncRNAs, lncRNAdb now offers an improved
user interface enabling greater accessibility to se-
quence information, expression data and the litera-
ture. The new features in lncRNAdb include the in-
tegration of Illumina Body Atlas expression profiles,
nucleotide sequence information, a BLAST search
tool and easy export of content via direct download
or a REST API. lncRNAdb is now endorsed by RNA-
central and is in compliance with the International
Nucleotide Sequence Database Collaboration.

INTRODUCTION

The last decade has provided compelling evidence for the
function of RNA beyond its canonical role as a messen-
ger for protein-coding genes. Long noncoding RNAs (lncR-
NAs) are transcripts greater than 200 nucleotides in length
with little or no protein-coding potential (1–3). This arbi-
trary size threshold, which was incidentally defined by the
characteristics of common nucleic acid purification proto-
cols, pragmatically distinguishes lncRNAs from other dis-
tinct classes of small RNAs such as microRNAs, tRNAs
and snoRNAs. From the earliest descriptions of biologi-
cally important lncRNAs such as H19 and XIST almost two
decades ago, the last few years have seen rapid growth in the
functional explorations of individual lncRNAs. Concomi-
tant with this increased growth of characterized lncRNAs

is an increasing understanding toward biological mecha-
nisms, as well as a growing awareness and recognition of
the importance of lncRNAs in virtually every cellular and
regulatory process (4).

Although initially triggered by high-throughput cDNA
cloning and tiling microarrays, discovery of lncRNAs is
now largely driven by next-generation sequencing of whole
transcriptomes and, more recently, target enrichment of
rare or lowly expressed transcripts (5). Currently, GEN-
CODE (v20) conservatively annotates 14 470 independent
lncRNA genes in the human genome (6). The implication of
widespread functionality of all these lncRNAs, based only
on the confirmed expression of their transcripts, remains an
area of some controversy. However, the evidence of generic
hallmarks of functionality of lncRNAs, such as sequence
conservation, highly specific and regulated expression, asso-
ciation with epigenetic control elements, alternate splicing
and differential stability, are accumulating (7). This argues
against the dismissal of lncRNAs as transcriptional noise
or artifact.

The expanding list of lncRNAs and accumulating func-
tional evidence has necessitated a coherently curated
database to act as a data repository and a platform for
lncRNA research. By updating lncRNAdb (8), version 2.0
aims to grow its momentum as the most cited and up-
to-date reference database of lncRNAs. Other lncRNA
databases that have been released since the inception of
lncRNAdb focus less on providing manually curated liter-
ature evidence on lncRNA functionality, but offer comple-
mentary tools for the analysis of lncRNAs. For example,
algorithms for finding microRNAs targeting lncRNAs can
be accessed at DIANA-LncBase (9) and starBase v2.0 (10),
chromatin state of lncRNAs can be investigated at ChIP-
Base (11) and the ability for lncRNAs to act as competitive
endogenous RNA (ceRNA) can be investigated at lnCeDB
(12). lncRNAdb remains the only expertly curated reference
database of biologically investigated lncRNAs and accord-
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ingly serves as a source for other integrative databases, such
as RNAcentral (13) and NONCODE (14).

AIMS OF THE DATABASE

In response to the need for a repository of lncRNA se-
quences and supporting data, lncRNAdb aims to summa-
rize our knowledge of eukaryotic lncRNAs in an easily ac-
cessible and searchable format. lncRNAdb provides an in-
terface to researchers that allows for easy access via a web
browser and also for automated queries through a REST
API. lncRNAdb includes a variety of annotations for eu-
karyotic lncRNAs, including gene expression data, evolu-
tionary conservation, structural information, genomic con-
text, subcellular localization, functional evidence, links to
the primary literature and the transcript sequence.

Entries into lncRNAdb are curated from evidence sup-
ported by the literature. This distinguishes this database
from other lncRNA databases that, for example, aggregate
data from diverse (often uncredited) sources, or supply com-
putational tools to display and interpret datasets or predic-
tion algorithms.

