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Abstract

Motivation: Methods for the global measurement of transcript abundance such as microarrays and RNA-Seq
generate datasets in which the number of measured features far exceeds the number of observations. Extracting
biologically meaningful and experimentally tractable insights from such data therefore requires high-dimensional
prediction. Existing sparse linear approaches to this challenge have been stunningly successful, but some important
issues remain. These methods can fail to select the correct features, predict poorly relative to non-sparse alterna-
tives or ignore any unknown grouping structures for the features.

Results: We propose a method called SuffPCR that yields improved predictions in high-dimensional tasks including
regression and classification, especially in the typical context of omics with correlated features. SuffPCR first esti-
mates sparse principal components and then estimates a linear model on the recovered subspace. Because the esti-
mated subspace is sparse in the features, the resulting predictions will depend on only a small subset of genes.
SuffPCR works well on a variety of simulated and experimental transcriptomic data, performing nearly optimally
when the model assumptions are satisfied. We also demonstrate near-optimal theoretical guarantees.

Availability and implementation: Code and raw data are freely available at https://github.com/dajmcdon/suffpcr.
Package documentation may be viewed at https://dajmcdon.github.io/suffpcr.

Contact: daniel@stat.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Global transcriptome measurement with microarrays and RNA-Seq
is a staple approach in many areas of biological research and has
yielded numerous insights into gene regulation. Given data from
such experiments, it is often desirable to identify a small number of
transcripts whose expression levels are associated with a phenotype
of interest (for instance, disease-free survival of cancer patients).
Indeed, projects such as The Cancer Genome Atlas have aimed to
generate massive volumes of such data to enable molecular charac-
terization of various cancers. While these data are readily available,
their high-dimensional nature (tens of thousands of transcript meas-
urements from a single experiment) makes identification of a com-
pact gene expression signature statistically and computationally
challenging. While the identification of a minimal gene expression
signature is valuable in evaluating disease prognosis, it is also helpful
for guiding experimental exploration. In practical terms, a set of five
genes highly associated with a certain disease phenotype can be
characterized more rapidly, at lower cost, and in more depth than a

set of 50 or 100 such genes using genetic techniques such as CRISPR
knockout and cancer biological methods such as xenotransplant-
ation of genetically modified cells into mice. Therefore, this article
prioritizes selecting a small subset of transcript measurements,
which still provide an accurate prediction of phenotypes.

With these goals in mind, supervised linear regression techniques
such as ridge regression (Hoerl and Kennard, 1970), the lasso
(Tibshirani, 1996), elastic net (Zou and Hastie, 2005) or other
penalized methods are often employed. More commonly, especially
in genomics applications, the outcomes of interest tend to be the re-
sult of groups of genes, which perhaps together describe more com-
plicated processes. Therefore, researchers often turn to unsupervised
methods such as principal component analysis (PCA), principal
component regression (PCR) and partial least squares (PLS) for both
preprocessing and as predictive models (e.g. Cera et al., 2019; Harel
et al., 2019; Kabir et al., 2017; Traglia et al., 2017).

In genomics, one may collect expression measurements for thou-
sands of genes from microarrays or RNA-Seq with the goal of pre-
dicting phenotypes or class outcomes. In these settings, the number
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of patients is much smaller than the number of gene measurements
and researchers are interested in (i) the accurate prediction of the
phenotype, (ii) the correct identification of a handful of predictive
genes and (iii) computational tractability. Among these properties,
the correct identification of a small number of predictive genes is of
crucial importance in practice, since it can lead biologists to further
investigate specific genes through CRISPR knockout or other techni-
ques. It is this genetic pattern discovery for which our proposed
methodology is intended: data with many more measurements than
observations; the potential that some of the measurements may be
grouped or correlated; the existence of either a continuous or dis-
crete outcome we wish to predict; and the belief that these predic-
tions only depend on some small collection of groups rather than the
entire set of measurements.

1.1 Recent related work
PCA has two main drawbacks when used in high dimensions. The
first is that PCA is non-sparse, so it uses information from all the
available genes instead of selecting only those which are important,
a key objective in omics applications. That is, the right singular vec-
tors or ‘eigengenes’ (Alter et al., 2000) depend on all the genes meas-
ured rather than a small collection. The second is that these sample
principal components are not consistent estimators of the popula-
tion parameters in high dimensions (Johnstone and Lu, 2009). This
means essentially that when the number of patients is smaller than
the number of genes, even if the first eigengene could perfectly ex-
plain the data, PCA will not be able to recover it.

