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Abstract: In a recent report, the World Health Organisation (WHO) classified antibiotic resistance
as one of the greatest threats to global health, food security, and development. Methicillin-resistant
Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains
detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics
reaching the clinic to address the significant morbidity and mortality that MRSA is responsible
for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of
MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare
studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy
in the literature, with specific focus on the mechanisms of MRSA infection and how they can be
exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of
the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms
using nano-patterning technologies and comment on future opportunities and challenges for MRSA
treatment using nanomedicine.
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1. Introduction

In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one
of the greatest threats to global health, food security, and development [1]. Antibacterial resistance,
defined as the reduction or the loss in bacteriostatic or bactericidal efficacy of an antimicrobial agent at
doses that would normally exert its therapeutic effect, renders currently-available medications unable
to successfully eradicate infection from a patient or animal. As a result, bacterial infections that would
conventionally be classified as low-risk or easily-treatable become associated with severe morbidity and
mortality. For vulnerable patient populations in the hospital setting, nosocomial infections that exhibit
antibiotic resistance can severely complicate management of organ failure [2–4], HIV [5], soft tissue
infections [6], or intensive care unit (ICU) inpatients [7,8]. Overall, antibiotic resistance doubles the
rate of adverse events relative to antibiotic-susceptible infections [9], and ultimately contributes to
millions of Euro of hospital expenditure, hundreds of thousands of additional bed days for patients,
and thousands of extra deaths [10].

Methicillin-resistant Staphylococcus aureus (MRSA) is a micro-organism that is synonymous with
antibiotic resistance in the hospital and community setting. Since its first clinical isolation in 1961 [11],
MRSA has persisted in hospitals and ICUs, presenting in approximately 40–60% of bacterial isolates,
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with frequent multidrug resistance [12,13]. Of course, MRSA also presides in the community and
animals as a common cause of soft tissue infections and these strains can be diverse in terms of
their phenotype, drug resistance patterns, and clinical outcomes [14–18]. MRSA has developed
resistance to penicillin- and cephalosporin-based antimicrobials by the acquisition of the mecA gene [19].
This results in the expression of an altered penicillin-binding protein subtype PBP2a, for which
these agents have reduced binding affinity and a drop in pharmacological action [20]. Additionally,
MRSA infections can inhibit the efficacy of antibiotics through horizontal resistance gene transfer from
other micro-organisms [21], antibiotic-removing drug efflux pumps [22], and notably for indwelling
catheters and other colonized implants, adherent biofilm formation [23,24]. Thus, although a decrease
in rates of nosocomial MRSA infections has been observed [25], its widespread presence elsewhere in
our environment, numerous bacterial subtypes, and abundance of drug resistance mechanisms remain
a significant cause for concern. This is further compounded by the fact that MRSA infection has few
clinically approved antibacterial treatments beyond vancomycin and daptomycin, which are two drugs
that have their own emerging susceptibility concerns [21,26,27]. Therefore, it is imperative that a new
paradigm of antimicrobial therapy is added to our current dwindling arsenal of antibacterial agents.

Nanomaterial approaches to combat MRSA antibiotic resistance are one emerging paradigm that
can address these challenges [28]. It is particularly promising since the turn of the last decade, research
into this area has increased steadily (Figure 1). Nanomedicines, in particular nanoparticles, have the
potential to combat antimicrobial resistance by several mechanisms. Nanoparticles themselves can be
cytotoxic for bacteria, can enhance the efficacy of current antibiotics by protecting them from detection
and degradation, and provide a means of targeted delivery to the microorganisms to maximize the local
concentration of agent and bactericidal effect [29,30]. Additionally, the nanopatterning and modification
of surfaces and implants at the nano-scale can interfere with bacterial adherence, colonization, and
biofilm formation (Section 4). However, despite the wealth of research studies available, few of the
promising preclinical studies have translated into clinical trials; this warrants an evaluation of the
current state-of-the-art in order to discern the most promising nanomedicines to bring forward to
the clinic.
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Accordingly, the objective of this review is to summarize the field of nanomedicine therapies for
antibacterial resistance to date, with a specific focus on MRSA infection. Firstly, an outline of the some
of the most promising therapeutic cargoes of nanoparticles is provided with a description of their
various mechanisms of antimicrobial activity. Following this, we discuss the recent developments
in utilising nanoparticles as a means of reinvigorating and repurposing previously approved drugs
to treat MRSA. For the sake of clarity, we have restricted our review to nanomedicines devoted to
eradicating MRSA. While the use of nanoparticles to develop vaccinations against MRSA is a growing
field, it has been recently reviewed and well covered by Giersing et al. [31]. Finally, we discuss the use
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of nano-patterning technologies and surface modification to prevent MRSA biofilm formation and
comment on future opportunities and challenges for MRSA treatment using nanomedicine.

2. Emerging Therapeutic Agents Used in Nanomedicines to Treat MRSA

2.1. Metal Ions (e.g., Silver, Zinc, Gold, etc.)

Metal-containing nanoparticles (NPs) represent a wide field of interest for eradicating or inhibiting
the growth of MRSA infections. These NPs can be based on a number of different metal ions with
the most common being silver containing NPs (Ag NPs), but also extending to metals, such as
gold, magnesium, bismuth, etc. (Table 1). While each metal ion may exhibit specific anti-microbial
mechanisms, all share two common anti-microbial effects. Specifically, bacterial cell membrane
disruption and reactive oxygen species (ROS) formation. Bacterial membrane disruption occurs
when the positively charged ions of the nanoparticle bind to negatively charged parts of the bacterial
membrane. This creates pores in the membrane in which cytoplasmic contents flow out of the cell,
dissipating the H+ gradient across the membrane which may result in cell death [32,33]. ROS formation
then occurs following nanoparticle internalization into the bacterial cytosol which can results in DNA
damage and cell death [32–34]. It is worth noting that these two anti-microbial mechanisms are equally
damaging to eukaryotic membranes and cells, and, therefore, great care must be taken in directing
these NPs to their site of action [35].

When applied to MRSA cultures, Ag NPs have been found to be highly efficient in eliminating
MRSA colonies in in vitro settings. Specifically, MIC values of between 0.25 and 64.5 µg/mL have
been recorded for Ag NPs depending on the NP synthesis conditions and MRSA strains used [36–38].
Ag NP performance can also be further enhanced through techniques such as blue light excitation [39].
Ag NPs have also advanced to in vivo testing, mostly as a surface coating on medical implants. In a
recent study by Cheng et al., it was found that using Ag NPs to coat titanium implants demonstrated
no evidence of live bacteria up to four weeks post-implantation in previously infected animals [40].
Other groups have looked at the in vivo topical administration of Ag NP imbued hydrogels for
wound healing. At 15 days post-implantation, it was found that in Ag NPs hydrogel-treated samples,
skin exhibited 2.7% of the bacterial count in the control infected but untreated skin. In comparison,
silver sulfadiazine cream- and the blank hydrogel-treated groups exhibited 30% and 100% of the
bacterial count respectively [41].

Similarly, NPs derived from other metallic sources have also demonstrated potential against MRSA
when tested. The majority of metallic ion-based NPs demonstrated strong antimicrobial properties
with some studies progressing as far as in vivo trials, and, in many cases, even demonstrating an ability
to eliminate MRSA biofilms (Table 1). The efficacy of these NPs has also been reported in numerous
studies to be enhanced by controlling the size of NPs [42–44], altering pH activity [45], stimulation
via ultrasound [43], near-infrared (NIR) stimulation [46], UV stimulation [47], addition of potassium
iodide or sodium bromide [47,48], and peptide or antibody conjugation [46,49]. However, not all metal
NPs are suitable candidates for treating MRSA, especially so aluminum-containing NPs. Previous
studies have found that these NPs may actually increase the potential for drug resistance [50].
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Table 1. Mechanism of action and development of metal nanoparticles (NP)-based strategies for Methicillin-resistant Staphylococcus aureus (MRSA) treatment.

