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Vision-based recognizing and positioning of electronic components on the PCB (printed circuit board) can improve the quality
inspection efficiency of electronic products in the manufacturing process. With the improvement of the design and the production
process, the electronic components on the PCB show the characteristics of small sizes and similar appearances, which brings
challenges to visual object detection. /is paper designs a real-time electronic component detection network through effective
receptive field size and anchor size matching in YOLOv3. We make contributions in the following three aspects: (1) realizing the
calculation and visualization of the effective receptive field size of the different depth layers of the CNN (convolutional neural
network) based on gradient backpropagation; (2) proposing a modular YOLOv3 composition strategy that can be added and
removed; and (3) designing a lightweight and efficient detection network by effective receptive field size and anchor size matching
algorithm. Compared with the Faster-RCNN (regions with convolutional neural network) features, SSD (single-shot multibox
detectors), and original YOLOv3, our method not only has the highest detection mAP (mean average precision) on the PCB
electronic component dataset, which is 95.03%, the smallest parameter size of the memory, about 1/3 of the original YOLOv3
parameter amount, but also the second-best performance on FLOPs (floating point operations).

1. Introduction

As an essential component of electronic information
products, electronic components must be assembled under
the rules of the correct class and correct location in the
manufacturing process of electronic products [1]. For a long
time, the identification and positioning of electronic com-
ponents on the PCB has become the technical key during
manufacturing and assembling of electronic products. /e
application of machine vision technology for AOI (auto-
matic optical inspection) can reduce production costs,
improve inspection speed and inspection accuracy, and
achieve 100% inspection [2–5]. Its efficiency and quality
consistency are far superior to manual visual inspection.
Especially in recent years, the convolutional neural network
(CNN) has achieved great success in many computer vision
fields, such as image classification, object detection [6–13],

target tracking, target recognition, and semantic segmen-
tation. More andmore vision-based object detection systems
have been widely used in the electronics manufacturing
industry.

As we know, there are many kinds of electronic com-
ponents and different shapes, and CNN simulates the visual
cognition principle of the brain and retains the features of
the object through dimensionality reduction, even if the
object appears again when the scale, direction, and position
are different to identify it. /erefore, it is necessary to
combine the detection of electronic components with the
CNN. Kuo et al. proposed a novel Graph Network block to
refine the component features conditioned on each PCB./e
mAP of electronic component detection on the testing PCBs
can reach 65.3% [14]. Li et al. proposed an improved
YOLOv3 algorithm that added one output layer sensitive to
small targets and validated the algorithm effectiveness in a
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real PCB picture and virtual PCB picture test, including
many PCB electronic components [15]. Huang et al. pro-
posed a fast recognition method for electronic components
in a stacked disordered scene. /ey used MobileNet instead
of Darknet-53 in YOLOv3 to achieve lightweight and rapid
speed [16]. From the above CNN-based electronic com-
ponents detection framework, however, we found that those
methods did not consider the different perspectives from the
visual areas regarding the depths of network layers, bringing
about the ignorance of CNN to simulate human visual
characteristics. /erefore, the entire object detection net-
work is often huge, and the recognition accuracy is not high.

Receptive field (RF) is an important concept that
combines biological vision research to reveal why CNN can
complete various visual tasks. RF defines the original image’s
area size that can be seen by a pixel in the different depths
feature layers of the CNN [17]. It is precisely the use of the
feature that the spatial connection of pixels is local. Just like
humans seeing external images through a local receptive
field, each neuron does not need to feel the global vision, but
only the local image area. /en, at a higher level, these
neurons that sense different localities can be synthesized to
obtain global information [18]. With the deepening of re-
search on the receptive field, Luo et al. found that not all
pixels in the receptive field contribute the same to the output
vector. /e pixel located at the center of the receptive field
contributes the most to the output features. /e pixels lo-
cated at the edges around the receptive field contribute less
to the output features; therefore, the RF concept is refined
into a theoretical receptive field and an effective receptive
field (ERF) [19]. In the object detection task, the CNN output
layer’s effective receptive field must match the object’s size to
be detected to accurately and quickly identify and locate the
object [20]. Because the ERF size is related to the depth of the
network, for the same object detection layer, a large target
needs a large ERF, and a small target requires a small ERF.
/erefore, it is necessary to consider how to use the ERF and
quantify each layer’s ERF size to design an effective detection
CNN suitable for different scale datasets.

From the above analysis, we understand that studying
the visual characteristics of the CNN and adjusting the
network depth according to the sample data size are two
problems that still need to be solved in the current object
detection task. Based on these two problems, we select the
anchor-based YOLOv3 in the one-stage object detection
method as the research framework, take the electronic
components on the PCB as the detection object, take the
effective receptive field as the research key point, and finally
realize the design of electronic components’ detection
method based on the anchor size and the effective receptive
field size matching. /e key contributions of this paper are
summarized as follows:

(1) We realized the calculation and visualization of the
effective receptive field size of different depth layers
of CNN based on gradient backpropagation. It not
only considers the multichannel problem in the
CNN but also regards the processing of nonlinear
modules. /rough this interpretability analysis, we

found that the effective receptive field of different
layers changes dramatically. It is easier to understand
that the shallow layer is sensitive to position infor-
mation, and the deep layer is sensitive to semantic
information. To the best of our knowledge, this is the
first time to reveal how YOLOv3 internally captures
the data to detect the target through the receptive
field.

(2) We proposed a modular YOLOv3 composition
strategy. /e entire YOLOv3 model is composed of
five modules. We can add, remove, and retain some
modules. In particular, we found that if we change
the number of modules in the backbone network,
Darknet-53, the effective receptive field size corre-
sponding to each pixel in the three anchor distri-
bution layers of YOLOv3 will change.

(3) We designed an effective receptive field size-anchor
size matching algorithm based on YOLOv3. /is
method analyzes the factors that affect the ERF size
of the anchor distribution layer. It formulates
module addition and removal strategies to ensure
that the ERF size is closest to the anchor size dis-
tribution layer of the layer’s largest anchor.

In the next section, we review the related works on
YOLOv3 and the effective receptive field. In Section 3, we
provide an overview of the proposed method. In Section 4,
we present experimental results and show the effectiveness
of the proposed method. Finally, Section 5 concludes this
paper.

2. Related Work

Since the proposed PCB electronic components’ detection
network is implemented on the YOLOv3, which involves the
accurate quantification of the ERF size, the following will
introduce these aspects’ relevant research work.

2.1. YOLOv3. /e YOLOv3 algorithm is a typical one-stage
object detection algorithm that combines the classification
and target regression problems with an anchor box, thus
achieving high efficiency, flexibility, and generalization
performance [21]. Since the YOLOv3 was proposed, it has
been used in various object detection tasks [22–24].