Modern approaches specifically for pattern discovery in the gen-
omics context such as supervised gene shaving (Hastie et al., 2000),
tree harvesting (Hastie et al., 2001) and supervised principal compo-
nents (SPC) (Bair and Tibshirani, 2004; Bair et al., 2006; Paul et al.,
2008) seek to combine the presence of the phenotype with the struc-
ture estimation properties of eigendecompositions on the gene ex-
pression measurements using unsupervised techniques to obtain the
best of both. PLS is common in genomics (e.g. Chakraborty, 2019;
Leek and Storey, 2007), though it remains uncommon in statistics
and machine learning, and its theoretical properties are poorly
understood. Other recent PCA-based approaches for genetics,
though not directly applicable for prediction are SMSSVD
(Henningsson and Fontes, 2019) and ESPCA (Min et al., 2018).

1.2 Contributions
In this paper, we leverage the strong theoretical properties associ-
ated with sparse PCA to improve predictive accuracy for regression
and classification problems in genomics. We avoid the strong
assumptions necessary for SPC, the current state-of-the-art, while
obtaining the benefits associated with sparse subspace estimation. In
the case that the phenotype is actually generated as a linear function
of a handful of genes, our method, SuffPCR, performs nearly opti-
mally: it does as well as if we had known which genes were relevant
beforehand. Furthermore, we justify theoretically that our procedure
can both predict accurately and recover the correct genes. Our con-
tributions can be succinctly summarized as follows:

1. We present a methodology for discovering small sets of predict-

ive genes using sparse PCA;

2. Our method improves the computational properties of existing

sparse subspace estimation approaches to enable previously im-

possible inference when the number of genes is very large;

3. We demonstrate state-of-the-art performance of our method in

synthetic examples and with standard cancer microarray

measurements;

4. We provide near-optimal theoretical guarantees.

Our methodology can be used in a variety of genomic pattern
discovery settings. One such example is a modified version of trad-
itional differential expression analysis. If we have treatment and

control measurements, the logistic version of our method is appro-
priate with the advantage that it examines the impact of one gene
adjusted for the contributions of others. In addition, with a continu-
ous treatment, the detection power can be increased relative to using
an artificial dichotomization.

In Section 2.1, we motivate the desire for sufficient PCR relative
to previous approaches and present details of SuffPCR. Section 2.2
illustrates performance in simulated, semi-simulated and real exam-
ples (Section 2.3) and discusses the biological implications of our
methods for a selection of cancers. Section 2.4 theoretically justifies
our methods, providing guarantees for prediction accuracy and cor-
rect gene selection. Section 3 concludes.

Notation. We use bold uppercase letters to denote matrices,
lowercase Arabic letters to denote row vectors and scalars and
uppercase Arabic letters for random variables. Let Y be a random,
real-valued n-vector of independent variables Yi, and X be the row-
wise concatenation of i.i.d. draws Xi from a distribution on R

p with
covariance R. We denote the observed realization of the outcome
variable Y as y 2 R

n. To be explicit in the genomics context, X is an
n�p matrix where each row is a set of transcriptomic measure-
ments from RNA-Seq or microarrays for a patient while yi is an
observed phenotype of interest for the ith patient. Because X is a ma-
trix, this symbol represents both a random matrix and its realiza-
tion. In the following, the meaning should be clear from the context.
We assume, without loss of generality, that E½Xi� ¼ 0 and that the
measurements X have been centered. The singular value decompos-
ition of a matrix A is A ¼ UðAÞKðAÞVTðAÞ. In the specific case of X,
we suppress the dependence on X in the notation and write
X ¼ UKVT. We write Ad to indicate the first d columns of the ma-
trix A and aj to denote the jth row. In the case of the identity matrix,
we use a subscript to denote its dimension when necessary: Ip. Let
trðAÞ denote the sum of the diagonal entries of A while jjAjj2F ¼P

ij a2
ij is the squared Frobenius norm of A. jjAjj2;0 denotes (2, 0)-

norm of A, that is the number of rows in A that have non-zero ‘2
norm. jjAjj1;1 is the sum of the row-wise ‘1 norms. Finally, 1ðaÞ is
the indicator function for the expression a, taking value 1 if a is true
or 0 if not.