Type Mode of Action MICs Reported Biofilm Effective? Development Status Delivery Methods References

Ag NPs

Bacterial cell membrane disruption
Cytochrome and electron transport

inhibition
DNA/RNA binding and inhibition of

replication
Ribosomal binding and inhibition of protein

synthesis
ROS formation

Inhibits gram + cell wall formation

0.25–64.5 µg/mL Yes In vitro/in vivo
validated

Micro-Patterned on
titanium implants
Topical hydrogel

[32,33,40,41,51,52]

ZnO NPs Bacterial cell membrane disruption
ROS formation 1–10 µg/mL Yes In vitro/in vivo

validated
Intradermal
I.V injection [53–57]

Cu/CuO NPs
Interacts with amine and carboxyl groups

on bacterial cell surface
ROS formation

1.87 µg/mL–1
mg/mL Yes In vitro validated n/a [44,58–61]

TiO2 NPs

ROS formation following UV stimulation
(photocatalysis)

UV-independent effects (mechanism
unknown)

100 µg/mL–15
mg/mL

Low activity,
rarely tested In vitro validated n/a [62–66]

MgX2/MgO
NPs

MgX2 enzymatic inhibition
ROS formation

MgO-induced halogen adsorption
1.5 mg/mL Yes In vitro/in vivo

validated

coated on titanium
implants

(osteomyelitis model)
[67–70]

Au NPs
No intrinsic antimicrobial effect

Activity achieved through functionalization
or combination therapy

8–32 µg/mL
(modification
dependent)

Yes
(combination

therapy)

In vitro/in vivo
validated

(combination therapy)
Systemic sepsis [46,71–76]

Bi NPs Radiation-stimulated free radical formation
and DNA damage 0.2–11.47 µM Yes In vitro validated n/a [77–80]

MIC: Minimum Inhibitory Concentration, Ag NPs: Silver Nanoparticles, ZnO: Zinc Oxide, I.V: intravenous, Cu/CuO: Copper/Copper Oxide, TiO2: Titanium Oxide, MgX2: Magnesium
with X2 referring to a bonded halide, Au: Gold, Bi: Bismuth.
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2.2. Anti-Microbial Peptides and Peptidomimetics

Cationic anti-microbial peptides (AMPs), also known as host defense peptides, represent a diverse
field that focus on the use of small peptide fragments to destroy or otherwise disrupt proliferation
of pathogenic bacteria. These can broadly be described as being gene encoded, short (10–50 amino
acids), with an overall positive charge (generally +2 to +9) and a substantial proportion (≥30%) of
hydrophobic residues [81,82]. These characteristics allow for the AMPs to form α-helical, β-sheet,
and random coil conformations, and, in conjunction with their positive charge, form the basis for
their anti-microbial effect by creating pores in the bacterial membrane [83]. Once AMPs traverse the
bacterial membrane through these pores, they are also able to inhibit protein and cell wall synthesis,
thereby inhibiting microorganism growth [84]. In addition to their ability to directly kill invading
pathogens, AMPs can also function in an immunomodulatory fashion. AMPs are known to mediate the
recruitment of immature dendritic cells, by direct chemotactic activity or by upregulation of chemokine
production in macrophages, and promote maturation of these dendritic cells directly or indirectly by
inducing production of inflammatory cytokines (IL-1b, TNFa) (Figure 2) [85]. In addition, AMPs have
also been found to reduce the systemic production of TNFa, IL-1b, and IL-6 [86]. This could allow for
a more measured ability to treat MRSA infections locally without the serious concerns of a systemic
response or a potentially fatal cytokine cascade in patients.
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Figure 2. Mechanism of action for cationic anti-microbial peptides; anti-microbial peptides (AMPs)
are capable of direct anti-microbial effects and an immune-modulatory effect on the innate immune
system, although not all AMPs have both abilities. “Reproduced with permission from [81] published
by © Nature Publishing Group.” (2006).

When AMPs have been applied in attempt to combat MRSA there have been numerous promising
findings reported (Table 2, with in-depth AMP reviews available by [85,87,88]). However, in their
native state, AMPs have been limited in their development due to their poor stability and activity
at physiological conditions coupled with their vulnerability to protease degradation, potential
immunogenicity, and cytotoxicity to red blood cells [89,90]. To address this, AMPs are now being
developed with modified peptide sequences to enhance activity [84,91,92] or are being synthesized as
pro-drugs or “peptidomimetics” to avoid toxicity issues, enhance retention, and allow for improved
efficacy at the site of action. Several strategies exist to achieve this, including modifying the carbon
chain length and functional group [90], PEGylation, net charge reduction [93], nanoparticle or antibody
conjugation [94,95], and synergistic delivery with or antibiotics [96].
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Table 2. Overview of MRSA nanomedicines using AMPs and peptidomimetics.

Type Mode of Action Biofilm Effective? Development Status Delivery Methods Outcomes Refs.

Modified-RIP peptides
Inhibition of the

RNAIII-activating protein (RAP)
Disruption of quorum sensing in MRSA

Yes In vitro/in vivo
validated

UTI model/Sepsis model
I.P injection

Significant decreases in
bacterial counts.

In vivo activity comparable
to vancomycin

[91,92]

RR (WLRRIKAWLRR) RRIKA
(WLRRIKAWLRRIKA) Bacterial membrane disruption Yes In vitro validated n/a RR MIC = 12–24 µg/mL

RRIKA MIC = 3.7–7.4 µg/mL [97]

Myxinidin2
(KIKWILKYWKWS)

Myxinidin3 (RIRWILRYWRWS)

Membrane disruption via binding to
lipoteichoic acid (LTA) Yes In vitro validated n/a

Myxinidin2
MIC = 6.7–26.8 µg/mL

Myxinidin3
MIC = 7.16 µg/mL

[84]

Synthetic Peptidomimetics
Hydrocarbon tail length and

functional group specific
Intracellular-targeting and disruption

Not-tested In vitro validated n/a MIC = 4–32 µg/mL [90]

Synthetic Peptidomimetics Bacterial membrane disruption Yes In vitro validated n/a MIC= 1.7–454 µg/mL
(conformation dependent) [98]

PA-28 (modified TAT,
C16-W-I-L-A2-G3-K9-TAT) Bacterial membrane disruption Not-tested In vitro/in vivo

validated

S. aureus- induced
meningitis

I.V delivery

MIC = 147 µg/mL
In vivo efficacy comparable

to vancomycin
[99]

CG3R6TAT Bacterial membrane disruption Not-tested In vitro/in vivo
validated

S. aureus- induced
meningitis

I.V delivery

MIC = 35.667 µg/mL
In vivo efficacy comparable

to vancomycin
[100]

IDR-1 (KSRIVPAIPVSLL)
IDR-1002 (VQRWLIVWRIRK)

chemokine induction and reduction of
pro-inflammatory cytokines Not-tested In vitro/in vivo

validated
Mice pre-treated with

IDRs (I.P) prior to MRSA
No direct MIC

Significant MRSA reductions [101,102]

UTI: Urinary tract infection, I.P: Intra-peritoneal, IDR: Innate defense–regulator.



