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Abstract: The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily
member with three unique features. It has two GTPase domains instead of the one found in other
small GTPases, and it also has two EF hand calcium binding domains, which allow Ca2+-dependent
modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria
and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly
found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis
and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular
extensions, such as axons, and, in some cases, intercellular transport of the organelle through
tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with
MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the
endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects
of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually
being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative
diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently
known about the cellular physiology and pathophysiology of MIRO functions.
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1. Introduction

The mitochondrion is an endosymbiont-derived organelle [1] with multiple key roles in eukaryotic
energy metabolism and cell survival. It is perhaps best known to students of cell biology as the
compartment that houses the respiratory electron transport chain (and the associated processes of
oxidative phosphorylation and the generation of reactive oxygen species), as well as key regulators
of programmed cell death (such as the apoptosis-inducing cytochrome c and apoptosis inducing
factor (AIF)). The mitochondrion is also the site of the tricarboxylic acid (TCA) cycle and fattyacid
β–oxidation, and it serves to buffer and sequester intracellular calcium [2,3]. Mitochondria are highly
dynamic organelles in terms of morphology and cellular distribution and constantly undergo processes
of fusion, fission and cytoskeleton-dependent transport. The latter process is particularly important for
cell types and subcellular locations where ATP is acutely required and where adequate maintenance of
cytosolic calcium levels is critical, such as the synaptic termini of neurons [4]. Impaired mitochondrial
function and homeostasis therefore underlie many neurodegenerative and metabolic disorders [5].

The Ras superfamily family of small GTPases [6,7] consists of GTP binding-dependent molecular
switches with diverse cellular functions. The superfamily is classically divided into five subfamilies,
namely the Ras, Ran, Rab, Rho and Arf families [8]. Members of these families of small GTPases
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serve specialized functions in signaling, membrane trafficking, nuclear transport and regulation of
cytoskeletal dynamics. Largely synthesized as cytosolic proteins, their activity is regulated by the
binding of GTP, facilitated by a myriad of guanine nucleotide exchange factors. With the exception
of Ran, family members of Ras, Rab, Rho and Arf are modified by N- or C-terminal attachments of
lipid moieties that facilitate their membrane anchorage and function. Ran partitions between the
cytoplasm and the nucleus, while the other small GTPases cycle between the cytosol and the plasma
membrane, intracellular membranes or the cytoskeleton. No specific Ras superfamily member was
known to be specifically associated with the mitochondrion. However, this changes with the discovery
of two isoforms of “atypical” Rho GTPases, named mitochondrial Rho (MIRO) [9]. MIRO appears to
be fairly conserved in eukaryotes [10] and serves critical roles in mitochondrial morphology [11],
inheritance [12,13] and homeostasis [14–16]. It is also a key regulator of cytoskeleton-mediated,
long-range mitochondrial transport in metazoans [17]. The latter role is of particular importance
in the transport of neuronal mitochondria [18,19]. In this review, I shall outline and discuss
the known functions of MIRO and the myriad of interacting proteins that it engages in its
mitochondria-associated roles.

2. MIRO: Gene, Structure and Cellular Interactions

Early work classified MIRO homologues as a novel subgroup of the Rho family GTPases based
on sequence homology of its N-terminal GTPase domain with Rho, but subsequent analysis considers
these as a distinct, outlying subgroup within the Ras superfamily [6], as MIROs lack an apparent
consensus G3 motif and the Rho-specific sequence insert [11]. Human MIRO-1 and MIRO-2 are both
618 amino acids in length, 60% identical to each other and ubiquitously expressed [9]. Their unique
domain structure includes two GTPase domains, which flank two calcium-coordinating EF hand
domains [20] and a C-terminal transmembrane domain. The N-terminal GTPase domain (but not
the C-terminal GTPase domain) has homology to those of Rho family GTPases, but lacking the
conserved G12 and Q61 residues, which may indicate a defective GTP hydrolysis activity [9]. Focused
phylogenetic analysis indicated that MIRO is present in many eukaryotes, including unicellular yeast,
Amoebozoa and multicellular fungi, plants and metazoans. It is however not found in the genome of
eukaryotes harboring mitosomes or hydrogenosomes instead of mitochondria and is notably absent in
mitochondria-bearing apicomplexans and green algae of the order Mamiellales [10]. There also exist
MIRO-like homologues in trypanosomatids and ciliates that lack one of the two GTPase domains [10].