2 Methods

SPC (Bair and Tibshirani, 2004; Bair et al., 2006; Paul et al., 2008)
is widely used for solving high-dimensional prediction and feature
selection problems. It targets dimension reduction and sparsity sim-
ultaneously by first screening genes [or individual messenger RNA
(mRNA) probes] based on their marginal correlation with the
phenotype (or likelihood ratio test in the case of non-Gaussian
noise). Then, it performs PCA on this selected subset and regresses
the phenotype on the resulting components (possibly with additional
penalization). This procedure is computationally simple, but, zero
population marginal correlation is neither necessary nor sufficient to
guarantee that the associated population regression coefficient is
zero. To make this statement mathematically precise, consider the
linear model Yi ¼ XT

i b� þ �i; where Yi is a real-valued scalar pheno-
type, Xi is a real-valued vector of genes, b� is the true (unknown) co-
efficient vector and �i is a mean-zero error. Defining as above
CovðXi;XiÞ ¼ R, and CovðXi;YiÞ ¼ U, then, for this procedure to
correctly recover the true nonzero components of b�, it requires

Uj ¼ 0) b�j ¼ ðR�1UÞj ¼ 0: (1)

In words, we assume that the dot product of the jth row of the
precision matrix with the marginal covariance between x and y is
zero whenever the jth element of U is zero. While reasonable in
some settings, this assumption frequently fails. For example, individ-
ual features may only be predictive of the response in the presence of
other features. To illustrate why this assumption fails for genomics
problems, we examine a motivating counterexample. Using mRNA
measurements for acute myeloid leukemia (AML, Bullinger et al.
2004), we estimate both R�1 and U and proceed as if these estimates
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are the true population quantities. To estimate U, we use the empir-
ical covariance and set all but the largest n¼116 values equal to
zero, corresponding to an extremely sparse estimate. For R�1, we
use the Graphical Lasso (Friedman et al., 2008) for all p¼6283
genes at different sparsity levels ranging from 100% sparse (bR�1

ij ¼ 0
for all i 6¼ j) to 95% sparse. We then create a pseudotrue b� ¼ bR�1bU
as in Equation (1). This is essentially the most favorable condition
for SPC. To reiterate, in order to evaluate this assumption, we create
b� based on estimates from real genetics data that are highly sparse.
But, as we will see below, because the inverse covariance matrix is
not ‘sparse in the right way’, SPC will have a very high false negative
rate and ignore important genes.

Table 1 shows the sparsity of bR�1
, the percent of non-zero re-

gression coefficients, and the percent of non-zero regression coeffi-
cients which are incorrectly ignored under the assumption (the false
negative rate). Even if the precision matrix is 99.9% sparse, the false
negative rate is over 40%, meaning we find fewer than 60% of the
true genes. If the sparsity of bR�1

is allowed to decrease only slightly,
the false negative rate increases to over 95%. Clearly, this screening
procedure will ignore many important genes in even the most
favorable conditions for SPC.

More recent work has attempted to avoid this assumption. Ding
and McDonald (2017) uses the initially selected set of features to ap-
proximate the information lost in the screening step via techniques
from numerical linear algebra. An alternative discussed in Piironen
and Vehtari (2018) iterates the screening step with the prediction
step, adding back features which correlate with the residual. Finally,
Tay et al. (2018) assumes that feature groupings are known and and
estimates separate subspaces for different groups. All these method-
ologies are tailored to perform well when U and b� have particular
compatible structures.

On the other hand, it is important to observe that a sufficient
condition for b�j ¼ 0 in Equation (1) is that the jth row of the left
eigenvectors of R is 0. Based on this intuition, we develop sufficient
PCR (abbreviated as SuffPCR) which leverages this insight: row
sparse eigenvectors imply sparse coefficients, and hence depend on
only a subset of genes. SuffPCR is tailored to the case that X lies ap-
proximately on a low-dimensional linear manifold which depends
on a small subset of features. Because the linear manifold depends
on only some of the features, b� does as well.