Materials 2018, 11, 321 7 of 33

2.3. Oligonucleotides (e.g., RNAi, TFD, CRISPR, Aptamers)

While the research of oligonucleotide delivery and RNA interference (RNAi) in eukaryote cells
for therapeutic applications is a well-established field, it is now also being considered for improving
outcomes in bacterial infections, such as MRSA. While less widely reported, this strategy has in fact
demonstrated potential to reduce bacterial growth from as early as 2003 [103] in Escherichia coli (E. coli)
and 2006 for MRSA [104]. This is in spite of the obvious challenges that are posed by the need to
deliver large negatively charged nucleic acids across both the cell wall and membrane of gram-positive
bacteria, such as MRSA.

Initial testing against MRSA has focused on the more established RNAi systems of siRNA
and miRNA in attempts to down-regulate expression of proteins critical to bacterial proliferation
or virulence. In their 2006 study, Yanagihara et al. found that MRSA would internalize siRNA
without nanoparticle assistance and was capable of reducing expression of the virulence-associated
protein staphylocoagulase by up to 40% in vitro. This was also investigated in a murine model
of haematogenous pulmonary infection, whereby prior-incubation of the bacteria with anti-
staphylocoagulase siRNA significantly reduced growth by 1 log cfu/mL [104].

While this study demonstrated that siRNA could be spontaneously internalized into MRSA, it is
unlikely that this reflects a viable method of treatment due to the poor serum stability and rapid
clearance in the body of free nucleic acids. Many of the more recent studies have focused on the
potential of oligonucleotides and RNAi to re-potentiate current antibiotics by targeting resistance
genes. This has been shown to be possible in studies by Meng et al. using lipidic carriers to deliver
antisense oligonucleotides targeted to the mecA gene. This gene is known to play a role in β-Lactam
resistance in MRSA and, by targeting it, it was found that it was possible to restore MRSA susceptibility
to oxacillin in vitro and in vivo [105–107].

A potentially more robust method of directly inhibiting MRSA growth using nucleic acids is
also being investigated using transcription factor decoys (TFDs). TFDs are short double-stranded
DNA molecules containing a specific transcription factor binding sequence in the promoter region
of the gene of interest (or the sequence can also match the consensus DNA recognition motif
of a target transcription factor in the genome) [108]. On delivery through the bacterial cell wall,
TFDs competitively inhibit gene expression by sequestering transcription factors, and thus reduce
protein expression. This is particularly attractive as TFDs can be targeted towards highly conserved
promotor regions controlling processes, such as cell wall metabolism (Figure 3). This has the dual
benefits of reducing potential resistant mutations as well as eliminating the potential for off-target
effects in humans. TFDs have been successfully delivered in studies using E. coli and Clostridium difficile
(C. difficile), but at the time of writing, have yet to be established in MRSA cultures [109,110].
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Figure 3. Schematic of nanoparticle-transcription factor decoys (TFD) mediated treatment of MRSA
(A) administration of nanoparticle-TFD nanocomplexes to bacteria; (B) TFD release in cytoplasm and
binding of transcription factor; (C) inhibition of transcription; (D) failure to produce critical proteins;
(E) bacterial inhibition. “Reproduced with permission from [111] published by © Royal Society of
Chemistry.” (2014).

The remarkable gene editing abilities of the CRISPR (clustered, regularly interspaced, short
palindromic repeats)/Cas9 (CRISPR-associated protein 9) are now also being applied to overcome the
spread of MRSA. As a brief overview, CRISPR-Cas is an endogenous system that is derived to protect
bacteria and archaea from foreign genetic elements, such as plasmids or bacteriophages. CRISPR-Cas
system consists of two general components: CRISPR RNAs (crRNAs) and Cas proteins. The crRNAs
base pair with complementary DNA or RNA sequences associated with an invader, and the Cas
proteins clear the recognized genetic material [112]. Subsequently, it has been found that a single
protein, Cas9, could be harnessed for site-specific DNA binding and cleavage [113,114].

This extremely accurate method of gene editing has now been applied as an anti-MRSA strategy
in a study by Bikard et al. Using a delivery system known as a “phagemid”, whereby the cas9 gene and
its RNA guide/s sequences were incorporated into plasmid and packaged in a bacteriophage capsid,
it was possible to deliver the gene editing machinery to the MRSA with a high degree of transfection
efficiency. By encoding the Streptococcus pyogenes (S. pyogenes) cas9, tracrRNA and designed CRISPR
array it was possible to elicit a 104-fold reduction in the number of viable colonies in vitro. Phagemids
were also capable of specifically targeting resistant strains in a mixed population by incorporation of the
aph-3 kanamycin resistance gene. When tested in vivo in a mouse skin colonization model containing
a mixed population of kanamycin-resistant and kanamycin sensitive S. aureus it was found that the
phagemid targeting the kanR gene reduced the proportion of kanamycin-resistant S. aureus [115].

Finally, one possible strategy to avoid oligonucleotide delivery challenges has been to utilize
oligonucleotides as targeting ligands as opposed to direct therapeutics to enhance the selectivity
of other anti-microbial nanomedicines. Aptamers are single-stranded nucleic acids (RNA or DNA,
20–100 nucleotides) developed in vitro to perform a specific function, usually specific protein
binding. Aptamers are normally generated using the SELEX (Systematic Evolution of Ligands
by Exponential Enrichment) method. This involves testing large libraries of oligonucleotides of
approximately 1014–1015 configurations against a target protein. Following this, iterative rounds
of selection-amplification cycles are utilized to enrich the populations with high protein binding
potential [116]. Aptamers possess high physical and chemical stability, low immunogenicity, and easier
to mass produce when compared to traditional antibodies [117].
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Aptamer targeting has previously been applied to improve MRSA detection and diagnosis [118,119]
and is now being investigated for aiding direct intervention against MRSA infections. In a recent study,
Ocsoy et al. [120] demonstrated that by conjugating DNA aptamers specific to gold nanorod particles
they were capable of inactivating 95% of MRSA following NIR stimulation. In comparison, there was
no discernable reduction in MRSA activity using aptamer-free Au nanorods treated under the same
conditions [120]. This treatment strategy was also described using iron magnetic core-gold plasmonic
shell nanoparticles attached with an MRSA-specific aptamer with efficient MRSA clearance achieved
in infected whole blood samples [121].

3. Nanoparticle Delivery of Antibiotics “Old Drugs, New Tricks”

With the timeline and cost of development for novel therapeutics now estimated at up to
$2.6 billion over 11 years [122], increasing attention is now being given to the possibility of
reinvigorating or repurposing previously approved molecules to treat MRSA. This can take two
approaches; the first relies on the screening of libraries of approved drugs (or drugs that made it to
clinical trials, but ultimately failed to receive regulatory approval) in order to identify candidates
that can be repurposed as treatments for MRSA. The second approach focuses on the potential use of
nanoparticles to improve the therapeutic profiles of previously approved antibiotics for MRSA with
the primary aim of both being a shorter regulatory approval process and quicker route to market.
In keeping with the nanomedicine focus of this review, only enhancing SMDs through nanoparticle
encapsulation will be considered here. For a full review regarding the challenges in repurposing SMDs
for MRSA treatment, see the recent review by Thangamani et al. [123].

3.1. Chitosan

Chitosan is a linear polysaccharide, derived from the deacetylation of naturally occurring
chitin (normally obtained from crustaceans or fungi), and consists of D-glucosamine and N-acetyl-D-
glucosamine units linked by β-1,4-glycosidic linkages [124]. Chitosan is an especially attractive
candidate for nano-encapsulation of drugs as it has been found to exhibit its own antimicrobial
effects through its positive charge (and accordingly its ability to disrupt the bacterial cell wall) in
a wide range of organisms such as algae, bacteria, yeasts, and fungi [125]. Studies have found that
even the addition of free chitosan in solution can have a beneficial and synergistic effect against
MRSA and biofilms when co-delivered with selected antibiotics (Table 3) [126]. In addition, chitosan is
especially attractive when considering recent findings that indicate that MRSA is more susceptible
to inhibition than methicillin-sensitive strains [127]. This activity known to be influenced by various
factors including pH, microorganism species, presence or absence of metal cations, pKa, Molecular
weight (Mw), and degree of deacetylation (DD) of chitosan [125].