When the YOLOv3 performs object detection, the core
content has four parts. /e first is preprocessing training
data, including size cropping of input pictures, generation of
clustering anchors, and allocation of anchors. /e second
part is the feature extraction network, which is mainly
completed by DarkNet-53. /e third part is the feature
fusion network, which uses the YOLO layer to build a feature
pyramid. /e fourth part is the loss function and the output
module. All improvements to the YOLOv3 are around these
four parts. /e research work in this paper mainly uses the
training dataset to resize and generate the anchor, remove or
increase the internal module of Darknet-53 to strengthen the
matching degree of the anchor size and the effective re-
ceptive field size, which is the anchor distribution layer, and
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finally achieve the goal of efficient detection. So, we mainly
reviewed some of the work done by our predecessors in this
field.

Liu et al. proposed the ACF-PR-YOLO structure, which
includes a region proposal extraction method based on the
aggregated channel feature before the whole image was sent
to the YOLOv3 for cyclist detection high-resolution pictures
[25]. Luo et al. divided the original images into equal parts
with k-fold cross-validation, helping them make full use of
their train data [26]. Xiong et al. proposed an anchor box
and YOLOv3-Darknet model based on adaptive data clus-
tering to identify, classify, and detect dry and wet garbage
[27]. Kong et al. proposed a model in Darknet-53 that
conducts efficient feature extraction via the Dual-Path
Network (DPN) module and the fusion transition module
during the real-time sonar target detection [28]. Zhang and
Zhu replaced the original Darknet-53 with the Darknet-23 to
improve the detection speed when detectingmoving vehicles
in aerial infrared image sequences [29]. Li et al. employed
depthwise separable convolution to design the backbone
network to reduce the parameters and the extract crack
features effectively for crack inspection in aircraft structures
[30]. Ma et al. replaced the Darknet-53 CNN in the YOLOv3
with the lightweight CNN ShuffleNetv2, and the improved
YOLOv3 model was effective for the detection of collapsed
buildings in post-earthquake high-resolution remote sensing
images [31]. Pang et al. replaced the Darknet-53 with the
Darknet-13 in the YOLOv3, achieving the object detection
task concealed under people’s clothing [23]. Wang and
Zhang replaced the backbone Darknet-53 in the YOLOv3
with the Darknet-19, and the training speed greatly im-
proved since the residuals’ network was not added to the
Darknet-19 on scene text detection [32]. Zhang et al.
designed a DB-Darknet-53 feature extraction network
embedded in the inception structure to solve the problem
that features are likely to be lost in the feature extraction
process, the YOLOv3, which effectively reduces the loss of
features [33]. Won et al. proposed increasing the recognition
speed by decreasing the Darknet-53 to 24 layers [34]. Zhang
and Zhu introduced the sloping anchor box to overcome the
flaws of the traditional horizontal bounding box, which is
intended to predict the target position and angle [35].

2.2. Effective Receptive Field. Since the RF concept is con-
nected with the CNN, researchers have been trying to use the
RF to reveal the internal reasons as to why CNN can perform
some visual tasks. In particular, several mathematical for-
mulas are used to describe the relation of the convolution
kernel size, convolution padding size, convolution stride
size, convolution dilation rate, and the size of different
feature layers’ receptive fields [36, 37]. Regarding the re-
ceptive field, the most widely used in CNN is to build a
multi-receptive field module.

/e concept of the ERF (effective receptive field) comes
from a problem. Since increasing the receptive field can
improve recognition accuracy, is it necessary to increase the
CNN network depth to maximize recognition accuracy?/e
answer is no. Some researchers noted that a given feature

was not equally impacted by all input pixels within its re-
ceptive field region: the input pixels near the center of the
receptive field had more “paths” to influence the feature and
consequently carried more weight. /e theoretical receptive
field refers to the region observed in the input space for a
neuron in the convolutional neural network. /e effective
receptive field refers to the set of input neurons that are
connected to a higher level neuron, excluding the invalid
neurons in the receptive field. Luo Wenjie et al. provided a
mathematical formulation and a procedure to measure ef-
fective receptive fields, experimentally observing a Gaussian
shape on the theoretical receptive field, with the peak at the
receptive field center [19]. Since this landmark paper’s
emergence on effective receptive fields, people have begun to
use it to do some visual tasks and achieved favorable results.
ZHAO Baojun et al. proposed a novel anchor generation
method, which takes the effective receptive field as the
standard [38]. Liu et al. discussed the relationship between
effective receptive field and semantic segmentation model in
detail. /ey proposed the concept of effective receptive field
intensity, which could remove the negative values of the
gradient map and normalize the values of the gradient map
to [0, 1] [39]. Zhang et al. analyzed the relationship between
anchor, theoretical receptive field, and effective receptive
field in target detection. /ey designed anchor scales based
on the effective receptive field and a proposed equal pro-
portion interval principle on all the common face detection
benchmarks [20]. Gao et al. formulated a theoretical
framework for analyzing ERFs, from which they gained
insights to motivate their Deformable Kernels (DKs) for
object deformation [40].

2.3.KnowledgeGaps. Although significant progress has been
made in the two fields mentioned above, there are still some
gaps that need to be fulfilled from the review.

In terms of the improved design of the Darknet-53 on
the YOLOv3, most studies mainly focused on replacing the
backbone Darknet-53 with the existing high-efficiency
backbone or the Darknet-M, and the M is random. Few
people pay attention to the influence of the number of
convolution modules in the Darknet-53 on the original
picture’s visual recognition effect. In this paper, the Darknet-
X modular design method is proposed. On the premise of
maintaining at least three down-samplings of the original
feature extraction network, we offer a method of removing,
reducing, or adding some modules to achieve a backbone
network design that matches the detection object’s size.

In terms of the effective receptive field concept, most of
its applications only describe the relationship between the
receptive field, the effective receptive field, and the target size
in general, and rarely involve its specific calculation method.
Only two articles included the calculation and display of
effective receptive fields, and one used the gradient back-
propagation to solve the size of an effective receptive field.
However, only one channel was used, and only the effect of
the convolution and linear operation modules on the ef-
fective receptive field was considered./e other only showed
the dilated convolution parameters’ effect of the effective
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receptive fields and did not quantify the size of each layer’s
effective receptive fields of one specific CNN network. In this
paper, an ERF calculation method based on gradient
backpropagation is proposed./is method can quantify each
feature layer’s effective receptive field size in the YOLOv3
before the training and provide data support to design an
accurate object detection network.