2.1 Prediction with principal components
PCA is a canonical unsupervised dimension reduction method when
it is reasonable to imagine that X lies on (or near) a low-dimensional
linear manifold. It finds the best d-dimensional approximation of
the span of X such that the reconstruction error in ‘2 norm is mini-
mized. This problem is equivalent to maximizing the variance
explained by the projection:

max
V

trðSVVTÞ subject to VTV ¼ Id; (2)

where S ¼ 1
n XTX is the sample covariance matrix. Let X ¼ UKVT,

then the solution of this optimization problem is Vd, the first d right
singular vectors, and the estimator of the first d principal compo-
nents is UdKd or XVd equivalently. Given an estimate of the princi-
pal components, PCR is simply ordinary least squares (OLS)
regression of the phenotype on the derived components UdKd. One
can convert the lower-dimensional estimator, say bc, back to the ori-
ginal space to reacquire an estimator of b� as b�. Other generalized
linear models can be used place of OLS to find bc.

2.1.1 Sparse principal component analysis

As discussed in Section 1.1, standard PCA works poorly in high
dimensions. Much like the high-dimensional regression problem,
estimating high-dimensional principal components is ill-posed with-
out additional structure. To address this issue many authors have
focused on different sparse PCA estimators for the case when V is
sparse in some sense. Many of these methods achieve this goal by
adding a penalty to Equation (2). Of particular utility for the case of
PCR when b� is sparse is to choose a penalty that results in row-
sparse V. This intuition is justified by the following result.

PROPOSITION 1. Consider the linear model Yi ¼ XT
i b� þ � with

CovðXi;XiÞ ¼ R. Let R ¼ VðRÞKðRÞVðRÞT be the eigendecomposition

of R with KðRÞjj ¼ 0 for j > d 2 Z
þ. Then jjvðRÞjjj2 ¼ 0) b�j ¼ 0:

The proof is immediate. For any j, if jjvðRÞjjj2 ¼ 0, then every elem-
ent in vðRÞj is 0, indicating the jth row of R�1 will be 0. Since b�j ¼
ðR�1UÞj where CovðXi; yiÞ ¼ U, it also results in b�j ¼ 0. This result
stands in stark contrast to the assumption in Equation (1). This
proposition gives a guarantee rather than requiring an assumption:
if the rows of Vd are sparse, then b� is sparse. The same intuition
can easily be extended to the case KðRÞjj � 0 for all j given a gap
between the dth and ðd þ 1Þst eigenvalues. In this setting, the natural
analogue of PCA is the solution to:

max
V

trðSVVTÞ � kkVk2
2;0 subject to VTV ¼ Id : (3)

Solutions bVd of Equation (3) will give projection matrices onto the
best d-dimensional linear manifold such that bVd is row sparse.
However, this problem is NP-hard.

Many authors have developed different versions of sparse PCA.
For example, d’Aspremont et al. (2005) and Zou et al. (2006) focus
on the first principal component and add additional principal com-
ponents iteratively to account for the variation left unexplained by
the previous principal components. Vu and Lei (2013) derive a rate-
minimax lower bound, illustrating that no estimator can approach
the population quantity faster than, essentially, q

ffiffiffiffiffiffiffiffi
d=n

p
where q is a

deterministic function of R. Later work in Vu et al. (2013) proposes
a convex relaxation to Equation (3) which finds the first d principal
components simultaneously and nearly achieves the lower bound:

max
V

trðSVVTÞ � kjjVVTjj1;1 subject to VVT 2 F d; (4)

where F d :¼ fVVT : 0 � VVT � Ip and trðVVTÞ ¼ dg is a convex
body called Fantope, motivating the name Fantope Projection and
Selection (FPS). The authors solve the optimization problem in
Equation (4) with an alternating direction method of multipliers
(ADMM) algorithm.