When considering the potential for a synergistic effect with antibiotics, it has also been found
that forming chitosan into nanoparticles can further increase their efficacy. In an early study by
Qi et al. [128], it was found that the MIC of a 220 kDa chitosan solution against S. aureus (methicillin
susceptible strain ATCC 25923) at pH 5 has been found to be 8 µg/mL. However, when formed into a
nanoparticle and no co-administration of antibiotics, the antimicrobial effect was found to decrease to
<0.25 µg/mL, owing to the increased surface area and charge density of the nanoparticle structure [128].
(Although, when considering that other publications have reported chitosan MICs in the mg/mL
range [126,127,129], it is possible that this reporting of 8 µg/mL and subsequent reductions in MIC
may be typographical error). Building on the advantages offered by co-delivery with antibiotics and
nano-encapsulation in chitosan it has been found that it was possible to elicit strong anti-microbial
effects using previously ineffective antibiotics using this strategy [130–133]. In other studies,
the improvement to the antibiotic’s MIC was less pronounced [134], but advantages were seen when
assessed against intracellular bacteria [135]. Furthermore, it was also possible to tailor the release rate
of antibiotic using metallic-chitosan nanoparticles; however, this may have an adverse effect on the
MIC of the antibiotic [136–138].
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Table 3. Enhancing anti-MRSA effect of antibiotics via encapsulation in chitosan nanoparticles.

Chitosan Characteristics Co-Delivery of Biofilm Effective? Development Status Delivery Methods Outcomes Refs.

Mw = 1.3–4 kDa
%DD = 98%

(solution only)

Erythromycin/
tilmicosin Yes In vitro/in vivo

validated

Intra-mammary
injection in mice and

cows

Co-delivery enhanced MIC of erythromycin
4-fold (0.12 µg/mL)

Significant decreases in MRSA using co-delivery
in vivo

[126]

Mw = 107 kDa
%DD = 75–85% No co-delivery Yes In vitro validated n/a MIC of 1.25 mg/mL [129]

Low Mw Ceftriaxone Not tested In vitro/in vivo
validated

Neutropenic mouse
thigh model

ZOI 28 mm vs. ≤17 mm (blank NPs) vs. 0 mm
(free ceftriaxone)

Up to 41% decreases vs. controls in vivo but
non-significant

[130]

Medium Mw Amoxicillin Not tested In vitro validated n/a MIC = 6.1 µg/mL vs. ≤32 µg/mL (blank NPs) vs.
8 µg/mL (free Amoxicillin) [134]

O-Carboxymethyl chitosan
Mw = 12 kDa
%DD = 61.8%

Tetracycline Not tested In vitro validated n/a Intracellular MRSA survival 2.5% in encapsulated
vs. 15% using free tetracycline [135]

Medium Mw 190–310 kDa
%DD = 75–85% Vancomycin Not tested In vitro/in vivo

validated
Rat osteomyelitis

model

Chitosan-vanco = 3354 ± 3366 CFU/g
IM injection of vanco = 52,500 ± 25,635 CFU/g

Control = 68,750 ± 16,637 CFU/g
[131]

Not stated, folate tagged Vancomycin Yes In vitro validated n/a MIC decreased 97.52% using nanoparticle
vancomycin [132]

Low Mw, %DD = 75–85%,
anionic gemini surfactant

(AGS) modified
Vancomycin Not tested In vitro/in vivo

validated Mouse skin model In vivo MRSA clearance was 8-fold higher in
nanoparticle treated animals [133]

Low Mw, %DD = 75–85% Streptomycin
Ampicillin Not tested In vitro validated n/a Controlled release and theranostic potential but

reduced anti-microbial effect [136–138]

Mw: Molecular Weight, %DD: % Deacetylation, ZOI: Zone of inhibition, IM: Intra-muscular.
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3.2. Liposomes and Solid Lipid Nanoparticles

While there are numerous conformations, liposomes can generally be described as spherical
vesicles consisting of at least one amphiphilic lipid bilayer with an internal aqueous core. The lipid
bilayer can be further augmented with additional components, such as cholesterol or poly ethylene
glycol (PEG), in order to improve stability or biological retention [139] (Figure 4A). Liposomes are
commonly produced using thin-film hydration, whereby the lipid components are dissolved in an
organic solvent (along with any hydrophobic drugs to be delivered). The solvent is then evaporated by
rotary evaporation followed by the application of an aqueous solvent to rehydrate the film. Addition
of a hydrophilic drug at this point allows for its encapsulation as the lipid film is being rehydrated
(Figure 4B). Additional methods for liposome synthesis may also include reverse-phase evaporation,
freeze-drying, and ethanol injection [139,140]. Subsequent techniques, such as membrane extrusion,
sonication, homogenization, and/or freeze-thawing are then use to control the size and size distribution
of the liposomes. Liposomes present an attractive means of drug delivery due to their flexibility in size,
composition, charge, lamellarity, and their pre-existing record of clinical approval; however, they are
also hindered by a number of weaknesses. These include potential cytotoxic effects, poor stability and
unwanted burst drug release, batch to batch reproducibility, and low drug entrapment [139,140].

In an effort to overcome some of the difficulties in developing drug loaded liposomes, researchers
are also investigating solid lipid nanoparticles (SLNPs). SLNPs emerged as an evolution on early
nano-emulsion approaches, whereby poorly water-soluble lipophilic drugs were incorporated into
lipid droplets for drug delivery [141]. For the formation of SLNPs, the oil of the fat emulsion is
replaced by a solid lipid or a blend of solid lipids or wax, which therefore makes the lipid core of the
SLNP solid at room and body temperature. SLNPs are composed of 0.1–30% weight/weight (w/w)
lipid dispersed in an aqueous solution of 0.5–5% (w/w) surfactant as stabilizing agent (Figure 4C).
The size and physicochemical properties of the SLNPs is readily tunable depending on the lipids and
surfactants used [142–144]. When compared to liposomes, SLNPs possess high drug stability and
prolonged release, and can be formulated using materials that have regulatory approval [143,145].
However, care must be taken to ensure the correct selection of drug to be incorporated. Owing to their
lipidic core, drugs with poor miscibility in organic solvents are unlikely to give high encapsulation
efficiencies, which can reduce the availability of antibiotics to choose from.
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and multilamellar vesicles (MLV); (B) liposome formulation via the thin-film hydration method; and
(C) solid lipid nanoparticles (SLNP) synthesis using the hot homogenization technique of organic and
aqueous phases. “Reproduced with permission from [139,140,146] published by © American Chemical
Society (2015), Royal Society of Chemistry (2016), Pharmaceutical Society of Japan (2015).”

Liposomes and solid lipid nanoparticles carriers represent a highly appealing nanomedicine
platform for antibiotics delivery as one of the few nanocarriers that have gained clinical approval for a
wide variety of drugs and indications [147]. While the majority of these have been for the delivery
of chemotherapeutics, some of the earliest approved drugs were Abelcet® (1995) and Ambisome®

(1997), as released by Sigma-Tau Pharmaceuticals and Astellas Pharma, respectively. These are both
formulations of the anti-microbial Amphotericin B for the treatment of severe and invasive fungal
infections [147]. The development and approval of these nanomedicines is especially promising for
the development of MRSA treatments since they demonstrate similar challenges as fungal infections,
such as Candidiasis. Specifically, both of the infections pose a challenge due to the presence in each
microbe of a gram-positive cell wall, local and systemic infections, and biofilm formation [148,149].