The human paralogues MIRO-1 and MIRO-2 [9,21] and the single S. cerevisiae orthologue
Gem1p are all localized to the mitochondria, tail-anchored to the outer membrane by the C-terminal
transmembrane domain [11]. The importance of Gem1p to yeast mitochondria is demonstrated by the
fact that the gem1∆ strain grew significantly slower than the wild-type on glycerol minimal media and
exhibited distorted mitochondrial morphology and defective mitochondrial distribution [11]. However,
Gem1p is apparently not required for mitochondrial division and fusion, and MIRO orthologues are
also not required for mitochondrial transport in lower eukaryotes. Metazoan MIRO has critical roles
in mitochondrial transport, and this is discussed in the section below. Miro1 knockout mice could
be brought to term, but littermates are cyanotic, have unexpanded lungs and die very shortly after
birth [22]. Mouse Miro2 is therefore of unequal redundancy to Miro1. Zebrafish contain three MIRO
genes, rhot1a, rhot1b and rhot2, whose products are also shown to be mitochondria-associated [23].
Introduction of antisense morpholinos against either one of the three genes into embryos resulted in
no obvious defect, but low-dose triple morphants exhibited a dose-dependent posterior body-axis
elongation defect and have smaller heads. High dosages of the combined morpholinos did result in
embryonic lethality. MIRO is thus important for development and postnatal life, and is likely so for
all metazoans.

MIRO interacts with a number of cellular proteins, and these interactions were indicative of
MIRO’s main functions (see Table 1). A yeast two-hybrid-based screen first showed that the Drosophila
orthologue dMiro interacts with the kinesin adaptor Milton [24]. Subsequent to the early works,
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MIRO has also been shown to interact with the mammalian Milton homologues OIP106/TRAK1
and GRIF-1/TRAK2 [21,25], as well as the conventional kinesin-1/KIF5 [26,27]. The MIRO/TRAK
complex also apparently associates with a myriad of other factors, such as the mitochondrial fusion
factors mitofusins 1 and 2 [28], the PTEN-induced putative kinase 1 (PINK1) [14], the neuron-enriched
member of the Armcx gene family, Armcx3 [29] and Disrupted In Schizophrenia 1 (DISC1) [30,31].
Pertaining to mitochondrial transport, MIRO also interacts with the retrograde motor dynein [32] and
the Hypoxia Upregulated Mitochondrial Movement Regulator (HUMMR) [33,34]. Interestingly, Gem1p
is a component of the yeast ER-mitochondria encounter structure (ERMES) tethering complex [35,36].
MIRO is also known to be a substrate of the E3 ubiquitin ligase Parkin [15,16]. A recent report also
showed that MIRO interacts with and recruits Centromere protein F (Cenp-F) to the mitochondria to
facilitate mitochondrial transport to the periphery of daughter cells after mitosis [37].

In the paragraphs below, I shall discuss MIRO and its interacting partners and their various
deciphered functions, in the contexts of both cellular and organismal physiology and pathophysiology.

Table 1. A summary of known MIRO interacting partners and their functions.