For these reasons, FPS is known as the current state-of-the-art
sparse PCA estimator with the best performance. However, despite
its theoretical justification, FPS is less useful in practice for solving
prediction tasks, especially in genomics applications with p� n
(rather than just p>n) for two reasons. First, the original ADMM
algorithm has per-iteration computational complexity Oðp3Þ, which
is a burden especially when p is large. Second, because of the convex
relaxation using Equation (4) rather than Equation (3), bVd from FPS
tends to be entry-wise sparse, but infrequently row-wise sparse un-
less the signal-to-noise ratio (SNR) is very large (q is a function of
this ratio). We give explicit formulas for the SNR under this model
in the Supplementary Material, but heuristically, the SNR captures
how well the data is described by a d-dimensional subspace through
the relative magnitude of trðKdÞ compared to p. In genomics appli-
cations with low SNR, which is common, estimates bb tend to have
large numbers of non-zero coefficients with very small estimated
values. Thus, we design SuffPCR based on the insights from
Proposition 1, utilizing the best sparse PCA estimator FPS and
further addressing both of these issues to achieve better empirical
performance while maintaining theoretical justification.

Table 1. Illustration of the failure of Equation (1) on the AML data

% sparsity of bR�1
100 99.9 99.6 98.9 97.5 95.3

% non-zero b�’s 1.8 3.3 8.4 23.5 50.2 77.9

False negative rate 0.000 0.431 0.778 0.921 0.963 0.976
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2.1.2 Sufficient principal component regression

In this section, we introduce SuffPCR. The main idea of SuffPCR is
to detect the relationship between the phenotype Y and gene expres-
sion measurements X by making use of the (near) low-dimensional
manifold that supports X. In broad outline, SuffPCR first uses a tail-
ored version of FPS to produce a row-sparse estimate bVd and then
regresses Y on the derived components to produce sparse coefficient
estimates. SuffPCR for regression is stated in Algorithm 1 and sum-
marized visually in Figure 1. For ease of exposition, we remind the
reader that Y and X are standardized so that S ¼ 1

n XTX is the correl-
ation matrix.

The first issue is the time complexity of the original FPS algorithm.
Essentially, FPS uses the same three steps depicted in Lines 4–6 in
Algorithm 1.

40. A ProjF d ðB� Cþ S=kÞ
5. B SoftðAþ CÞ where SoftðbÞ ¼ signðbÞmaxfjbj � 1; 0g
6. C Cþ A� B.

The only difference here between our implementation and that
in FPS is in Step 4. Each of these steps takes a matrix and produces
another matrix, where the matrices have p2 elements. The second
and third steps are computationally simple (element-wise soft-
thresholding and matrix addition). But the first, ProjF d ðQÞ, is
more challenging. The solution requires computing the eigende-
composition of Q, an Oðp3Þ operation, and then modifying the
eigenvalues of Q through the solution of a piecewise linear equa-
tion in s: K2

i;þðQÞ ¼ minfmaxfK2
i ðQÞ � s; 0g; 1g; with s such thatPminfn;pg

i¼1 K2
i;þðQÞ ¼ d. The final result is then reconstructed as

A ¼ UðQÞK2
þðQÞUðQÞ

T. Because of the cubic complexity in p, the

authors suggest the number of features should not exceed one
thousand. But typical transcriptomics data have many thousands
of gene measurements, and preliminary selection of a subset is
suboptimal, as illustrated above. Due to the form of the piecewise
solution, most eigenvalues will be set to 0. Thus, while we will
generally require more than d eigenpairs, most are unnecessary, certain-

ly fewer than minfn; pg. Our implementation computes only a handful
of eigenvectors corresponding to the largest eigenvalues, rather than

all p. If we compute enough to ensure that some K2
i;þðQÞ will be 0,

then the rest are as well. Our implementation uses Augmented
Implicitly Restarted Lanczos Bidiagonalization (AIRLB; Baglama and
Reichel, 2005) as implemented in the irlba package (Baglama et al.,
2019), though alternative techniques such as those in Homrighausen
and McDonald (2016); Gittens and Mahoney (2013) may work as
well. We provide a more detailed discussion in the Supplementary
Material.

For moderate problems (n; p 	 100), the truncated eigendecom-
position with AIRLB rather than the full eigendecomposition leads
to a three-fold speedup while the further incorporation of special-
ized initializations leads to an eight-fold improvement without
any discernable loss of accuracy (results on a 2018 MacBook
Pro with 2.7 GHz Quad-Core processor and 16GB of memory
running maxOS 10.15). The results are similar when p¼5000,
though the same experiment on a high-performance Intel Xeon E5-
2680 v3 CPU with 12 cores, 256 GB of memory, and optimized
BLAS were somewhat less dramatic (improvements of three-fold
and four-fold respectively). For large RNA-Seq datasets
(p 	 20 000), we observed a nearly ten-fold improvement in compu-
tation time.