Although no liposomal/SLNP-antibiotic drugs are currently on the market for MRSA treatment,
the potential has been investigated as early as 1994. In this early publication, Onyeji et al. found that
liposome-encapsulated vancomycin was readily internalised by infected primary human macrophages.
Furthermore, intracellular MRSA was significantly (p < 0.001) reduced following treatment with the
encapsulated vancomycin [150]. In more recent years, other researchers have built on these findings
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and have been successful in progressing to in vivo models. Using the thin-film hydration method,
Sande et al. encapsulated vancomycin and reported a 2–4× improvement in MIC values depending
on the liposome formulation used and MRSA strain tested. On in vivo testing in a mouse model
of systemic MRSA infection, liposomal vancomycin demonstrated significantly enhanced MRSA
clearance versus PBS controls (p < 0.001) in the kidneys and spleen, and was significantly improved
versus free vancomycin controls in the kidney (1 log, p < 0.015) [151]. It should also be noted that as a
preliminary study there were no pharmacokinetics or histology reported, and, as such, any potential
benefits to pharmacokinetics or organ toxicity (specifically vancomycin-associated nephrotoxicity) may
have been overlooked. Subsequently, studies have investigated the possibility of enhancing the effect
and residency time of vancomycin liposomes using PEGylation. In studies examining intracellular
MRSA in alveolar macrophages, it was found that while non-PEGylated liposomes loaded with
vancomycin were capable of significant improvements in MRSA clearance, PEGylated liposomes had
no significant impact. However, when tested in healthy mice, it was found that both PEGylated and
non-PEGylated liposomes significantly increased residency times as compared to free vancomycin.
Significantly higher levels of PEGylated liposomes were also found 24 h post-administration in the
lung compared to non-PEGylated [152,153]. Additional in vivo studies have further demonstrated
that liposome encapsulation of vancomycin reduces accumulation in the kidneys, which has direct
implications in avoiding vancomycin-associated nephrotoxicity [153,154].

Aside from the encapsulation of vancomycin, several other strategies involving liposomes have
been investigated. Various other, less commonplace, anti-microbial agents for encapsulation have also
been examined including chloramphenicol [155], azithromycin [156], oleic acid [157], and cinnamon
oil [158]. These have been found to perform well up to studies involving biofilms and in vivo
efficacy [157,158]. Liposome-antibiotic delivery was further enhanced in other cases through the
addition of other molecules previously described in this review, such as chitosan [159] or anti-microbial
peptides [156].

Similarly, SLNPs have also demonstrated significant promise when used to deliver anti-MRSA
antibiotics. While it might be assumed that, due to vancomycin’s extremely hydrophilic nature, it is
not a ready candidate for encapsulation into the lipid core of a SLNP; strategies have been developed
to achieve this. SLNP encapsulation of vancomycin was obtained by the ion pairing of triethylamine
neutralized vancomycin with a lipophilic contra-ion (linoleic acid). Using this technique, it was possible
to formulate highly stable SLNPs capable of exerting an antimicrobial effect for up to 54 h (vs. 18 h for
free drug) [160]. This technique is also of additional interest as it also utilizes the enhanced microbial
effect of linoleic acid nano-emulsions that have been reported in other studies [161]. Vancomycin was
also encapsulated in SLNPs by the same group using an acid cleavable lipid that allowed the creation
of pH-responsive SLNPs. These particles gave a 22-fold improvement in MRSA clearance in a mouse
skin infection model when compared to drug only controls and allowed for site-specific targeting [162].
As with liposomes, there are also numerous studies available that now detail a combined approach
to delivering anti-MRSA antibiotics. Some of which include the incorporation of dendrimers [163],
naturally occurring polymers [164] and antimicrobial metallic ions [165]. Most significantly, using a
nano-emulsion of vegetable oil and water with surfactants and alcohol identified as NB-201, Cao et al.
were able to demonstrate anti-MRSA efficacy (as well as a reduction in pro-inflammatory cytokines) in
mouse skin abrasion models and progressed as far as a porcine model of infected wounds [166].

3.3. Synthetic Polymer Nano-Carriers

In addition to the naturally derived polymers of chitosan and lipidic nanoparticles, there are
a wide variety of synthetic nanoparticles that are also currently being investigated for their ability
to deliver antibiotics against MRSA. One of the most commonly researched are nanoparticles based
on poly(lactic-co-glycolic acid) (PLGA) due to its well established character and success in achieving
FDA approval [167]. Frequently, drug encapsulation in PLGA nanoparticles utilizes a single- or
double-emulsion protocol whereby the drug is first dispersed in the aqueous phase containing
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hydrophilic surfactants. Following this, it is then emulsified in polymeric solution dissolved in an
organic solvent in the presence of lipophilic surfactant, which forms the single water-in-oil (W1/O)
emulsion. When forming the double emulsion the primary emulsion is emulsified in the second
aqueous phase containing stabilizers, with polyvinyl alcohol commonly used. The mixture is then
homogenized by high shear homogenizer or sonication. This process leads to the formation of double
or water in oil in water (W1/O/W2) emulsion. In the last stages of formulation, the organic solvent is
evaporated to precipitate the nanoparticles, which are then dried and stored [167]. This represents a
well-established formulation strategy but one of the drawbacks to PLGA nanoparticles is that they
are highly sensitive to any changes in their formulation conditions e.g., surfactants/solvents used,
homogenization method, molecular weight of starting material, etc. [167,168].

Drug selection is one of the most influential of these variables and for their use in the treatment of
MRSA can be the cause of poor test outcomes. Specifically, in the case of vancomycin and similar drugs,
their highly hydrophilic nature can present difficulties in achieving a workable encapsulation efficiency
for PLGA nanoparticles. This was recently highlighted by Ritsema et al. using a variety of different
glycolic acid-based block co-polymers and either vancomycin (freely soluble in water, 225 g/L) or
bedaquiline (close to insoluble, 192 µg/L). Clear differences were observed where % (w/w) drug
loading of 8–11% was possible for either drug, encapsulation efficiencies for the highly hydrophobic
bedaquiline was 95–99%, whereas vancomycin was only capable of a encapsulation efficiency of
26–32% [169]. While this presents a challenge in developing an effective therapy, several groups are now
reporting innovative methods of enhancing the outcomes of PLGA-antibiotic nanoparticle treatment.