3. Methodologies

/is research mainly implements a rapid and lightweight
model design method suitable for small-scale object detection
by reducing and removing backbone network modules. /e
network uses the YOLOv3 as the basic network, uses elec-
tronic components on the PCB as the detection objects, and
uses each anchor group’s maximum width and height after
input images resize to 416× 416 as the threshold. By analyzing
the influence of the different module combinations of the
Darknet-53 on the effective receptive field size of the anchor
distribution layer in the YOLOv3, an anchor and effective
receptive field matching PCB detection algorithm based on
effective receptive field analysis are designed. For the con-
venience of the following description, themethod proposed in
this article is called ERFAM-YOLOv3.

/e implementation process of the proposed ERFAM-
YOLOv3 is shown in Figure 1. It mainly includes four parts,
i.e., clustering after resize generates anchor, effective re-
ceptive field calculation method, ERFAM-YOLOv3 modular
design strategy, and anchor-effective receptive field
matching algorithm.

3.1.ClusteringafterResizeGeneratesAnchor. Anchor box is a
concept used by the YOLOv3 when making bounding box
prediction. /e anchor’s significance is that its size predefines
the target’s most likely height and width to be detected. In the
data preprocessing of the YOLOv3, we usually use K-means to
cluster the target sizes in the training set to generate nine most
likely target anchors, each with its width and height.

/e size of the pictures in the dataset is often not uni-
form, and all pictures, whether for training or testing in the
YOLOv3, need to be resized to 416× 416 first. /erefore, in
the ERFAM-YOLOv3, the anchors are generated after
resizing the training set image in advance. /e advantage of
this is that all the data are resized in advance to meet the size
of the network input, and the width or height of the anchor
can be directly used as the threshold of the ERF size in the
three anchor distribution layers. After calculation of the PCB
train dataset, the traditional sizes of the 9 anchors generated
after normalizing are (24×14); (16× 32); (37× 21); (55× 29);
(28× 57); (72× 46); (48×106); (136× 60); and (212× 211).
/e sizes of the generated anchor after the picture is resized
are (1× 3); (3×1); (2× 5); (5× 2); (5× 5); (4× 9); (10× 4);
(14×12); and (31× 31). We show them in Figure 2.

3.2. Effective Receptive Field Analysis Method. Luo et al.
propose the concept of the ERF. He concludes that although
all pixels in the receptive field affect the final result, their
weights are different. /e weight at the center is the largest,

and the weight at the edge is the smallest./at means we need
to quantify the ERF size to a specific value. /is particular
value is the original image’s effective area size that each pixel
in the feature layer of the CNN can see effectively. In the paper
[19, 39], the ERF only cares about a critical activation area of a
pixel in each feature layer of CNN relative to the original
image, regardless of the entire network’s weight. We use
gradient backpropagation as a more universal and accurate
solution method of the ERF size. /e complete analysis and
solution process is divided into five parts:

(i) LoadModel. For any network model that we want to
analyze the ERF, we must first load it and put it in
the training mode. It is to ensure that we can
propagate the gradient back to the original picture
smoothly.

(ii) Set Weights Random. /e CNN can complete many
visual tasks because the neural network continu-
ously adjusts the weights in the forward and
backpropagation during the learning process. /e
loss function continues to decline to achieve the
training effect. Now we are concerned about which
active regions are seen in the input picture when a
pixel value is changing in a feature layer of the CNN.
/erefore, we set these weights as random values. To
avoid the randomness of the calculated ERF size, we
finally take the average value of the ERF after 20
random parameter assignments in this paper.

(iii) Input and Output. To find the ERF is to take a single
pixel on a specific feature layer as the input and use
the gradient backpropagation to infer the corre-
sponding activated pixel area under the original
model input image size as the output. /erefore, if
we want to solve the ERF size of one layer, we use the
number of channels of this layer as the number of
the input pictures. Each picture’s size is determined
by the original input picture’s width and height
forward to the layer. /e output is the size of the
original image after loading the model with three
channels.

(iv) Tweak Gradients and Backpropagate. We only want
to compute the ERF of one pixel. So we will set the
center point of the input corresponding gradient
value to 1 and all the others to 0. When we back-
propagate this gradient to the output layer, the
pixels involved in generating this gradient value will
light up, and everything else will be dark.

(v) Visualize ERF and Calculate ERF Size. In the ERF
concept proposed by Luo Wenjie, we still use the
calculation method that Luo suggested that any
pixel with a value greater than 1 (−95.45% of the
center point) is considered in the ERF. /e ERF size
is represented by the square root of the number of
pixels within the ERF.

In Figure 3, we take the ERF of the last layer
13×13×1024 in the Darknet-53 as an example to describe
the solution process for the YOLOv3. /e calculation
method of the ERF size of any other layer is similar.
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Figure 2: Schematic diagram of K-means cluster anchors. (a) 9 anchors were produced by the original K-means clustering method (b) 9
anchors produced by the K-means clustering method after resized. In this paper, the anchors in (b) are used as a priori box for target
recognition and positioning. In YOLOv3, the blue, green, and red anchors will be assigned to the small, middle, and large feature fusion
layers of the output layer, respectively.

Input image resize to 416 × 416 and cluster to generate anchor

Local feature fusion between multiscale feature maps
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Figure 1: /e implementation process of ERFAM-YOLOv3. ERFAM-YOLOv3 is derived from YOLOv3, but the data preprocessing
method and feature extraction module are different from the original YOLOv3. /e following feature fusion module and output layer are
appropriately adjusted according to the changes of the backbone.

Gradient backpropagation
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208 × 208 × 64
104 × 104 × 128
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Input: 13 × 13 × 1024
Output: 416 × 416

Figure 3: Take the last feature layers of Darknet-53 as input, give randomweight to the entire network, and use gradient backpropagation to
solve the ERF.

Computational Intelligence and Neuroscience 5



It is essential to note that the YOLOv3 includes con-
volution, batch normalization, Leaky ReLU, and multi-
channel processing. As an activation function, the
mathematical expression of Leaky ReLU is

Leaky ReLU(x) �
x, x> 0,

αx, x≤ 0, α � 0.1.

⎧⎨

⎩ (1)

/e gradient backpropagation formula for Leaky ReLU
is

zL

zx
l

� δl
�

δl+1
, x

l > 0,

αδl+1
, x

l ≤ 0, α � 0.1.

⎧⎪⎨

⎪⎩
(2)

Batch normalization is to normalize the m outputs of
each node of one layer, and the normalized results are
outputs. We define values of x over a mini-batch
B � x1, x2, . . . , xm􏼈 􏼉 as input, μB � (1/m) 􏽐

m
i�1 xi,

σ2B � (1/m) 􏽐
m
i�1 (xi − μB)2, and xi

∧
� ((xi − μB)/

�����

σ2B + ε
􏽱

),

and the output is yi � BNc,β(xi) � cxi

∧
+ β, where cand β

are parameters to be learned. /e gradient backpropagation
formula for batch normalization is

zL

zxi

�
zL

zxi

∧ ·
1

�����

σ2B + ε
􏽱 +

zL

zσ2B
·
2 xi − μB( 􏼁

m
+

zL

zμB

·
1
m

. (3)

For the multichannel gradient backpropagation prob-
lem, we assume that the loss function L is the information of
m input channels L � g(y1, y2, . . . , ym), and the output is n
channels yi � fi(x1, x2, . . . , xn).