The second issue is that the Fantope constraint in Equation (4)
ensures only that trðVVTÞ ¼ d but not that the number of rows with
non-zero l2-norm is small. This feature of the convex relaxation
results in many rows with small, but non-zero, row-norm resulting
in dense estimates of b�. Thus, to make the final estimator bVd

sparse, we hard-threshold rows in bVd whose ‘2 norm is small, as
illustrated in line 9, 10 and 11 in Algorithm 1. From empirical
experience, we have found that there is often a strong elbow-type
behavior in the row-wise ‘2 norm of bVd, similar to the Skree plot
used to choose d in standard PCA. Therefore, we develop a simple
procedure, Algorithm 2, to find the best threshold automatically.
Essentially, it calculates the empirical derivative of the observation-
weighted variances on each side of a potential threshold and
maximizes their difference, resulting in signal and noise groups. We
set the rows in bVd corresponding to the noise to 0. SuffPCR is also
amenable for solving other generalized linear models. For example,
replacing line 12 in Algorithm 1 with logistic regression solves
classification problems.

2.2 Synthetic data experiments
In this section, we show how SuffPCR performs on synthetic data
and on real public genomics datasets relative to state-of-the-art
methods. Section 2.2.1 first presents a generative model for synthetic
data and motivates the assumptions required for our theoretical
results in Section 2.2.4. We include here one synthetic experiment
under conditions favorable to SuffPCR relative to SPC. We also in-
vestigate conditions favorable to SPC, the influence of tuning par-
ameter selection, and the effect of the signal to noise ratio but defer
these to the Supplementary Material. Section 2.2.3 uses the non-

steps 3-8 steps 9-11 step 12
OLS

step 13

Fig. 1. Graphical depiction of Algorithm 1. Solid colors represent nonzero matrix

entries

Algorithm 1 SuffPCR (regression version)

1: Input: X, S, y, d, k.

2: B 0;C 0 " Initialization

3: while not converged do

4: A ProjF d ðB� Cþ S=kÞ " Approximate projection

5: B SoftðAþCÞ " Elementwise soft-thresholding

6: C Cþ A� B

7: end while

8: Decompose B ¼ VdKdVT
d " Rank d eigen decomposition

9: Compute l ¼ diagðVdVT
dÞ, sort in descending order

10: Choose t by applying Algorithm 2 to l

11: Set rows in Vd whose ‘2 norm is smaller than t as 0, and

get bVd

12: Solve bc ¼ argmincjjy�XbVdcjj22
13: Return: bb ¼ bVdbc

Algorithm 2 Find a t to hard-threshold l

1: Input: a p-vector l

2: for i 2 1; . . . ;p do

3: Tn½i� ¼ varðl½1 : i�Þ
4: Ts½i� ¼ varðl½ðiþ 1Þ : p�Þ
5: T½i� ¼ i � Tn½i� þ ðp� iÞTs½i�
6: d½i� ¼ T½i� � T½i� 1� " empirical derivative of T

7: end for

8: Set i� ¼ argminifd½i� � d½i� 1� > meanðjd½1 : ði� 1Þ�jÞg
9: Return: t ¼ l½i��
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small-cell lung cancer (NSCLC) data as the X matrix but creates the
response from a linear model. Section 2.3 reports the performance
of SuffPCR on 5 public genomics datasets. The Supplementary
Material includes similar results for binary survival-status outcomes.
Across most settings in both synthetic and real data, SuffPCR out-
performs all competitors in prediction mean-squared error and is
able to select the true genes (those with b� 6¼ 0) more accurately. An
R package implementing SuffPCR and raw data are freely available
at https://github.com/dajmcdon/suffpcr. Package documentation
may be viewed at https://dajmcdon.github.io/suffpcr.