LNCRNADB V2.0

Since its launch, lncRNAdb has been widely accepted
as a valuable catalog of biologically validated lncRNAs.
For instance, the HUGO Gene Nomenclature Committee
(HGNC) has included lncRNAdb as part of their lncRNA
specific resources. Seventy-six of the 110 lncRNA entries
on HUGO cite lncRNAdb (http://www.genenames.org/rna/
LNCRNA).

As of August 2014, lncRNAdb has been inducted into
RNAcentral as a third party data specialist database. RNA-
central is a network of resources that provides unified ac-
cess to noncoding RNA sequence data supplied by exter-
nal expert databases (13). Inclusion of lncRNAdb in RNA-
central requires compliance with guidelines set by the In-
ternational Nucleotide Sequence Database Collaboration
(INSDC). lncRNAdb entries exported to RNAcentral have
been given an ENA TPA accession ID and its content can
be readily obtained on lncRNAdb or RNAcentral (Supple-
mentary Data 1).

NEW FEATURES

New entries

We have added a total of 87 new entries to the database,
and existing entries have been updated to reflect recent lit-
erature. These changes are based on information derived via
manual curation from 382 new publications. In total lncR-
NAdb now holds 283 entries, informed by 921 references
and 260 nucleotide sequences (Figure1). These cover entries
across 71 different organisms.

New user interface

A new user interface with expanded features has been
included to promote easily searchable and downloadable
content, queried through lncRNA name, tissue or disease
association (Figure 2). Entry pages are presented in an
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Figure 1. Coverage of the literature by lncRNAdb v2.0. Cumulative to-
tals of all publications matching the search term ‘long noncoding RNA’
[MeSH] were extracted from PubMed from 1992–2013 (green) and the pro-
portion incorporated into lncRNAdb as ascribing functional annotation
to lncRNAs is shown (blue). Cumulative totals of the number of lncRNAs
found in lncRNAdb described in literature (red).

accordion-style format that allows users to expand or col-
lapse various sections of the content. All records are avail-
able for download either as a useful printer-friendly sum-
mary or as an XML record for easy programmatic access.

Sequence search capabilities

In addition to word search tools, lncRNAdb v2.0 includes
incorporation of a BLAST (Basic Local Alignment Search
Tool) server for sequence-alignment search (15). On input
of a query sequence by the user, lncRNAdb will return any
entries that have significant similarity with the query se-
quence. The user also has the option to download the full-
text result of the BLAST search (Supplementary Figure S1).

Incorporation of gene expression data

For entries with a corresponding human Ensembl Gene ID,
expression data from the Illumina Body Atlas is available
(16). This feature provides an overview of the expression of
the selected lncRNA in 16 human tissues. Data from the
human body were generated via the Tuxedo suite (17) using
the Gencode V15 Gene model and can be exported in XML
format. For details of the analysis pipeline, see http://www.
lncrnadb.org/help#BodyAltas.

Improved data accessibility

To enable easily downloadable content, lncRNAdb v2.0 in-
cludes a REST API for users to download raw data files pro-
grammatically. Content is available in XML, which is eas-
ily convertible to other formats, such as BED, FASTA and
GTF. To ensure high integrity of nucleotide sequences, we
provide corresponding International Nucleotide Sequence
Database Collaboration (INSDC) IDs, and link out se-
quences to the European Nucleotide Archive (ENA). To en-
sure compliancy, the entries are now annotated with a cor-
responding ENA TPA. Content from pages can be exported
in XML or printer-friendly format (Figure 2).

http://www.genenames.org/rna/LNCRNA
http://www.lncrnadb.org/help#BodyAltas
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Pub Med ID Author Title Year
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A coding-independent function of gene and pseudogene mRNAs regulates

tumour biology.
2010

20400965 Alimonti Subtle variations in Pten dose determine cancer susceptibility. 2010

23435381 Johnsson
A pseudogene long-noncoding-RNA network regulates PTEN transcription

and translation in human cells.
2013

Associated Components 

Component Type Component ID Description Pub Med ID

Transcript miR-20a miR-19b and miR-20a can target PTEN and PTEN1P 20577206

Transcript miR-19b miR-19b and miR-20a can target PTEN and PTEN1P 20577206

Sequences 

Sequence Name Sequence Accession IDs Species Fasta Sequence

ptenp1_homosapiens_1 BY797336,AL356489,BC038293 Homo sapiens Show Sequence

lncrnadb version 2.0. lastupdate : 03 Sep 2015

PrintDownload

PTENP1
ENA TPA Accession : HG975434

Name Characteristics Expression Function Misc BodyAtlasData Species Literature Associated Components
Sequences