In one such study, Che-Ming et al. reported a 2–4% (w/w) vancomycin loading efficiency; however
in creating platelet membrane-cloaked PLGA nanoparticles, they reported significantly higher levels of
MRSA clearance in vitro compared to free drug. Furthermore, in a mouse model of systemic MRSA252
infection, cloaked nanoparticles demonstrated significantly better antimicrobial efficacy in the liver
and spleen and was at least as effective in the blood, heart, lung, and kidney compared against
free vancomycin at six-fold the dosage [170]. Research has also been undertaken to develop PLGA
particles that have demonstrated a pH responsive release profile and enhanced intracellular targeting.
This formulation was named “PpZEV” and consisted of several distinct components, each serving
a particular purpose. (i) PLGA (P), constituted the overall delivery vehicle; (ii) PEGylated PLGA (p)
was included to improve solubility and vancomycin release; (iii) Eudragit E100 (E) (a copolymer of
dimethylaminoethyl methacrylate/butyl methacrylate/methyl methacrylate) to improve vancomycin
encapsulation; and (iv) a chitosan derivative called ZWC (Z) to trigger pH-sensitive drug release
(Figure 5A,B). When tested, it was found that vancomycin encapsulation rates were improved from
3.8% (w/w) for unmodified PLGA particles up to 8.3% (w/w) in the final PpZEV formulation. PpZEV
nanoparticles also displayed increased drug release at pH 5 (mimicking intracellular delivery) and
significantly higher levels of uptake and MRSA clearance in infected macrophages when compared
to free vancomycin and unmodified PLGA-vancomycin particles (Figure 5C). While no efficacy was
tested in vivo, biodistrubtion demonstrated an organ specific persistence in the liver and spleen (the
organs of interest) of mice for up to 96 h (Figure 5D) [171]. In other studies, proof of concept using
PLGA for vancomycin delivery has progressed as far as rabbit models of MRSA-associated infective
discitis with local, intra-discal administration of PLGA-vancomycin demonstrating superior bacterial
clearance with a lower relative dose of antibiotic [172].
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of BALB/c mouse that received DiR-loaded PpZEV nanoparticles by intravenous injection. (Redrawn
with permission from [171].)

In addition to PLGA based nanocarriers for antibiotic delivery, other synthetic polymers
investigated have included poly-ε-caprolactone (PCL), polyacrylate (PA), poly (methacrylic acid)
(PMAA) and novel polymers specifically designed for anti-microbial delivery. In the case of PCL
polymers, particles have so far been formulated to encapsulate both vancomycin and chloramphenicol
with a drug loading of 5% (w/w) and encapsulation efficiency of 98.3% reported respectively.
PCL-antibiotic particles were tested for activity in an in vivo burn-wound mouse model and a
rabbit model of osteomyelitis where they were observed to outperform free drug controls in
both models [173,174]. Similarly, promising results were also observed using PA or PMAA-based
nanoparticles which were then used to anchor antibiotic molecules. This strategy has been investigated
as a means of re-potentiating penicillin and in initial studies it was found that it was possible to maintain
the potency of penicillin while increasing its resistance to stability toward β-lactamase [175,176].
However, one possible drawback to this method of antibiotic delivery is that, due to the covalent bonds
used to immobilize the penicillin to the nanoparticle, the chemical structure of the drug is effectively
altered. Thus, it may be viewed as a “new chemical entity” (NCE) or a pro-drug in regulatory terms
and may therefore require a full cycle of clinical trials prior to approval and use in the clinic.

Finally, Amato et al. have recently reported a novel approach based on a pro-antimicrobial
polymer network comprised of degradable acetals (PANDA). Using this strategy, the antimicrobial
agent p-anisaldehyde (pA) was entrapped in a polymeric mesh that was capable of controlled release
under acidic conditions. When released it was observed that the antimicrobial activity of the pA
was retained and resulted in significantly improved inhibition of MRSA compared to free drug
controls with minimal toxicity observed [177]. However, it should be noted again, the potential for
additional regulatory hurdles that may be associated with chemically binding the active drug to the
delivery vector.

4. Nanomedicines and MRSA Biofilms

4.1. Overview of Biofilm Formation

Biofilms are a specific mechanism of MRSA persistence and antibacterial resistance for which
nanoscale approaches can offer a novel means of microbial eradication. Biofilms are aggregates of
microorganisms in which the bacteria are encased in a self–produced protective matrix of extracellular
polysaccharide that are highly adherent in nature (reported in [178]). In addition to this matrix acting
as a defensive barrier that metabolizes drug molecules or reduces permeation [179], embedded bacteria
adopt a different proliferative profile from planktonic bacteria. In this state, bacteria are more quiescent,
culminating in a reduction in the activity of most conventional antimicrobial agents that target dividing
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cells [180]. In this form, MRSA can persist on indwelling devices such as catheters in high-risk
patients with resistance to vancomycin [181], or even within cells and tissue [182]. The peri-operative
colonization of orthopedic implants is of particular concern within the hospital setting [183–185].
Similar to their promise as systemically delivered antibacterials, surface-coating nanoparticles can
also be applied as a novel means to treat biofilm-associated infection. Additionally, the application of
nanoscale modifications to device surfaces can be implemented to specifically target biofilms. However,
in order to identify the processes by which nanomaterial technologies can prevent MRSA biofilm
formation or stimulate biofilm destruction, it is important to first have an understanding of the key
elements of its generation.

In general, four stages are involved in the life cycle of a biofilm [180,186]: bacterial adherence to a
substrate, early micro-colony proliferation and extracellular polysaccharide matrix production, biofilm
maturation and bacterial release. Bacterial adhesion can involve reversible and irreversible interactions,
primarily mediated by adhesin molecules on the surface of the bacterium [187]. The production of
the extracellular shield in MRSA occurs as a result of upregulation of pro-biofilm genes such as fnb,
agr, sarA, and icaADBC [182,188]. Therefore, nanomaterial approaches that prevent initial adhesion,
provide local bactericidal action in high concentrations with possible controlled release of drug, silence
biofilm genes, improve drug penetration, or degrade the extracellular barrier can all specifically target
these processes. In this section, we will focus on the the nanopatterning of surfaces and the coating
of implantable surfaces with nanomedicines as examples of nanomedicine applications. For a more
extensive review on disrupting biofilms through cellular pathways or targeting polysaccharide matrix
composition, the reader is referred to an excellent review from Koo and colleagues [180].

4.2. Nanopatterning & Surface Topography

In the simplest sense, the most logical solution to prevent biofilm formation on medical device
surfaces is to design them so that bacterial adherence is significantly impaired. Many orthopedic
implants are titanium-based in nature and nanostructured titanium can increase protein adsorption,
host cell attachment, and integration into tissue (Figure 6, [189]). Conversely, nanoscale alterations
to surfaces can also significantly influence S. aureus attachment and biofilm matrix production [190].
Bacteria such as MRSA respond to surface characteristics such as roughness, hydrophobicity, and
surface charge [191]. Indeed, in addition to increasing host cell attachment, commercially-pure
titanium and nanotubular titania surfaces have also been found to be adherent for staphylococcal
microorganisms, albeit with a higher degree of dead cell attachment when fluorine ions are involved in
the fabrication process [192,193]. On the other hand, more irregular nanorough patterns experienced
less bacterial attachment, but a higher degree of cell viability on their surface. Moreover, the grade and
polishing of the titanium bulk itself can also influence bacterial activity [194]. Surface chemistry also
has a role to play in microbiological response. For example, Foka and colleagues demonstrated that the
presence of different functional groups, in the presence or absence of dynamic fluid flow analogous
to what bacteria experience in vivo, influence extracellular polysaccharide production and ica gene
expression in Staphylococcus epidermidis (S. epidermidis) [195]. Taken together, these studies emphasize
the importance of appropriate nanoscale design of medical implants and the potential to modulate
MRSA attachment and the incidence of biofilm contamination.
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Figure 6. TiO2 nanoscale surface modifications. Representative scanning electron micrographs of (a)
15 nm nanopores; (b) 15 nm nanotubes; (c) 50 nm nanotubes; and (d) 100 nm nanotubes. “Reproduced
with permission from [189] published by © IOP Publishing.” (2015).