2.2.1 Experimental setup

We generate data from the multivatiate Gaussian linear model yi ¼
xT

i b� þ �i; where xi 
 Npð0;RÞ, b� is the p-dimensional regression
coefficient, �i 
 Nð0; r2

yÞ. We impose an orthogonal factor model
for the covariates xi ¼ uT

i KdVT
d þ ei; where ui are generated from

Ndð0; IdÞ independently, Kd is a diagonal matrix with entries
ðk1; . . . ; kdÞ in descending order, and Vd 2 R

p�d with VT
dVd ¼ Id.

The vector ei 2 R
n has i.i.d. Nð0;r2

xÞ entries independent of ui, and
rx > 0. We assume Vd is row sparse with only s rows containing
non-zero entries. These non-zero rows are the ‘true’ features to be
discovered, and they correspond to b� 6¼ 0.

It is important to note that, under this model, the rows of X fol-
low a multivariate Gaussian distribution independently, with mean
0 and full-rank covariance R ¼ VLVT whenever r2

x > 0. Here, the
columns of V are orthonormal eigenvectors on R

p and the eigenval-
ues are l1 � � � � � lp � 0. Straightforward calculation shows that
the first d columns in V are the same as the right singular vectors Vd

in the signal component of X. Furthermore, li ¼ k2
i 1ði � dÞ

þr2
x; i ¼ 1; . . . ;p.
We generate y 2 R

n as a linear function of the latent factors Ud

with additive Gaussian noise: y ¼ UdHþ z; where H is the regres-
sion coefficient, and zi are i.i.d. Nð0; r2

yÞ; i ¼ 1; . . . ; n, independent
of X. Under this model the population marginal correlation between
each feature in X and y is U ¼ VdKdH; and the population OLS co-
efficient of regressing y on X is b� ¼ VdL�1

d KdH: Note that the num-
ber of non-zero b� is s, because Vd has only s rows with non-zero
entries.

In all cases, we use n¼100 observations and p¼1000 features,
generating three equal-sized sets for training, validation and test-
ing. We use prediction accuracy on the validation set to select tun-
ing parameters for all methods. For the case of SuffPCR, this
means only k, because we choose t with Algorithm 2 and set d¼3.
We use the test set for evaluating out-of-sample performance. Each
simulation is repeated 50 times. Results with n¼200 and p¼5000
were similar. Algorithm 3 makes this entire procedure more
explicit.

We compare SuffPCR with a number of alternative methods.
The Oracle estimator uses OLS on the true features and serves as a
natural baseline: it uses information unavailable to the analyst (the
true genes) but represents the best method were that information
available. We also present results for Lasso (Tibshirani, 1996),
Ridge (Hoerl and Kennard, 1970), Elastic Net (Zou and Hastie,
2005), SPC (Bair et al., 2006), AIMER (Ding and McDonald,
2017), ISPCA (Piironen and Vehtari, 2018) and PCR using FPS
directly without feature screening (using Algorithm 1 without Steps
9–11). For ISPCA, we use the dimreduce R package to estimate
the principal components before performing regression. For all com-
petitors, we choose any tuning parameters that do not have default
values using the validation set. Examples are k in Lasso, Ridge
and Elastic Net or the initial thresholding step in SPC. We use the
correct embedding dimension (d¼3) whenever this is meaningful.
Additional experiments are given in the Supplementary Material.
There, we investigate conditions favorable to SPC, the choice of d
and the impact of different SNR choices.

2.2.2 Conditions favorable to SuffPCR

The first setting is designed to show the advantages of SuffPCR rela-
tive to alternative methods, especially SPC. We note that other

methods that employ screening by the marginal correlation (Ding
and McDonald, 2017; Piironen and Vehtari, 2018) will have similar
deficiencies. Because SPC works well if Equation (1) holds, we de-
sign R to violate this condition and set the first 15 features to have
non-zero b� but allow only the first 10 features to have non-zero
correlation with the phenotype. This behaviour is achieved with
Line 8 of Algorithm 3. By solving this equation in one unknown
component of H, we force U¼0 for the third group of 5 compo-
nents. Thus, as described in above, Equation (1) will not hold: some
Uj ¼ 0 but b�j 6¼ 0. We set the true dimension of the subspace as
d¼3, and we use the correct dimension for methods based on prin-
cipal components.