MIRO interacting protein Nature of interacting partner Function/remarks Reference

Milton (Drosophila) Mitochondrial kinesin
motor adaptors

Microtubule-based
mitochondrial transport

[24]
[21]
[25]

OIP106/TRAK1 (mammalian)
GRIF-1/TRAK2 (mammalian)

Kinesin 1/KIF5
Kinesin family member of
microtubule-based
motor proteins

Microtubule-based
transport (anterograde) [26,27]

Dynein Microtubule-based
motor protein

Microtubule-based
transport (retrograde) [32]

Mitofusin 1 and 2 Dynamin-like GTPases Mitochondrial fusion [28]

Centromere protein F (Cenp-F) Centromeric protein
Kinetochore function and
chromosome segregation
in mitosis

[37]

Disrupted in schizophrenia
1 (DISC1) Multifunctional scaffold protein

Neural development and
multiple signaling pathways,
such as Wnt and mTOR;
associated with schizophrenia
and depression

[30,31]

Hypoxia upregulated
mitochondrial movement
regulator (HUMMR)

Hypoxia-inducible protein
Axonal mitochondrial transport,
particularly in response
to hypoxia

[33,34]

PTEN-induced putative kinase
1 (PINK1)

Ser/Thr protein kinase that
phosphorylates ubiquitin

Regulator of mitochondrial
stress response and mitophagy [14]

Parkin E3 ubiquitin ligase

Important component of the
ubiquitin-proteasome system of
protein degradation; MIRO is a
substrate of Parkin

[15,16]

3. MIRO’s Role in Intracellular and Intercellular Mitochondria Transport

In neurons of higher metazoans, mitochondrial transport along axons and dendrites is essential
for ensuring ATP availability for the energetically-demanding processes at the synapses [38].
Mitochondrial dysfunction, as well as the disruption of mitochondrial transport and distribution
underlie a number of peripheral nerve degenerative diseases [39], as well as central nervous system
neuronal degeneration, such as those exhibited in Parkinson’s disease [40–42]. Axonal mitochondrial
transport relies on the microtubule-based motors, namely the kinesin family proteins and dynein [43],
and MIRO is associated with both of these classes of motor proteins (see Figure 1). The role for MIRO
in anterograde mitochondrial transport in axons was first recognized by an ethyl methanesulfonate
(EMS)-based genetic screen in Drosophila, where dMiro mutants suffered from locomotion defects
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and premature death [44]. These mutants have defective mitochondrial transport in both the axon
and dendrites. The microtubule-dependent axonal transport is dependent on the function of Milton,
a Drosophila protein found earlier to be critical for mitochondrial transport [45]. Kinesin was classically
known to bind cargo through its light chains. However, Milton recruits kinesin heavy chain (KHC)
to mitochondria and associates directly with dMiro [46]. The Milton/KHC/Miro complex is thus
a functional complex that works in mitochondrial anterograde transport along microtubules. Two
mammalian Milton homologues, OIP106/TRAK1 and GRIF-1/TRAK2 [21,25], were also subsequently
shown to associate with mammalian MIRO.Cells 2016, 5, 1 5 of 13 

 

 
Figure 1. A schematic diagram illustrating the roles of MIRO in metazoans. A generalized cell is 
shown. Long-distance microtubule-based transport of mitochondria could occur intracellularly (such 
as in processes of neurons and astrocytes), as well as intercellularly through tunneling nanotubes 
(TNTs) (not drawn to proportion). Insets (dotted-line boxes) highlight interacting partners of MIRO 
in three different functional contexts. (A) MIRO is the substrate of PINK-1 and Parkin and could be 
targeted for proteasomal degradation by these proteins. This attenuates mitochondrial mobility and 
may be a prelude to the mitophagy of damaged mitochondria (DM). (B) MIRO complexes with 
Milton/TRAK and kinesin to mediate anterograde axonal transport of mitochondria, as well as with 
dynein/dynactin for retrograde transport in axonal and dendritic transport. (C) MIRO has been 
shown to be part of the ER-mitochondrial encounter structure (ERMES) found at ER-mitochondrial 
contact sites and may have a speculated role in regulating Ca2+ exchange.  
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the X-chromosome that is unique to the Eutheria clade of mammals) was shown by Soriano and 
colleagues to be localized to the mitochondria [29]. One of these, Alex3/Armcx3, interacts with the 
kinesin/Miro/Trak2 complex in a Ca2+-dependent manner and appears to affect mitochondrial 
dynamics and distribution. In a more recent report, the authors also showed that the protein 
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enriched in neurons and also resides at the mitochondria, interacting with the kinesin/Miro/Trak2  
complex [52]. Attesting to its role in mitochondrial dynamics, overexpression of Armc10 prevents 
amyloid β (Aβ)-induced mitochondrial fragmentation [52]. Another interesting protein that was 
recently shown to interact with TRAK1 and MIRO is Disrupted In Schizophrenia 1 (DISC1), a key 
susceptibility factor for psychiatric disorders [53]. DISC1 has been shown to regulate neuronal 
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and this ability is lost in a putatively disease causing human DISC1 sequence variant, 37W [30]. The  
DISC1-Boymaw fusion protein (arising from a schizophrenia-associated chromosomal translocation, 
which interrupts DISC1 in a Scottish pedigree [55]) was shown to localize to the mitochondria, 
disrupts mitochondrial dynamics [31,56] and affects dendritic development. Pathological forms of 
DISC1 may therefore act by disrupting neuronal mitochondrial dynamics via its interaction with the 
MIRO/TRAK complex. 