There are many technologies and methods available to pattern device surfaces at the nanoscale
level that are physical or chemical in mechanism, ranging from photolithography to micro-contact
printing (reviewed in [196]). These options provide the opportunity to develop a series of
novel bioinspired nanopatterns that can augment the anti-adherent and bactericidal efficacy of
device surfaces. Two recent studies by Diu et al. and Bhadra et al. illustrate this approach well,
where nanopatterns based on insect wings have been mimicked upon titania surfaces [197,198].
The first study by Diu et al. used the nanopillar topography of cicada wings [199] as a template
to fabricate titania nanowire arrays. Interestingly, this study found that topographical design
had a selective bactericidal effect for motile bacteria but had no toxic effect on motile bacteria.
Similarly, dragonfly-inspired topography was also selectively toxic for motile bacteria, such as
Pseudomonas aeruginosa [198]. These studies explain such results by postulating that motile bacteria are
more readily pierced and damaged by the nanopillar structures as they migrate, and that Gram positive
cells might be more resistance to physical penetration on account of their thicker peptidoglycan cell
wall. Of course, as a relatively non-motile microorganism, these designs would be ineffective against
MRSA. However, it is clear that nanopatterned surfaces can operate as physically bactericidal agents,
and although the specific design that is required for MRSA eradication or biofilm is currently unknown,
new anti-MRSA nanoscale patterns in the future could provide another means of eliminating the
drug-resistant bacteria.

Accordingly, this point highlights the most attractive characteristic of nanopatterning as
bactericidal or anti-biofilm agents—the reduced potential for drug resistance. Physical mechanisms
of bacterial death and reduced adherence would theoretically avoid current mechanisms of MRSA
resistance (Section 1), and in contrast to therapeutics for which resistance can develop, or that have a
finite drug quantity incorporated into an implant’s surface, any antibacterial activity would persist
until the surface or device is biodegraded. However, as the studies above highlight, our current
understanding of the nanoscale modifications that are required to target MRSA are currently unclear,
resulting in most of the research focusing on the incorporation of nanomedicines onto device surfaces.
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4.3. Nanoparticle Surface Treatment

The treatment of implant surfaces with nanoparticles can prevent biofilm formation primarily
by facilitating maximum MRSA-therapeutic exposure prior to biofilm formation. As described in
previous sections, metallic nanoparticles are bactericidal in their own capacity, while other polymeric
nanoparticle formulations generally function as reservoirs for sustained antibiotic release or as vectors
to chaperone therapeutics into the cell, such as with nucleic acid molecules or other agents that
have intracellular activity. In conjunction with the principal nanoparticles that have been explored
in Sections 2 and 3, most of the studies into surface treatment with nanomedicines have focused
on the incorporation of silver nanoparticles (Ag NPs) into orthopaedic medical devices to prevent
staphylococcal osteomyelitis (Table 4).

Ag NPs are without doubt the most widely investigated antimicrobial nanomedicine for the
coating of implanted orthopedic devices, either alone or in composite form. Due to the aforementioned
toxicity concerns of systemically administered Ag NPs [200], local release of Ag+ ions can avoid
adverse effects, while retaining therapeutic activity against biofilms. Many orthorpedic implants are
titanium-based in nature and nanostructured titanium can increase host cell attachment and integration
into tissue [190], prompting the interest for silver NP coating. The coating of titanium materials can
be performed using a variety of methods, including silver solution coating and drying with or
without ultraviolet light catalysis or oxidation [40,201,202], plasma immersion ion implantation [203],
and plasma electrolytic oxidation-fabricated titania coating with subsequent hydrothermal coating
of Ag NPs [51]. These methods typically incorporate a reduced form of silver into the material
surface that can be oxidised to elute biologically active cations. Ag NP coating has consistently been
shown to exhibit activity against adherent bacteria within in vitro culture in addition to suspended
planktonic bacteria. Notably, several studies have revealed that Ag NPs can induce the downregulation
of biofilm-forming genes icaA, icaD, fnbA, and fnbB, alluding to an additional mode of action in tandem
with their conventional membrane and intracellular protein disruption [51,202]. Of note, while most
the studies validated a dose-responsive in vitro antibacterial effect, a balance had to be achieved in all
cases to preserve human cell viability; this highlights that even with surface coating to avoid systemic
toxicity, Ag NPs can potentially trigger local cell death in situ. Moreover, human cell attachment
to the surface should be shown in addition to simple cell viability studies, given that the patient’s
cells effectively compete with MRSA to colonise implant surfaces [185]. For example, Wang and
colleagues showed experimentally that fibroblasts preferentially bind and cover the Ag NP-coated
material over MRSA in a co-culture assay (Figure 7; [51]). Future studies that employ similar in vitro
co-culture assays to provide additional information about a coating’s safety and efficacy in a more
physiologically-representative model are welcomed by the authors.

Apart from silver-based nanoparticulate coatings, other nanomedicine coatings that have been
investigated to prevent or eradicate biofilms include copper, silicon nitride, chitosan, immobilized
AMPs, synthetic nanoparticles, and liposomes (Table 5). Copper has been investigated in its own right
as a coating for titanium or as a replacement in alloys [208,209]; as a nanoparticle coating, it can elicit
MRSA anti-biofilm activity with the advantage of less toxic side effects than silver [210]. Other metal
ion coatings under examination include titania nanoparticles, as derived from the metal that is so often
the substrate underneath other coatings [211]. Lopes et al. studied their antibacterial potential as part
of a diamond-like carbon surface coating and verified their in vitro activity against both planktonic and
sessile MRSA. Chitosan-based nano-coatings have also exhibited such activity, although the natural
polymer has primarily served as a delivery vehicle for other therapeutics, rather than as a coated
antimicrobial in its own right [212–214]. Notably, several studies have applied various combinations
of polymers, drugs, and manufacturing techniques to develop multi-drug nanomedicine coatings
that have shown anti-biofilm potential within in vitro and in vivo models [215–217]. While these data
yield positive findings for the prevention of MRSA biofilms, the translation of a medical device that
incorporates such a multitude of components into the clinic can present a significant regulatory hurdle
that needs to be overcome, as discussed in Section 5.
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Table 4. Silver nanoparticle coating of surfaces to prevent biofilm formation.

Nanoparticle Coating Status Outcome(s) Refs.

Ag-TiO2

AgNO3 coating of
nanotubes

In vitro & in vivo
validated

Activity against planktonic and adherent MRSA up to 30 days
in vitro

Antibacterial activity & biocompatibility up to 4 weeks in vivo
[40,201,202]

AgCl-TiO2 coating from
AgCl-TiCl4 sol reaction In vitro validated Inhibtion of S. epidermidis biofilm formation [204]

PEO TiO2 coating with
silver acetate HMC In vitro validated

Activity against planktonic & sessile S. epidermidis and MRSA
Downregulation of ica & fnb genes

Preferential adherence of fibroblasts in co-culture
[51]

Ag-Ti

Plasma immersion ion
implantation

In vitro & in vivo
validated

Embedded NPs less toxic than free NPs
60-day S. epidermidis biofilm reduction

Downregulation of ica genes
[203]

SLM with ALD of silver
nanolayer

In vitro & in vivo
validated

Reduced S. epidermidis adherence & growth in vitro
Indication of slow MRSA growth in vitro

In vivo bone ingrowth and biocompatibility
[205]

Other AgNPs

AgO-HA sprayed Ti
surface

In vitro & in vivo
validated Reduced MRSA biofilm coverage over 14 days in vitro & in vivo [206]

Ag-DLC-PE immersion
ion implantation In vitro validated Reduced S. epidermidis planktonic growth over 24 h [207]

ALD: Atomic layer deposition; DLC-PE: Diamond-like carbon-coated polyethylene; HA: Hydroxyapatite; HMC:
Hydrothermal metal coupling; PEO: Plasma electrolytic oxidation; SLM: Selective laser melting.
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Figure 7. (a) HT1080 fibroblast cytocompatibility cultured on micro-arc-oxidized TiO2 coatings with
and without Ag doping. ** p < 0.01 vs. the Ag-0.1 group; (b) Schematic illustration of the co-culturing
process for the fibroblasts, bacteria and samples; (c) Fluorescent images of fibroblast cells on four
different specimens contaminated with Staphylococcus aureus (PR62A) or Staphylococcus epidermidis
(USA300) strains after staining with DAPI (blue) and TRITC-phalloidin (red); (d,e) The corresponding
surface coverages of the four samples contaminated with RP62A or USA300. *** p < 0.001. “Reproduced
with permission from [51] published by © Nature Publishing Group.” (2016).
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Table 5. Alternative nanomedicine surface coatings to silver for prevention of biofilm formation.