Entry Name Alias
PTENP1 PTENpg1, PTEN2, ENSG00000237984

Name 

PTENP1: PTEN Pseudogene 1

Characteristics 

Processed pseudogene of PTEN tumour suppressor gene at 9p13.3 and ~3.9kb in length.

Predominately polyA- ((Johnsson 2013)).PTENP1 "coding sequence" quite similar to PTEN but has lost start codon,

while 3'UTR is ~1kb shorter than PTEN. Part of the PTENP1 3'UTR sequence is highly conserved compared to

PTEN (~95%) with seed matches to the same miRNAs

Expression 

Expressed in a very wide variety of human tissues and in prostate cancer. Good correlation between PTENP1 and

PTEN levels.

Inhibition of endogenous miRNAs with seed matches to PTEN and PTENP1 leads to an increase in PTENP1

expression, validating it is targeted by miRNAs known to repress PTEN.

Function 

Competing endogenous RNA (ceRNA). PTENP1, through its 3'UTR, acts as a decoy for miRNAs that target PTEN.

PTNEP1 functions as a tumour suppressor gene.

Overexpression of the PTENP1 3'UTR lead to an increased level of PTEN and cellular growth inhibition, an effect

dependent on the presence of mature miRNAs, supporting PTENP1's role as a miRNA decoy. While knockdown of

PTENP1 lead to a decrease in PTEN levels and faster cell growth.

PTENP1 asRNA beta isoform forms an RNA-RNA interaction with PTENP1 sense and stabilizes it. This interaction

promotes the function of PTENP1 sense as a positive regulator of PTEN mRNA levels, potentially by allowing the

export of PTENP1 sense to the cytoplasm ((Johnsson 2013)).

The PTENP1 locus was lost in a subset of colon cancers and a relationship was reported between PTENP1 copy

number and PTEN expression level.

Misc 

Cells are very sensitive to levels of PTEN, with even subtle changes influencing cancer susceptibility ((Alimonti

2010)).

A wider role for pseudogenes as miRNA decoys/ sponges has been proposed.

Main entry ID
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Characteristics describing the lncRNA
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Miscellaneous information

Expression data from human body atlas
for human lncRNAs from Ensembl. 
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Figure 2. The lncRNAdb v2.0 user interface. A screenshot of an example profile highlighting new features.

Finally, a major improvement from the previous lncR-
NAdb release is the REST API. This feature was added
due to a number of citations of the first edition of lncR-
NAdb from databases and publications that rely on pro-
grammatic data export from lncRNAdb. The API enables
access to XML records in three levels, depending on the
amount of requested content and the level of detail. In
the simplest form, the user can select either the whole
record (e.g. http://lncrnadb.org/rest/hotair) or specific con-
tent (e.g. http://lncrnadb.org/rest/hotair/sequence) for an in-
dividual lncRNA. The next level allows access to multi-
ple entries at once. For example, the query http://lncrnadb.
org/rest/search/brain+cancer/nomenclature/literature finds
all the literature records for lncRNAs that are associated
with brain cancer. Finally, the users can retrieve specific
information for all entries, such as associated interacting
components http://lncrnadb.org/rest/all/association. More
information with examples can be found at http://lncrnadb.
org/tools/.