Figure 1. A schematic diagram illustrating the roles of MIRO in metazoans. A generalized cell is shown.
Long-distance microtubule-based transport of mitochondria could occur intracellularly (such as in
processes of neurons and astrocytes), as well as intercellularly through tunneling nanotubes (TNTs)
(not drawn to proportion). Insets (dotted-line boxes) highlight interacting partners of MIRO in three
different functional contexts. (A) MIRO is the substrate of PINK-1 and Parkin and could be targeted
for proteasomal degradation by these proteins. This attenuates mitochondrial mobility and may be a
prelude to the mitophagy of damaged mitochondria (DM). (B) MIRO complexes with Milton/TRAK
and kinesin to mediate anterograde axonal transport of mitochondria, as well as with dynein/dynactin
for retrograde transport in axonal and dendritic transport. (C) MIRO has been shown to be part of the
ER-mitochondrial encounter structure (ERMES) found at ER-mitochondrial contact sites and may have
a speculated role in regulating Ca2+ exchange.

Mitochondrial transport is dependent on cytosolic Ca2+ concentration, and the EF hand domains
of MIRO appear to have a regulatory role in this regard. Ca2+-induced arrest of mitochondrial motility
was promoted by MIRO overexpression, and conversely suppressed by either MIRO depletion or the
expression of EF hand mutants [47]. As discussed in the section below, MIRO also appears to affect
both the motility and fusion-fission dynamics of the mitochondria. There are some uncertainties as
to how exactly MIRO modulates kinesin-based mitochondrial transport. In the model of Wang and
Schwartz [26], MIRO interacts with kinesin via Milton/TRAK independently of Ca2+ (active state).
Ca2+ binding, on the other hand, promotes the direct interaction of MIRO with the motor domain
of kinesin-1, thus dissociating the motor from the microtubule (inactive state) [26]. An alternative
model from Kittler’s group suggests that MIRO binds mitochondria directly to kinesin-1/KIF5, and
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Ca2+ binding by MIRO (at micromolar levels) inhibited this interaction [27]. Another possible mode of
action involves an axonal mitochondrial docking protein, syntaphilin [48], which is recruited to the
axon by neuronal activity [49]. An ”engine switch and brake” model has been proposed by Chen and
Sheng [49], whereby MIRO’s Ca2+ binding releases kinesin-1/KIF5, thus allowing the latter to interact
with syntaphilin, which would restrict further mitochondrial movement.

A few more recently-reported MIRO interacting proteins have now added to the perceived
complexity of MIRO’s role in mitochondrial transport. It should be noted that MIRO is required
for both anterograde and retrograde axonal transport [50]. MIRO has been shown to associate with
the dynein-dynactin complex in lymphocytes [32]; the latter is of course responsible for retrograde
axonal transport. MIRO mediates mitochondrial transport into both axons and dendrites, and
the latter process is apparently dynein-dependent [51]. Interestingly, the two GTPase domains of
dMiro are not equivalent in terms of MIRO function. Expression of an N-terminal GTPase domain
mutant (dMiroT25N, dominant-negative mutant with preferential binding to GDP) in the absence
of endogenous dMiro caused premature death and developmental arrest at the pupal stage, with
mitochondria accumulation in the soma of larval motor and sensory neurons. On the other hand,
dMiroT460N did not impair viability and has a much milder phenotype of reduced dynein motility
during retrograde mitochondrial transport [51]. HUMMR, which is upregulated by hypoxia, interacts
with MIRO, and silencing of HUMMR or its transcriptional regulator hypoxia inducible factor-1α
(HIF-1α) during hypoxia diminished axonal mitochondria. HUMMR therefore seems to act in
promoting anterograde axonal transport of mitochondria, presumably as a neuronal response to
hypoxia [33].