/e gradient backpropagation formula for the multi-
channel is

zL

zxi

� 􏽘
m

j�1

zL

zyj

·
zyj

zxi

. (4)

Although the YOLOv3 contains a lot of convolution, BN,
Leaky ReLU, and multichannel processing, according to the
chain derivation rule and the above effective receptive field
analysis method, we can realize the ERF visualization and the
ERF size calculation results of any feature layer in the
YOLOv3.

3.3. ERFAM-YOLOv3 Modular Design Strategy.
According to the different arithmetic modules, the modular
design strategy of the ERFAM-YOLOv3 is to disassemble the
entire YOLOv3 object detection framework. In the recon-
struction process, for the different size targets, the original
core modules are retained. Some down-sampling modules
were removed or added. /e number of the repeatable
modules is reduced or increased so that the final classifi-
cation and positioning can be more accurately adapted to the
target size.

According to the operation sequence in the YOLOv3, we
have defined fivemodules, namely, DBL1, DBL2, Res-n, DBL
SET, and Route. Figure 4 shows the composition of the five
modules. DBL1 is an ordinary convolution module with
stride� 1. DBL2 is a down-sampling module with stride� 2.

When the picture passes through the DBL2, the output’s size
will be reduced to half of the input, and the number of
channels will be doubled. /e Res-n module is a residual
network that can be repeated n times. /e DBL SETmodule
prepares for later feature fusion through a series of 3× 3 and
1× 1 convolutions. /e Route module realizes the fusion of
features of the different scales and forms the YOLO layer’s
output of three levels, namely, large, medium, and small./e
three YOLO layers will perform anchor allocation, target
classification, and position regression, and finally, achieve
object detection. /e modular design strategy of the
ERFAM-YOLOv3 includes three points. First of all, the
combination of feature fusion and the three output layer
modules acts as a core module and needs to be retained;
secondly, in the Darknet-53, the leftmost DBL1 and the
rightmost two down-sampling module groups DBL2 and
RES-n can be removed or retained; finally, Res-n can be
repeated n times for each occurrence, and n is an integer
greater than or equal to 0.

According to the above modular design strategy, we
conducted the modular structure analysis of the original
YOLOv3. /e ERFAM-YOLOv3 is to retain the core
modules, determine whichmodules need to be removed, and
count the number of the repeatable modules to achieve the
purpose of matching the three output layers’ anchor size to
the corresponding layers’ ERF size. In this way, the design
problem of the ERFAM-YOLOv3 is transformed into the
problem that the Darknet-X replaces the original Darknet-
53, which is to solve the issues of X1, X2, X3, X4, and X5,
respectively, and assess whether some modules need to be
removed. /e ERFAM-YOLOv3 structure is shown in
Figure 5. An ERFAM-YOLOv3 modular design strategy will
realize redefinition according to the matching algorithm of
anchor size and ERF size, and finally, achieve the object
detection function suitable for the target sizes.

3.4. Effective Receptive Field Size-Anchor Size Matching
Algorithm. From the object detection framework of the
YOLOv3, we learned that the object’s classification and
positioning are achieved by assigning nine predefined an-
chors to the three output layers of the different scales
through continuous learning features of the training data.
Althoughmany factors affect the final object detection effect,
in the method mentioned in this paper, we are concerned
about the size of the ERF corresponding to a pixel of the layer
where the anchor is located. We define
d � ERF size − Anchor size, d≥ 0; the so-called matching is
to minimize d by adding or reducing repeatability modules
and removing some down-sampling modules. /e matching
degree between the ERF size and the corresponding assigned
anchor size is a crucial factor. Because the YOLOv3 has three
output ports for object detection, the ideal state is that the
ERF sizes of the three anchor distribution layers are, re-
spectively, equal to the maximum width or height of the
three anchors allocated in each layer. We can understand
from a more vivid explanation that the effective receptive
field size and anchor size matching can improve detection. If
the ERF size of the corresponding feature layer is much
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larger than the largest assigned anchor size, then it is like
finding a needle in a haystack, and it is easily interfered with
by too much context; if the ERF size is far smaller than the
smallest assigned anchor size, then the detection is like a
blind man touching an elephant, only recognizing local
features, not accurately detecting the whole object.

Because the clustering algorithm has obtained the nine
anchors’ size before training, each anchor’s width and height
are fixed values. /e nine anchors are divided into three
groups according to the order from small to large. /ese
three groups are called small anchors, medium anchors, and
large anchors in turn. Small anchors are assigned to Yolo-
scale-3, medium anchors are assigned to Yolo-scale-2, and
large anchors are assigned to Yolo-scale-1. We can see them
in Figure 5. We define amax s, amaxm, and amax l as the
maximumwidth and height in each group of anchors. At the
same time, we define ERF1,ERF2, and ERF3 as effective
receptive field sizes corresponding to large anchors’ distri-
bution layer, medium anchors’ distribution layer, and small
anchors’ distribution layer. For the CNN model, the more

the modules, the deeper the network and the larger the ERF
size corresponding to the output layer. /erefore, under the
premise of X1�X2�X3�X4�X5�1, we take amax s, amaxm,
and amax l as the thresholds and set specific discriminant
rules. /e core of the ERFAM-YOLOv3 lies in minimizing
the difference between ERF1 and amax l, the difference be-
tween ERF2 and amaxm, and the difference between ERF3 and
amax s by removing some modules or increasing the number
of repeatable Res-n, which is the criterion for anchor and
effective receptive field matching.

We designed the effective receptive field size-anchor size
matching algorithm to detect the objects based on the above
definition. /e flowchart of the effective receptive field size-
anchor size matching algorithm is shown in Figure 6. We
can learn from the flow chart that there are two cases about
matching anchors’ size and effective receptive fields’ size.

Case one: in the three comparison formulas of ERF3 and
amax s, ERF2 and amaxm, and ERF1 and amax l, as long as one or
more of the former is smaller than the latter, there is no need
to remove any module. /e three output layers’ sizes are
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Figure 6: Flow chart of anchor size-effective receptive field size matching algorithm.
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13×13, 26× 26, and 52× 52, respectively. In this case, we
only need to find the values of X1 to X5 according to the
ERFAM-YOLOv3 modular design strategy.