Nanomedicine Coating Status Outcome(s) Ref.

Other metal ions

CuNPs in polyglycerol
coating

In vitro
validated

Activity against MRSA in planktonic and biofilm form
Non-toxic to murine fibroblastso [210]

TiO2- & HA-loaded DLC
film produced by PECVD

In vitro
validated Reduced S. aureus planktonic growth over 24 h [211]

Chitosan

AgNP-loaded chitosan-HyA
layer-by-layer coating on Ti3

In vitro
validated

Inhibtion of S. aureus biofilm formation after 7 days
14-day activity against planktonic and adhered S. aureus [212]

Minocycline-loaded
chitosan-alginate multilayer

coating on Ti3

In vitro
validated

Inhibtion of S. aureus biofilm formation after 7 days
14-day activity against planktonic and adhered S. aureus [213]

Tetracycline-loaded
chitosan-gelatin NPs on Ti3

In vitro &
in vivo

validated

Non-toxic to murine pre-osteoblasts at 7 days
Inhibtion of S. aureus growth in vivo after 7 days
Reduction in white blood cell count after 7 days

[214]

Mutli-drug release

Vancomycin & AgNP-coated
TiO2 nanotubes

In vitro &
in vivo

validated

Activity against planktonic and sessile MRSA from 1 h to
28 days

Preferential adherence of fibroblasts in co-culture
Reduced MRSA adherence and infection in vivo after 15

days

[215]

PLGA-PCL nanofibre
coating of Ti with (i)

vancomycin & rifampicin
(ii) linezolid & rifampicin

(iii) daptomycin &
rifampicin

In vitro &
in vivo

validated

Vancomycin & rifampicin exhibited the greateast activity
in vitro against planktonic S. Aureus

All combinations prevented biofilm formation in vivo
[216]

Naproxen & AgNP-loaded
PVA-chitosan coating of Ti

In vitro
validated

Activity against planktonic S. Aureus
Indication of slow MRSA growth in vitro
Biocompatiblity with human osteoblasts

[217]

DLC: Diamond-like carbon; HA: Hydroxyapatite; HyA: Hyaluronic Acid; PCL: Polycaprolactone; PECVD:
Plasma-enhanced chemical vapor deposition; PLGA: Polylactic-co-glycolic acid; PVA: Polyvinyl alcohol.

5. Future Perspectives: Challenges, Opportunities, and the Path for Clinical Translation

5.1. Challenges for Nanomedicine and MRSA Management

In spite of the abundance of preclinical research that has been outlined in this review, there are
few clinical trials for the use of nanomedicines in MRSA management underway [218]. Specifically,
one completed trial has compared conventional central venous catheters to silver nanoparticle-loaded
catheters, although no results have been published to date (NTC00337714). In general, apart from
the particular toxicity issues that have been discussed in previous sections, nanomedicines for MRSA
therapy face the same challenges as in any other nanomedicine application—standardized preclinical
in vitro testing and animal models, as well as efficient and reproducible scale-up for industrial
manufacture [219]. (In keeping with this review, MRSA-specific translation challenges will be discussed;
for further information concerning nanomedicine scale-up in general, the reader is referred to other
reviews in this area [220,221]).

In order to progress any novel nanomedicine therapies into clinical trials and beyond, it is critical
to standardize the in vitro analyses that are required to reach this point, particularly from a regulatory
point of view. Over the course of this review, a plethora of different methods for cell viability, adhesion,
toxicity, nanoparticluate characterization, and drug activity have been performed; this ranges from
assays, such as Live/Dead® staining, proliferation assays [222], and biofilm imaging. While the
majority of these methods have functioned adequately within each study, the identification of key
preclinical criteria and harmonization of protocols to them can facilitate the streamlined progression of
promising nanomedicines to the next stage of drug development. Indeed, a degree of heterogeneity
exists even in the selection of the bacterial strain of MRSA, and as alluded to in Section 1, it is
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advisable to design a study with the target strain of MRSA in mind for a particular target population
or community [15,18]. Additionally, the selection of an appropriate animal model that matches the
particular clinical MRSA case is paramount, with different models available for soft tissue, septic,
catheter-related, or osteomyelitis infection [223–225]. Once these essential issues have been resolved,
we predict that a clearer pathway for clinical translation will present itself and a greater number of the
innovative projects outlined in this review will have the potential to progress to meet the challenge
of MRSA.

5.2. Opportunities for Nanomedicine and MRSA Management

Several opportunities exist for the field of nanomedicine to succeed in the path to clinical
translation for MRSA management. These include a pathway for approved nanomedicines in other
clinical applications, public investment in the development of novel antimicrobials to combat drug
resistance, and industry incentives to produce new antimicrobials.

At present, approximately 26 nanomedicines are clinically approved for systemic administration,
with almost 50 more in clinical trials [219]. They are licensed for indications such as cancer,
iron replacement, image contrast agents, vaccination, anaesthesia, fungal infection, and macular
degeneration. The regulatory approval of these medicines provides an opportunity for MRSA
nanomedicines through the provision of a regulatory approval template that can be applied to the
development of similar therapeutics within the field of antimicrobials. Of note, however, is the fact
that the majority of the approved nanomedicines are liposomal or colloidal in nature, which might
not exactly correlate to the regulatory demands of metal-based nanoparticles. Although the FDA
states that the approval of nanomedicines that are used in this context will largely be the same
process as for any other medicinal product, we expect that as the number of approved nanomedicines
increases across the market, industry appeal for antibacterial nanomedicines will expand thereafter.
Of additional interest to the pharmaceutical industry in this space are multiple international and
national initiatives to incentivize research, development, and translation of novel antimicrobial
therapies to address antibacterial drug resistance [226]. These incentives, coupled with the drive to
repurpose currently-approved drugs as antimicrobials [123,227,228], present specific opportunities for
fostering industry interest in MRSA nanomedicines and potentially academic-industry collaboration
to carry promising therapies forward to market. Overall, as reflected by the WHO report [1] and
continued presence in the mainstream media, antimicrobial continues to be a global issue with a high
degree of public attention, facilitating the continued impetus for invested interest in developing new
treatments to eradicate multidrug resistant bacteria, such as MRSA.

5.3. Conclusions

While the threat posed by MRSA infections can never be underestimated, the information
contained in this review highlights the significant progress being made in developing the next
generation of therapeutics. Specifically, in developing new active substances that will circumvent
the traditional resistance mechanisms of MRSA, as well as breathing new life into pre-existing and
previously approved drugs. Taken together with the efforts now being undertaken in addressing
the obstacles posed by biofilm formation, it is certain that new treatments for MRSA infections
will begin the journey towards clinical trials and regulatory approval in the near future. However,
the need for consensus and standardization in assessing anti-MRSA nanomedicine candidates remains
undiminished. This will allow for a more open and cross-comparable environment, which will
ultimately benefit both the researcher and the patient.
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