A family of Armadillo (Arm) repeat-containing proteins (encoded by the Armcx gene cluster
in the X-chromosome that is unique to the Eutheria clade of mammals) was shown by Soriano and
colleagues to be localized to the mitochondria [29]. One of these, Alex3/Armcx3, interacts with
the kinesin/Miro/Trak2 complex in a Ca2+-dependent manner and appears to affect mitochondrial
dynamics and distribution. In a more recent report, the authors also showed that the protein encoded
by the Armc10/SVH gene (whose retro-transposition gave rise to the Armcx gene cluster) is enriched in
neurons and also resides at the mitochondria, interacting with the kinesin/Miro/Trak2 complex [52].
Attesting to its role in mitochondrial dynamics, overexpression of Armc10 prevents amyloid β

(Aβ)-induced mitochondrial fragmentation [52]. Another interesting protein that was recently shown
to interact with TRAK1 and MIRO is Disrupted In Schizophrenia 1 (DISC1), a key susceptibility
factor for psychiatric disorders [53]. DISC1 has been shown to regulate neuronal mitochondrial
trafficking [54]. It apparently acts to promote anterograde mitochondrial transport, and this ability is
lost in a putatively disease causing human DISC1 sequence variant, 37W [30]. The DISC1-Boymaw
fusion protein (arising from a schizophrenia-associated chromosomal translocation, which interrupts
DISC1 in a Scottish pedigree [55]) was shown to localize to the mitochondria, disrupts mitochondrial
dynamics [31,56] and affects dendritic development. Pathological forms of DISC1 may therefore act by
disrupting neuronal mitochondrial dynamics via its interaction with the MIRO/TRAK complex.

Not only is MIRO involved in mitochondrial transport to the remote peripheral regions of
specialized cell types, it was also shown to mediate movement of mitochondria between cells [57].
A particularly interesting mode of intercellular communication occurs via physical wiring between
the cells through actin-based structures known as tunneling nanotubes (TNTs) [58,59]. Mesenchymal
stem cells (MSC), either co-cultured in vitro or introduced in vivo, could often aid the survival and
recovery of damaged or injured recipient/host cells [60]. This could occur by a range of mechanisms,
including paracrine secretion of soluble factors or those carried in microvesicles [61]. TNTs are
increasingly known to mediate intercellular communications of this nature [62], and some TNTs
bearing microtubules are capable of transporting not just small molecules, but organelles, such as lipid
droplets [63], lysosomes [64,65] and mitochondria [66,67]. This intercellular transfer of mitochondria
could apparently aid cellular regeneration, presumably by functional replacement of damaged or
diseased mitochondria in recipient cells [68–70]. A recent report has now shown that MIRO regulates
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this intercellular transfer of mitochondria between MSCs and airway epithelial cells in a mouse
model of airway injury and allergic airway inflammation [71]. Overexpression of MIRO in MSCs
resulted in enhanced mitochondrial transfer to the recipient epithelial cells and reversed airway
hyper-responsiveness to allergen-induced asthma. These results suggest that MIRO manipulation
could enhance the therapeutic potential of MSCs.