Case two: in the three comparison formulas of ERF3 and
amax s, ERF2 and amaxm, and ERF1 and amax l, all the former are
bigger than the latter. /e deeper the network, the larger the
effective receptive field corresponding to the anchor distri-
bution layer, and to reduce the d between the effective receptive
field size and the anchor size, we need to calculate the number
of Res-n after removing some modules. /ere are two options
for removing modules, and once these modules are removed,
they cannot be recovered. Option one: we must delete the
rightmost DBL2 and RES-X5. Under this option, if
(ERF3 ≥ amax s)&(ERF2 ≥ amaxm)&(ERF1 ≥ amax l) does not
hold, the three output layers’ sizes are 26× 26, 52× 52, and
104×104, respectively.We just need to solveX1–X4. If the fifth
down-sampling DBL2 and Res-X5 are deleted, the situation
(ERF3 ≥ amax s)&(ERF2 ≥ amaxm)&(ERF1 ≥ amax l) still occurs,
and option two will appear. Option two: based on deleting the
fourth down-sampling DBL2 and Res-X4, we continue to
delete the fourth down-sampling module and RES-X4. /e
three output size layers are 52× 52, 104×104, and 208× 208,
respectively. Under this option, we only need to calculate the
value of X1–X3 to complete the effective receptive field size-
anchor size matching algorithm.

/e anchor effective receptive field matching algorithm
is to increase, decrease, and remove the number of modules
in the Darknet-53 to minimize the difference between the
anchor distribution layer’s effective receptive field size and
the anchor size to achieve the best match to improve the
object detection effect.

4. Experiments

We evaluate the proposed method on a dataset of PCB
electronic components. /ere are 1000 images, 29 instru-
ment categories, and 182900 electronic components in the
dataset [15]. We first analyzed the ERF of each feature layer
of the YOLOv3. In particular, we found that the effective
receptive fields of the three yolo-scales are much larger than
the assigned anchor size. Using the modular design strategy
and the anchor effective receptive field matching algorithm,
we designed the ERFAM-YOLOv3 suitable for electronic
component detection on PCB.

4.1. Experimental Platform and Parameter Setting. /e ex-
perimental platform is the operating system (OS): Windows
10, core processor (CPU): Intel Xeon 6132× 2 2.60GHz,
graphics processor (GPU): NVIDIA Titan RTX (24G), hard
disk space: 512G SSD+ 2T SATA, memory: 192GB, Python
3.5.2. program development framework: Python 3.7, Ten-
sorFlow 2.0, CUDA 10.1. /e PCB electronic component
dataset is divided into 8 : 2, that is, eight pieces of data are
randomly selected for training, and two pieces of data are
used as detection data.

4.2. From the YOLOv3 to the ERFAM-YOLOv3. /e
ERFAM-YOLOv3 design suitable for electronic component

detection on the PCB will be completed using the ERF and
the effective receptive field size-anchor size matching
algorithm.

4.2.1. Analysis and Calculation of the YOLOv3 ERF. To get
the ERF size of each feature layer of the YOLOv3, we must
first load the YOLOv3 model. Each convolutional layer has
two parameters—weight and bias. We will set every layer’s
weight to be a random value and the bias to be 0. /e BN
layer has four parameters—weight, bias, running_mean, and
running_var. We set the weight to be a random value, bias to
0, running_mean to 0, and running_var to 1.

We are particularly concerned about whether the ERF
size of the three yolo_scale output layers corresponding to
the assigned anchors matches the anchors’ size. /erefore,
Figure 7 shows the degree of participation of a single-pixel in
the three output layers corresponding to pixels in the
original image and the calculated ERF size. At the same time,
we provide feedback to the original image from a pixel point
of the input feature layer, find the point with the strongest
activation degree, and find the square root of the number of
all pixel points with the activation degree within 95.45% of
the strongest point value, to obtain the effective receptive
field size of the layer. Table 1 shows the ERF size of the three
yolo_scale layers of the YOLOv3.

4.2.2. ERFAM-YOLOv3: Suitable for Electronic Component
Recognition on PCB. As we all know, there are many
electronic components on the PCB, and many components
are soldered to the PCB through SMT (Surface Mounted
Technology). /ey have similar shapes and small sizes.
According to the previous analysis of the electronic com-
ponent dataset, we can understand from Table 1 the dis-
tribution of the three groups of anchors in the three output
layers of the YOLOv3 and the maximumwidth and height of
each group. By comparing the corresponding output layer’s
ERF size, we found that the anchor size of each output layer
is far smaller. Since the field of view is too large, it is easy to
ignore the target during object detection and the problem of
missing the object occurs.

According to the effective receptive field size-anchor size
matching algorithm, we need to remove the fifth down-
sampling DBL2 and RES-X5 in the Darknet-53 and remove
the fourth down-sampling DBL2 and Res-X4 modules, and
also get X1�X2�X3�1. /at is to replace the original
Darknet-53 with the Darknet-11. At the same time, the
original yolo_scale_1 changed from 13×13 to 52× 52,
yolo_scale_2 changed from 26× 26 to 104×104, and
yolo_scale_3 changed from 52× 52 to 208× 208. /e final
ERFAM-YOLOv3 network structure is shown in Figure 8.

4.2.3. Analysis and Calculation of the ERFAM-YOLOv3 ERF.
After completing the design of the ERFAM-YOLOv3 object
detection framework adapted to the electronic component
dataset, we again use the previous ERF analysis and cal-
culation methods to perform a single pixel of the three
anchor distribution output layers of ERFAM-YOLOv3

Computational Intelligence and Neuroscience 9
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corresponding to the original image./e activation map and
ERF are shown in Figure 9.

4.2.4. Analysis and Discussion of the ERF about the YOLOv3
and the ERFAM-YOLOv3. Comparing Figure 7 with Fig-
ure 9, we can intuitively see that the activation map’s peak
corresponding to the ERFAM-YOLOv3 for each yolo_scale
layer is generally higher than that of the YOLOv3. For
example, the peak of the activation map of the yolo_scale_1
in the ERFAM-YOLOv3 is 1.9 × 10−9, the peak of the ac-
tivation map of the yolo_scale_1 in YOLOv3 is only
4.3 × 10−9, and the other two layers are similar. /e com-
parison shows that in the YOLOv3 network, the output layer
corresponding to each pixel in the original image is more
involved in the calculation than the same pixel in the
ERFAM-YOLOv3. At the same time, we found that the ERF
corresponding to each yolo_scale in the ERFAM-YOLOV3
is much smaller than the YOLOv3. /e previous analysis
means that the deeper the network, the greater the corre-
sponding pixel’s activation degree. By calculating the dif-
ference of the yolo_scale’s ERF size and the anchor’s amax in
Table 1, we find that the d1 � ERF1 − amax l of the yolo_-
scale_1 is 143 in the YOLOv3 and is 16 in the ERFAM-

YOLOV3, the d2 � ERF2 − amaxm of the yolo_scale_2 is 86 in
the YOLOv3, and that is 14 in the ERFAM-YOLOv3, and the
d3 � ERF3 − amax s of the yolo_scale_3 is 44 in the YOLOv3
and is 8 in the ERFAM-YOLOv3.