User submission capacity

To assist in maintaining an informed repository of data,
lncRNAdb provides an avenue for user submissions. New
entries can be posted on the submission page with sup-
porting information through a CAPTCHA-protected form
(Supplementary Figure S2). All user-submitted data is pro-
cessed by an expert human curator before incorporation
into the database. A detailed description of the process and

acceptance criteria for lncRNAdb contributions is available
at http://lncrnadb.org/contribution. As the pace of lncRNA
functional characterization continues to increase, we antic-
ipate user-submitted data will become more crucial in keep-
ing lncRNAdb up to date. We therefore encourage any re-
searchers with newly published lncRNA data, or who find
their discoveries are not included in the database, to submit
their entry to lncRNAdb.

TOPICAL HIGHLIGHTS IN LNCRNA RESEARCH

Reported functions of lncRNAs

Reflective of the diversity of lncRNA size and structural
characteristics, the numerous lncRNA functions described
within lncRNAdb seldom fit into a discrete set of clas-
sifications. Among the heterogenous functions described,
lncRNAs are capable of functioning as chromatin regula-
tors (18,19), enhancer RNAs (20), nuclear scaffolds (21),
snoRNA host genes (22), primary microRNA transcripts,
pre-tRNAs, ceRNAs to sequester microRNAs (23) or the
transcriptional machinery away from other genes. Even in
terms of genomic context, lncRNAs evade ready categoriza-
tion, with an individual lncRNA locus capable of compris-
ing intergenic transcripts, overlapping transcripts, antisense
transcripts and bidirectional transcripts.

To further confound easy categorization, individual
lncRNA loci are not restricted to a single purpose. For ex-
ample, the lncRNA SNHG1 is a host to eight functional

http://lncrnadb.org/rest/hotair
http://lncrnadb.org/rest/hotair/sequence
http://lncrnadb.org/rest/search/brain+cancer/nomenclature/literature
http://lncrnadb.org/rest/all/association
http://lncrnadb.org/tools/
http://lncrnadb.org/contribution
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snoRNAs, at least one of which (SNORD25) is known to
produce a miRNA (24). In principle, the same lncRNA
transcript may also act as a ceRNA as an enhancer RNA
and as a structural scaffold. The ability of a single locus to
give rise to transcripts with multiple functions is not unique
to lncRNAs (25). For example, the mRNA KANSL2 is host
to three snoRNAs, of which SNORA34 is a precursor to
miR-1291.

The opinion has been put forward that evolutionary pres-
sure to develop more sophisticated regulatory mechanisms
has led to the requirement of a more complex transcriptome
and consequently a greater number of lncRNAs. Evidence
of a rapid expansion of lncRNA numbers and diversity over
the recent period of primate evolution (26–28) supports this.

lncRNAs have minimal protein-coding capacity

LncRNAs were first described as a class in conjunction with
early large-scale sequencing libraries of cDNA clones (29).
At this time, assessment of coding potential was deduced
mostly via assessment of open reading frames (ORFs). Be-
cause of the limitations of this approach the definition of
‘noncoding’ has remained ambiguous for many transcripts
(2,30). More recent efforts to empirically determine the

protein-coding ability add to this ambiguity by yielding re-
ports that some annotated lnRNAs give rise to polypep-
tides (31). Counter to these observations is the growing
body of evidence supporting that the protein-coding capac-
ity for lncRNAs is minimal to absent. This includes data
from bioinformatic assessment of ORFs and codon conser-
vation frequency, as well as experimental assessment of ri-
bosome occupancy using ribosome profiling (32) and mass
spectrometry compared to RNAseq data (33,34).

Supporting evidence of noncoding RNA function

Assuming the absence of appreciable protein-coding capac-
ity, any biological functionality held by lncRNAs is con-
sidered to be manifested at the RNA level. The majority
of annotated lncRNAs do not have clearly defined func-
tions. However, evidence from transcriptomic studies look-
ing at lncRNAs as a class is highly suggestive of the func-
tions of lncRNAs. This includes evidence surrounding evo-
lutionary conservation, developmental- and tissue-specific
expression, RNA structure and subcellular localization.

Evolutionary conservation

Although IncRNAs are under lower selective pressure than
protein-coding genes, they are under higher selective pres-
sure than repeat sequences that are considered to be under
neutral selection (34). Interestingly, the promoters of IncR-
NAs display similar levels of conservation to that of coding
genes (35).