4. MIRO’s Role in Mitochondria Homeostasis

Other than transport and distribution, mitochondria are dynamic organelles that undergo frequent
changes in morphology, as well as fusion and fission [72,73]. Although MIRO was not initially
thought to be acting in the classical pathways that regulate mitochondrial fusion/fission, yeast
gem1∆ mutants nonetheless exhibited distorted mitochondrial morphology [11]. In rat cardiomyocytes
(H9c2 cells), overexpression of MIRO1 induced mitochondrial thread formation and condensation.
On the other hand, dominant-negative MIRO constructs and silencing of MIRO caused mitochondrial
fragmentation [47]. The effects of MIRO on mitochondrial morphology seem to involve the
suppression and activation of a key regulator of mitochondrial division, the Dynamin-related
protein 1 (Drp1) [74]. Overexpression of wild-type MIRO1 or MIRO2 in primary neurons moderately
increased mitochondrial length, and this increase is heightened by the expression of the EF hand
mutants of MIRO. MIRO’s Ca2+ binding capacity could thus modulate its influence on mitochondrial
morphology [47]. MIRO’s interaction with mitofusins 1 and 2 [28] may also influence mitochondrial
fusion, but the detailed mechanism in this regard is not clear.

The Ser/Thr kinase PINK1 and the E3 ubiquitin ligase Parkin act in a cooperative manner
in sensing the health and functionality of the mitochondria and label damaged mitochondria by
ubiquitination for mitophagy [75]. The fact that MIRO interacts with PINK1 [14] and Parkin [15,16]
suggests that it is one of the targets of the PINK1-Parkin system and would thus play a role in
mitochondrial turnover. Indeed, it was shown that PINK1 phosphorylates MIRO [76], and MIRO,
being a substrate of Parkin E3 ligase activity [15], could be ubiquitinated and targeted for proteasomal
degradation when PINK-1 and Parkin associate with damaged mitochondria. MIRO removal limits
mitochondrial movement and may serve the purpose of their confinement prior to destruction by
mitophagy [76]. In HeLa cells, loss of MIRO resulted in the perinuclear clustering of mitochondria
and facilitated mitophagy [77]. In Drosophila, PINK1 phosphorylation-resistant mutants of dMIRO in a
dMIRO-null background exhibited increased mitochondrial transport and synaptic over-growth at
neuromuscular junctions, as well as dopaminergic neuron degeneration in the brains of adult. These
partially resembled the phenotypes of PINK1 null flies, and PINK1/Parkin-mediated degradation of
MIRO may thus be beneficial under certain diseased conditions.

5. MIRO’s Roles in Plants and Lower Eukaryotes

The Arabidopsis genome harbors three MIRO paralogues, MIROs-1–3 [78]. MIRO-1 and MIRO-2
are ubiquitous, but MIRO-3 is specifically expressed in the endosperm [17]. While transfer (T)-DNA
insertional mutation of Arabidopsis MIRO-1 resulted in lethality during embryogenesis, insertional
mutation of MIRO-2 had little effect [79]. Phylogenetic analysis revealed that MIRO-1 and MIRO-2
in dicot plants cluster in two separate groups due to a gene or genome duplication event [80],
but the above results indicate that they are unequally redundant. Loss of MIRO-1 causes clear
impairment in pollen germination and pollen tube growth. Mitochondria in the MIRO-1 mutant
pollen exhibited abnormal morphology and intracellular distribution, but the mutation does not
seem to affect actin-dependent mitochondrial motility [78]. Loss of MIRO-2 in the heterozygous
miro1+/- background enhanced the pollen tube growth defects and impaired or delayed the fusion
of polar nuclei [80]. A closer examination of mitochondria in eggs and early-stage embryos showed
that these are abnormally enlarged in the MIRO-1 mutant, and the apical cell of a two-celled embryo
contained a reduced number of mitochondria compared to the wild-type [79]. The latter would indicate
some defect in mitochondrial inheritance. However, mitochondria in the MIRO-1 mutant continue to
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undergo actin-dependent cytoplasmic streaming. Coupled to a lack of a Milton/TRAK-like protein
in Arabidopsis, MIRO-modulation of mitochondrial transport that is equivalent to that occurring in
metazoan animals is apparently absent in plants.