We found that the above comparative analysis of the
YOLOv3 and the ERFAM-YOLOv3 found that for the
dataset with a small overall size distribution after clustering,
after removing some modules and reducing repeatable
number Res-n, it can indeed significantly reduce the size
difference between the ERF and the anchor. In the effective
receptive field size-anchor size matching algorithm pro-
posed earlier, it was clearly defined that the smaller the
difference between the effective receptive field size and the
anchor size, the higher the matching degree between them.
/erefore, we can conclude that the ERFAM-YOLOv3 can
effectively improve the matching degree between the anchor
and the effective receptive field, and solve the problem that a
pixel of the anchor distribution layer corresponds to a too
large field of view in the original image.

4.3. Ce Experimental Results. To better illustrate the pro-
posed algorithm’s effectiveness, we will represent by showing
the detection image results, the accuracy of the table of

Table 1: Anchors and ERF size of Yolo_scales inYOLOv3 and ERFAM-YOLOv3.

Anchor /e maximum width or height in
each group of anchors

YOLOv3 (Darknet-53) ERFAM-YOLOV3 (Darknet-11)
Output layer ERF size Output layer ERF size

(10× 4)
31 Yolo_scale_1 (13×13) 174 Yolo_scale_1 (52× v52) 47(14×12)

(31× 31)
(5× 2)

9 Yolo_scale_2 (26× 26) 95 Yolo_scale_2 (104×104) 23(5× 5)
(4× 9)
(1× 3)

5 Yolo_scale_3 (52× 52) 49 Yolo_scale_3 (208× 208) 13(3×1)
(2× 5)
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detection, and a series of curves of the Faster-RCNN, SSD,
YOLOv3, and ERFAM-YOLOv3.

4.3.1. Analysis of Subjective Test Results. Faster-RCNN, SSD,
YOLOv3, and ERFAM-YOLOv3 can realize multi-target
detection in one image, and we tested 200 images with them.
/e identified target is matched in different bounding boxes,
and some detection results are expressed in Figure 10.
Figures 10(a)–10(e) represent the Arty_Bottom original
image and detection effects of the above four algorithm
experiments. Figures 10(f )–10(j) represent the Zybo original
image and the above four algorithm experiments’ detection
effects.

In the five pictures about Arty_Bottom in the left column
of Figure 10, Figure 10(a) is the original picture. From this
picture, we can see that the PCB bottom plate is lighter in
color, and there are many targets on the PCB, such as re-
sistors, capacitors, texts, pins, pods, and components waiting
for identification. Figure 10(b) is the recognition effect of
Faster-RCNN. In this picture, only a few bounding boxes are
drawn. /e identified targets’ positions are not accurate
enough, and a large number of targets are not recognized.
Figure 10(c) is the recognition effect of SSD. From this
picture, we can see that the effect of SSD on object detection
is better than the Faster-RCNN. /e number of identified
target boxes is more than the Faster-RCNN, and the box’s
position can also closely surround the target. But, there are
still many targets that cannot be identified, through
Figures 10(d) and 10(e) based on the YOLOv3 and the
ERFAM-YOLOv3. Most targets can be identified, and the
position of the box can accurately surround the target. To
further compare the advantages and disadvantages of the
YOLOv3 and the ERFAM-YOLOv3, we add a local mag-
nification effect in the figure. We enlarge the small circles at
the same position in Figures 10(d) and 10(e) into large
circles by comparing the large circles’ recognition effects.We
can find that the target boxes recognized by the YOLOv3 are
relatively sparse for the reason of missing targets, and the
ERFAM-YOLOv3 can accurately identify all dense targets.

/e right column of Figure 10 shows the different de-
tection effects of Zybo. First of all, Figure 11(a) shows that
the PCB bottom plate is darker in color, and the targets on
the PCB are large in number and variety, and vary in size.
Similar to Arty_Bottom’s recognition effect, the Faster-
RCNN has the worst detection effect, the number of de-
tection targets is small, and there are detection errors.
However, the SSD framework’s accuracy is significantly
better than the Faster-RCNN; there are still many targets
that do not identify it. Both the YOLOv3 and the ERFAM-
YOLOv3 have a significant effect on object detection on the
PCB. However, it can still be seen from the locally enlarged
view that the ERFAM-YOLOv3 is superior to the YOLOv3
in the number of recognized objects and in the accuracy of
the position.

4.3.2. Analysis of Objective Test Results. For detecting PCB
electronic components containing 29 categories, we used the
AP (average precision) of each category of components to

characterize the four algorithms’ performance. In Table 2, we
use bold to indicate that this algorithm’s result is better than
or equal to other algorithms. From Table 2, we can learn
from the specific data that the ERFAM-YOLOv3 has im-
proved detection accuracy in 28 categories.

/e comparison of objective analyses shows that the
detection effect of the ERFAM-YOLOv3 in Figure 10 is
better than the other three detection models. /is result is
mainly due to the structural improvement of the YOLOv3
neural network, the match of the ERF size and anchor size,
and improved detection accuracy on electronic components.

4.3.3. Ablative Analysis. To perform a detailed ablative
analysis, we have conducted experiments with the YOLOv3
baseline. We use the mAP (mean average precision) as an
evaluation index to measure the model’s effectiveness. /e
higher the value of the mAP, the better the detection effect.
For electronic components on the PCB, the mAP of the
original YOLOv3 is 79.48%. Table 3 shows the effectiveness
of different components on anchor size and effective re-
ceptive field size matching. (1) Remove the fifth down-
sampling DBL2, Res-X5, and let X1�X2�X3�X4�1. Be-
cause the three outputs of the object detection model at this
time come from the second, third, and fourth down-sam-
pling outputs of the original model obtained by feature
fusion, the model is named 234(1-1111)-YOLOv3./e first 1
in the brackets means that the leftmost DBL1 of the Darknet-
53 is reserved, and the following four numbers mean that the
values of X1–X4 are 1, respectively. 234(1-1111)-YOLOv3
compared with YOLOv3, and mAP increased by 7.17%. (2)
Remove the fourth down-sampling DBL2, Res-X4, and let
X1� 1,X2� 2,X3� 8. Because the three outputs of themodel
come from the first, second, and third down-sampling
modules of the original YOLOv3, we named them 123(1-
128)-YOLOv3. 123(1-128)-YOLOv3 compared with 234(1-
1111)-YOLOv3 and mAP increased by 3.23%. (3) Based on
the above operations, continuing to remove the leftmost
DBL1 module not only did not improve mAP but also re-
duced mAP by 2.70%. /is operation shows that DBL1 is
useful in object detection tasks and cannot be removed. We
call this model 123(0-128)-YOLOv3. /e first 0 in the
brackets means that we have removed the leftmost DBL1 in
the Darknet-53 and the 128 after representing the values of
X1, X2, and X3. (4) Finally, based on (1) and 2), we set
X1�X2�X3�1. Because this is the model with the highest
matching degree between the anchor size and the ERF size,
we named it ERFAM-YOLOv3, and the mAP of the
ERFAM-YOLOv3 can be increased by 5.15% compared to
123(1-128)-YOLOv3.