RNA structure and sequence conservation

Due to the intrinsic differences in the encoding of structural
information between protein-coding and noncoding genes,
the associated primary sequences are subject to different
evolutionary constraints. That is, in the case of protein-
coding sequences, triplet nucleotides (codons) encode spe-
cific amino acids, where either single nucleotide polymor-
phism or insertions/deletions can drastically change or en-
tirely prevent the production of a functional protein. In
contrast, lncRNAs, which inherently encode RNA struc-
tures, may be considerably more resilient to sequence vari-
ation, where insertions/deletions may have little impact on
structure and polymorphisms tolerated by complementary
changes at partner folding sites. Therefore, if lncRNA func-
tion is dependent more on its structure than its primary se-
quence, significant conservation at the sequence level may
be difficult to detect or entirely eroded through evolution,
despite conservation of function. This hypothesis is sup-
ported by global investigations on the structure of lncR-
NAs, which indicate that it is evolutionarily conserved (36).
The importance of secondary structure for function is ex-
emplified by XIST, which maintains silencing of the inactive
X chromosome by exploiting the three-dimensional confor-
mation of the regions of the X-chromosome, not by specific
sequences (37).

Specific expression and subcellular localization

Multiple studies have shown that lncRNA expression is
more cell type and developmentally specific than that of
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Figure 4. Word cloud collating the top 500 terms within abstracts found in
PubMed, following a search with the term ‘long noncoding RNA’ [MeSH].
Terms appearing more frequent in publications before years 2011 are la-
beled green terms more frequent after in publications after year 2012 are
labeled blue. The sizes of the words represent the difference in frequencies
of the word appearing in the two sets of abstracts. Word frequencies are
normalized against the number of publications in each set. Text prepro-
cessing was conducted by an in-house script (available at http://lncrnadb.
org/help) and the word cloud was created with R package ‘tm’ (v.0.6) and
‘wordcloud’ (v.2.5).

protein-coding genes (30,38–40). Moreover, as lncRNAs
are more likely to be localized to the nucleus than coding
transcripts it is suggestive of more regulatory roles of lncR-
NAs (41).

TRENDS IN LNCRNA RESEARCH

GENCODE (v20) annotated 14 470 independent lncRNAs
in the human genome (6). However, other sources suggest
numbers as high as 95 135 lncRNAs (42). Only a fraction
of these have been functionally characterized. The major-
ity of literature describing function of lncRNAs has been
spearheaded by a few well-characterized lncRNAs, namely
H19, XIST, HOTAIR, NEAT1 and MALAT1. This is evi-
dent by observing the number of articles for any given year
that includes the search term ‘lncRNA’ (Figure 3). In recent
years, the focus of lncRNA research expands to include a
broader range of lncRNA genes. This trend is presumably
due in large part to increased discovery rates driven by the
availability of low-cost RNA-sequencing.

A switch of focus from the highly studied lncRNAs H19
and XIST can further be noticed by observing the search
terms that accompany ‘Long noncoding RNA’ [MeSH] in
literature via PubMed, comparing the terms from before
the first release of lncRNAdb (August 2010) to those after.
It can be observed that the term specific to lncRNAs H19
and XIST are replaced with terms describing functionality
or mechanism of action such as ‘function’, ‘cancer’, ‘dif-
ferentiation’, ‘pathway’, ‘metastasis’, ‘role’ and ‘microRNA’
(Figure 4). The increase of functionally annotated lncRNAs

and their annotation within the lncRNAdb can also be seen
(Figure 1).

CONCLUDING REMARKS

Our understanding of lncRNA function has largely been
directed by the study of the first few discovered lncRNAs,
the first of which was described almost two decades ago.
The trend of lncRNA research is changing, presumably due
to the increased availability of genomic and transcriptomic
data. Research now includes a broader range of lncRNAs
and a greater variety of mechanisms of action. Expecting
this trend to continue, we anticipate many more lncRNAs
to be supported with functional data, which in turn will
prompt the continued demand for an easily accessible ex-
pert curated database. This remains the ambition behind
lncRNAdb into the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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