The MIRO orthologue of the budding yeast S. cerevisiae is important for the maintenance of
tubular mitochondrial morphology and also mitochondrial inheritance in daughter buds [11]. In gem1∆
mutants, cells contain large, globular mitochondria, and small-budded (but not large-budded) cells
exhibited an inheritance delay. gem1∆ also exhibits synthetic growth defects with other genes that
are known to be play roles in mitochondrial distribution, such as that encoding mitochondrial MYO2
receptor-related protein 1 (MMR1p). The gem1∆ mmr1∆ double mutant exhibited a more severe
inheritance defect in small-budded cells than single mutants [81]. In fact, it was shown that mutating
either one of the two GTPase domains is sufficient to affect inheritance [12]. Although Ca2+ binding by
the EF hand domains did not appear to be directly involved in mitochondrial inheritance, a functional
N-terminal EF hand was apparently critical for the stable expression of Gem1p.

Mitochondria could be associated directly with membranes of the ER via the ER-mitochondria
contact sites [82,83]. A physical link, in the form of the ER-Mitochondria Encounter Structure (ERMES)
tethering complex, was initially found to play a role in phospholipid exchange between the two
compartments and various aspects of mitochondrial function [84]. Gem1p was shown to be a
component of ERMES and appears to regulate its numbers and sizes [35]. In vitro molecular dissections
indicated that the first GTPase domain and the first of the EF hands are required for Gem1p’s ERMES
association, whereas the second GTPase domain is required for phospholipid exchange. In this regard,
it should also be noted that mitofusin 2, which interacts with MIRO-TRAK [28], has been shown
to mediate ER-mitochondrial contact [85]. However, ER-mitochondria contacts tend to also be sites
of ER-associated mitochondrial division, and another report has indicated that Gem1p actually acts
by antagonizing the ER-mitochondrial contacts to aid mitochondrial segregation [36]. Furthermore,
a report that argued that ERMES and Gem1p have no direct roles in ER-mitochondrial transport of
phosphatidylserine also found the ERMES complexes to be stable, long-lived structures, the existence
of which is not dependent on Gem1p [22]. ER-mitochondrial contact sites are now known to be major
sites of autophagosome formation [86,87] and, in this regard, would be important for mitophagy.
The role of Gem1p and the mammalian MIROs in ER-mitochondrial contact sites clearly deserves
further investigations.

The slime mold Dictyostelium discoideum has a single MIRO gene, gemA [10]. Disruption of gemA
resulted in growth impairment, but no visible alterations to mitochondrial size and morphology
and no significant changes to mitochondrial function except for an increase in oxygen consumption.
Mitochondrial distribution in D. discoideum is dependent on microtubules, but there is no appreciable
difference between mitochondrial distribution in gemA and wild-type cells. The role of MIRO has not
yet been examined in other lower eukaryotes, but despite it being evolutionarily conserved, its role in
microtubule-mediated mitochondria transport is postulated to have evolved only in metazoans [17].

6. MIRO and Diseases

As a key regulator of mitochondrial transport and dynamics, MIRO would be expected to be
somewhat involved or implicated in diseases associated with defects in mitochondrial movement and
function, particularly neurodevelopmental and neurodegenerative disorders. In general, mitochondrial
defects have been extensively associated with Parkinson’s disease (PD) and Alzheimer’s disease
(AD) [88]. As discussed above, the PD-associated [89] proteins PINK-1 and Parkin interact with
MIRO and affects its degradation and mitochondrial motility [14,15,76,77,90]. A direct association
between MIRO and AD has not yet been shown, but MIRO levels are known to be downregulated
in the presenilin 1 E280A mutation that is associated with familial AD [91]. Overexpression of
the kinesin/Miro/Trak2 interactor Armc10 could prevent amyloid β (Aβ)-induced mitochondrial
fragmentation [52]. Changes in another MIRO-TRAK interactor, mitofusin 2 [28], has also been recently
implicated in tauopathy and AD-associated pathology [92,93]. Loss of mitochondria by dMIRO
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silencing in the axons of transgenic Drosophila expressing human tau have been shown to promote
tau phosphorylation and AD pathology [94]. Dominantly-inherited point mutations in mitofusin 2
are known to underlie peripheral axon degeneration in human Charcot–Marie–Tooth (CMT) disease
(CMT type 2A) [95]. Mutations in the Drosophila orthologue of mitofusin, mitochondrial assembly
regulatory factor (Marf), have also been shown to be required for mitochondrial transport in long
axons, and loss of Marf resulted in a depletion of mitochondria in neuromuscular junctions [96].
Details as to how MIRO and mitofusins function together in neuronal physiology and pathology await
future investigations.