To further illustrate that the different components in
Table 3 can enhance the matching degree of the ERF size and
the anchor size, we also calculated the results d when re-
moving other modules in the Darknet-53, as shown in
Table 4.

From Tables 3 and 4, we know that for the small-size
electronic component detection network on the PCB, with
the removal of the fifth and fourth down-sampling modules,
Res-X5 and Res-X4, the difference between the ERF size and
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the corresponding anchor size is getting smaller and smaller,
that is, the matching degree is getting higher and higher. /e
detected mAP is also getting higher and higher.

4.3.4. Analysis of a Series of Curves. To comprehensively
compare the advantages and disadvantages of different
object detection algorithms in the above ablation experi-
ments, we have drawn four curves for comparative analysis

in Figure 11. Among the four curves, we use red to represent
the ERFAM-YOLOv3, green for the 123(1-128)-YOLOv3,
blue for the 123(0-128)-YOLOv3, gray for the 234(1-1111),
and black for the YOLOv3.

/e precision-recall is a useful measure of the success of
prediction when categories are very imbalanced. In infor-
mation retrieval, precision is a measure of result relevancy,
while recall is a measure of how many truly relevant results
are returned. With the accuracy of the y-axis and the recall

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j)

Figure 10: Comparisons of object detection results between the four algorithms. (a) Original image of Arty_Bottom. (b) Faster R-CNN
object detection effect of Arty_Bottom. (c) SSD object detection effect of Arty_Bottom. (d) YOLOv3 object detection effect of Arty_Bottom.
(e) ERFAM-YOLOv3 object detection effect of Arty_Bottom. (f ) Original image of Zybo. (g) Faster R-CNN object detection effect of Zybo.
(h) SSD object detection effect of Zybo. (i) YOLOv3 object detection effect of Zybo. (j) ERFAM-YOLOv3 object detection effect of Zybo.
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rate of the x-axis, we get the precision-recall (P-R) curve./e
P-R curve shows the tradeoff between precision and recall of
different thresholds. /e higher the accuracy, the higher the
recall rate, and our models and algorithms are more efficient.
/at is, the drawn P-R curve is as close as possible to the
upper right. We can see from Figure 11(a) that the red line is
closest to the upper right and encloses the other four
YOLOv3 algorithm curves. /erefore, the ERFAM-YOLOv3
algorithm is represented by the color red and shows the best
performance.

/e mAP provides a single-figure measure of quality
across recall levels. Among evaluation measures of different
object detection algorithms, mAP has shown to have

excellent discrimination and stability. In this paper’s ex-
periments, the number of training we set is 350 epochs,
which means 70,000 steps. We have the mAP value as the y-
axis, and the range is from 0 to 100%; the number of it-
erations is the x-axis, which ranges from 0 to 350.We can see
from Figure 11(b), although 234(1-1111)-YOLOv3 first
reached stability, the mAP of ERFAM-YOLOv3 climbed the
highest and finally reached 95.03%, indicating that the
ERFAM-YOLOv3 model has the best performance in terms
of object detection accuracy.

Figure 11(c) shows the loss value curve changes with
iterations of the five algorithms. It can be seen that the five
lines correspond to the algorithm quickly fitting in the first
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Figure 11: Evaluation curves of the four algorithms. (a) precision-recall curve. (b) mAP-train steps curve. (c) Loss-train step curve.
(d) Accuracy-threshold curve.
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8000 steps, then the loss gets smaller speedily, and then
gradually stabilizes after 12,000 steps. /e loss value of the
ERFAM-YOLOv3 is the highest at the starting point, but it
can also reach the same stable value as the other four lines
after 15,000 steps.

Figure 11(d) shows the relationship between the preci-
sion and confidence of object detection. It is known from
Figure 11(d) that as the confidence level increases, the ac-
curacy of object detection also increases. During detection,

the precision and confidence provided by the red line model
are significantly higher than the other four algorithms,
reflecting the superiority of the ERFAM-YOLOv3 algorithm.

4.3.5. Analysis of Algorithm Complexity. We can describe its
detection effect with detection accuracy andmodel modeling
power (FIOPs), and model size (parameters) to describe
model complexity for a deep learning framework. FLOPs

Table 2: AP for each electronic component category of four algorithms.

Category
AP (average precision) of algorithm

Faster R-CNN (%) SSD (512) (%) YOLOv3 (Darknet-53) (%) ERFAM-YOLOv3 (Darknet-11) (%)
Resistor 28.07 15.89 23.89 91.29
Capacitor 14.75 16.08 39.87 93.91
Text 14.90 16.72 51.74 95.15
Unknown 22.84 43.06 72.62 97.41
Emi 17.63 36.36 93.84 100.00
Ferrite 23.81 37.24 60.89 97.39
Pads 21.09 16.92 48.79 89.06
Led 13.51 17.18 68.95 99.36
Zener 21.80 75.00 100.00 78.79
Component 16.99 17.02 47.05 72.97
Transistor 25.21 18.00 93.49 99.94
Diode 26.62 27.11 78.76 100.00
Jumper 23.26 27.27 80.55 99.73
Inductor 23.54 27.27 77.76 90.33
Fuse 25.73 27.27 100.00 100.00
Electrolytic 25.19 27.05 63.01 89.25
Transformer 28.24 97.73 100.00 100.00
Potentiometer 23.45 9.09 55.88 70.59
Pins 19.14 54.55 99.00 98.90
Clock 16.76 45.45 84.31 96.08
Battery 29.85 54.55 100.00 100.00
Button 27.43 90.43 99.08 100.00
Ic 20.02 54.55 95.12 97.52
Switch 24.73 81.82 100.00 100.00
Test 55.02 17.21 74.54 98.88
Connector port 31.00 54.52 95.73 99.43
Buzzer 34.69 100.00 100.00 100.00
Heatsink 32.35 100.00 100.00 100.00
Display 26.64 100.00 100.00 100.00

Table 3: /e effectiveness of different components on mAP.