Another neurodegenerative disease with defined connections with MIRO is Amyotrophic Lateral
Sclerosis (ALS). MIRO1 was significantly reduced in the spinal cord tissue of ALS patients, as well
as transgenic mice expressing familial ALS-associated superoxide dismutase 1 (SOD1) G93A or TAR
DNA binding protein-43 (TDP-43) M337V mutant genes [97]. Mutations in the vesicle-associated
membrane protein-associated protein B (VAPB), such as VAPBP56S, cause a familial form of ALS
(type 8). Expression of the VAPBP56S mutant in rat cortical neurons disrupts anterograde axonal
mitochondrial transport, apparently by increasing resting Ca2+, which affected MIRO’s modulation of
mitochondrial transport [98]. Interestingly, overexpression of a Ca2+-insensitive, EF hand mutant of
MIRO could rescue defective mitochondrial axonal transport caused by the VAPBP56S mutant.

Cellular regulators of MIRO’s GTP binding status and GTPase activity are not well known.
However, MIRO is apparently the target of a pathogen effector with GTPase-activating protein
(GAP) mimicking activity. Vibrio cholerae type 3 secretion system effector VopE, which localizes
to mitochondria during infection, binds to the GTPase domain and could act as a GAP for MIRO1 and
MIRO2 [99]. The mitochondrial antiviral-signaling protein (MAVS) plays an important role in NF-κB
and type I interferon signaling [100]. VopE appears to inhibit MAVS-mediated IκB kinase activation.
As MAVS does not appear to directly interact with VopE-MIRO, VopE’s action on MAVS could be
indirect and likely through the alteration of MIRO-mediated mitochondrial dynamics.

7. Epilogue

In the paragraphs above, I have discussed the roles of MIRO and its interactors in mitochondrial
homeostasis and transport (see Figure 1). Much remains to be learned about MIRO’s mechanism
of function. The relative importance of the MIRO paralogues 1 and 2 in key cellular processes and
during development of mammals is not particularly clear. Little is known about how the GTPase
activities of MIRO’s GTPase domains is regulated by upstream regulators, such as GDP-GTP exchange
factors and GAPs. The actual mechanism of how the MIRO/TRAK/kinesin complex works in
mitochondrial movement along microtubules has remained unresolved, and little is known about
how MIRO works with dynein-dynactin. While it is clear that MIRO is a PINK1 and Parkin substrate,
the cellular condition and contexts in which these enzymes are able to engage MIRO are unclear.
It is also not known if MIRO simply has a passive role in mitochondrial turnover or could actively
contribute to mitophagy. MIRO’s association with ERMES in yeast remains controversial and its role
in ER-mitochondrial contact sites in mammalian cells has not been explored. There is a tantalizing
connection between MIRO’s link with PINK1/Parkin modulated mitophagy and ER-mitochondrial
contact sites being locations of autophagosome origin, but the detailed implications of these links are
not yet known.

MIRO’s roles in mitochondrial dynamics have also provided tantalizing links with diseased states,
particularly CNS and peripheral neurodegeneration. The connections are, however, rather tentative for
most cases at the moment. Future work may reveal further insights into the pathophysiological roles
of MIRO in various disease models and may shed more light onto those associated with sporadic and
idiopathic forms of neurodegeneration with defects in mitochondrial dynamics. The recent finding
that increased MIRO expression could enhance mitochondrial transfer from MSCs to recipient cells is
highly interesting and could potentially be exploited as a therapeutic strategy in regenerative medicine.
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