Remove the fifth down-sampling
DBL2 and Res-X5,
X1�X2�X3�X4�1

Remove the fourth DBL2, Res-X4,
X1� 1
X2� 2
X3� 8

Remove the leftmost DBL1,
X1� 1
X2� 2
X3� 8

X1�X2�X3�1 mAP@0.5

√ 86.65%+7.17

√ √ 89.88%+3.23

√ √ √ 87.18%−2.70

√ √ √ 95.03%+5.15

Table 4: /e matching degree of removing different modules.

Difference between ERF size and anchor size YOLOv3 234(1-1111)-YOLOv3 123(1-128)-YOLOv3 ERFAM-YOLOv3
d1 143 63 18 16
d2 86 43 17 14
d3 44 19 10 8
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(floating-point operations, s tables complex numbers) refer
to floating-point operands, understood as the calculation
amount. FLOPs represent the required computing power.
Parameters describe the needed memory. Usually, they are
weights that are learned during training. /e more pa-
rameters in the network, the more parameters need to be
trained, resulting in a longer training time.

We measured the mAP, FIOPs, and parameters of the
Faster-RCNN (Resnet-50), SSD (VGG16.512× 512),
YOLOv3 (Darknet-53), and ERFAM-YOLOv3 (Darknet-11)
involved in this paper. /ey are shown in Table 5. From
Table 5, we can find that the ERFAM-YOLOv3 has the
highest mAP of 95.03%, which is 15.55 points higher than
the original YOLOv3, 50.02 points higher than the SSD, and
70.4 points higher than the Faster-RCNN. /e parameter
amount of the ERFAM-YOLOv3 is also the least one of the
four algorithms, especially compared with the original
YOLOv3; the parameter amount is only 35.61% of the
original parameter amount. From the perspective of FLOPs,
the lower the computing power required for the algorithm,
the better. We can see although the FLOPs of ERFAM-
YOLOv3 is not the lowest, only more than the FLOPs of
YOLOv3 is 4.099G, the calculation complexity of ERFAM-
YOLOv3 is still very low. In summary, the ERFAM-YOLOv3
has high detection accuracy, a small model, and low com-
putational complexity, making it an ideal object detection
framework for electronic components.

4.4. Discussion. Use the matching of the ERF size and an-
chor size as the object detection network design’s entry
point. /e ERFAM-YOLOv3 enjoys significant advantages
of high detection accuracy, being lightweight, and with low
operation complexity compared with the traditional object
detection algorithm. /e benefits attributed to considering
the internal reason as to why the CNN can perform various
visual tasks. /e area where a single pixel of the output layer
is mapped to the original image is fixed, and only some pixels
in this area are effective. /e predefined object anchor, far
smaller or larger than the ERF size, will bring low efficiency
and low accuracy of detection. /e ERF analysis method
mentioned in the ERFAM-YOLOv3 can not only calculate
and visualize the ERF of the three anchor distribution layers
but also can be applied to any feature layer of the CNN for
the ERF analysis, which, in turn, can form a hierarchical
explanatory analysis. From a technological point of view, the
modular network design provides packaged and encapsu-
lated modules with independence, addability, removal, and
core, which can be constructed by building blocks to
complete recognition networks suitable for different size
targets. To show that the module recombination based on
ERF Sizer-Anchor Size matching can improve the detection
effect, we made two comparisons with the electronic
components on the PCB as the detection target. /e first
shows the differences between the ERF size and the anchor
size in YOLOv3, ERFAM-YOLOv3, and the other three
algorithms were formed after different modules are re-
moved. /e d reflects their matching. /e second shows the
difference of the backbone in the YOLOv3 and the ERFAM-

YOLOv3, from the Darknet-53 to the Darknet-11./ese two
changes confirm that the maintenance, removal, and ad-
dition/reduction of modules significantly influence the ERF
size./e above analysis provides an interpretable basis for us
to design detection networks that adapt to different size
targets.

Although the ERFAM-YOLOv3 obtains many signifi-
cances, such as high accuracy, fast operation, and small
parameters, there are still several potential limitations and
challenges for further improving its effectiveness. Firstly, the
ERF is currently the square root within a specific range of the
activation area, so it is friendly to approximately square
targets. /e shape of the target to be detected is complicated.
For example, the existence of a large number of narrow and
long objects will limit the matching effect of the ERF size and
the anchor size. Secondly, the ERF size is determined by the
threshold of 95.45% in the activation map according to the
normal distribution. How to adaptively select the threshold
is still challenging. Fortunately, according to the current
experiences, deformable kernel networks [40], selective
kernel networks [41], and principal components analysis
[42] may solve the above issues. /erefore, future directions
related to the ERF will focus on studying the influence of the
different forms of convolution kernels and convolution
kernels of different connection methods on the ERF to
achieve control of the ERF shape, studying the distribution
of principal components in the activation map, and finally,
be able to find the optimal threshold of ERF.

5. Conclusion

Inspired by the receptive field in biological neuroscience,
this paper studied the stimulus (assign anchor) of a pixel in
the anchor distribution layer of the YOLOv3, and uploaded
it to the original image area by the weights that connect the
front and back layers of the CNN, and determined the ef-
fective area size (ERF) that cause the stimulation. For the
first time, matching the bottom-level anchor size and the
top-level ERF size are related to the increase and decrease of
the CNN modules. We use the ERF size and the anchor size
matching YOLOv3 for the electronic component detection
task on the PCB in electronic product manufacturing.

Based on the results presented in this paper, several
contributions are of significance. Firstly, a novel ERFAM-
YOLOv3 architecture for the object detection of electronic
components on the PCB is proposed. Its backbone network,
the Darknet-11, is 42 fewer convolutional layers compared
to the YOLOv3’s backbone network, the Darknet-53. Sec-
ondly, the modular composition strategy of the YOLOv3 is

Table 5: Statistics of accuracy and complexity of four algorithms.

Model mAP
(%)

Params
(M)

FLOPs
(G)

Faster R-CNN (Resnet50) 24.63 43.435 742.473
SSD (VGG16, 512) 45.01 28.516 91.545
YOLOv3 (Darknet-53) 79.48 61.727 65.685
ERFAM-YOLOv3 (Darknet-
11) 95.03 21.98 69.784
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designed. It provides the possibility of effective receptive
field size changes. /irdly, the effective receptive field size-
anchor size matching algorithm is developed. It provides the
feasibility of object detection adapted to different distribu-
tion sizes.

/e evaluation experiment demonstrates that an effec-
tive receptive field size and anchor size matching algorithm
based on YOLOv3 could achieve higher detection accuracy
and lower model complexity than the other state-of-the-art
methods.
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