Figure 2 shows the performance of SuffPCR and state-of-the-art
alternatives. In addition to reporting each method’s prediction MSE
on the test set, we also show the number of features selected, preci-
sion, recall and the receiver operating characteristic (ROC) curve.
The ISPCA implementation does not select features. In this example,
SuffPCR actually outperforms the oracle estimator, attaining smaller
MSE while generally selecting the correct features. This seemingly
implausible result is likely because the variance of estimating OLS
on 15 features is large relative to that of estimating the low-
dimensional manifold followed by 3 regression coefficients.
SuffPCR has a clear advantage over all the alternative methods, es-
pecially SPC which is three orders of magnitude worse. SPC works
so poorly because it ignores five features. ISPCA has slightly lower
MSE than SPC. Ridge is the worst, due to fitting a dense model
when a sparse model generated the data. SuffPCR reduces MSE sig-
nificantly relative to simply using FPS due to more accurate feature
selection. The right plot in Figure 2 further shows the ROC curve
for SuffPCR, Lasso, Elastic Net, SPC and AIMER in which we can
easily vary the tuning parameter and select various numbers of fea-
tures. SuffPCR and AIMER have a perfect ROC curve, while the
other three methods are unable to identify five features. We under-
take a similar exercise under conditions favorable to SPC in the
Supplementary Material.

2.2.3 Semi-synthetic analysis with real genomics data

The simulations in Section 2.2.2 explore various scenarios for the
data generation process and show the performance of SuffPCR rela-
tive to the alternatives; however, they do not use any real genomic
data. In this section, rather than fully generating X, we create a
semi-synthetic analysis wherein only the phenotypes are generated.
We first performed PCA on the NSCLC data (Lazar et al., 2013)
and note that the first two empirical eigenvalues are relatively large,
so we chose the number of PCs to be d¼2. We keep the top 20 rows
in the empirical V which have the largest norm and set the rest to 0.
We then recombine and add noise. The phenotype is constructed as
in the previous simulations, and the SNR is calibrated as above.
Figure 3 shows the results analogous to those in Figure 2. SuffPCR

Algorithm 3 Generate synthetic data

1: Input: n¼100, p¼1000, r¼5, d¼3, SNRx ¼ SNRy ¼ 5.

2: Generate i.i.d. Nð0;1Þ U 2 R
n�d, E 2 R

n�p; z 2 R
n.

3: Set Kd ¼ diagððd; d � 1; . . . ; 1ÞÞ 2 R
d�d.

4: Generate i.i.d. Nð0; 1Þ ~V 2 R
d�d and orthogonalize the

columns.

5: Extend ~V 2 R
s�d by repeating each row r times (s ¼ rd).

6: Set VT
d ¼ ½~V

T
0� 2 R

d�p.

7: Generate i.i.d. Nð0;1Þ ~H 2 R
d�1.

8: Set Hd ¼ �ð
Pd�1

i¼1
~V
T

riKii
~H iÞ=ð~VrdKddÞ.

9: Set H ¼ ½ ~HT
Hd�T.

10: Set b� ¼ VdL�1
d KdH.

11: Set r2
x ¼ trðK2

dÞ=ðpSNR2
xÞ

12: Set r2
y ¼ ðb�TVT

dK2
dVdb� þ r2

xjjb�jj
2
2Þ=ðnSNR2

yÞ.
13: Set X ¼ UdKdVT

d þ rxE and y ¼ UdHþ ryz
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continues to perform well relative to alternatives, though here, FPS
has similar MSE, albeit poor feature selection.

2.3 Analysis of real genomics data
We analyze five microarray datasets that are publicly available and
widely used as benchmarks. Four of the datasets present mRNA
abundance measurements from patients with breast cancer (Van’t
Veer et al., 2002; Miller et al., 2005), diffuse large B-cell lymphoma
(DLBCL) (Rosenwald et al., 2002) and AML (Bullinger et al.,
2004), and the fifth reports microRNA (miRNA) levels from
NSCLC patients (Lazar et al., 2013). The features in X are gene ex-
pression measurements from microarrays. In the Supplementary
Material, we apply SuffPCR to predict COVID-19 viral load from
RNA-Seq data.

The phenotypes Y are censored survival time in all cases, though
some of the datasets also contain binary survival status indicators.
Because the real valued phenotype is non-negative and right cen-
sored, we follow common practice and transform Y to logðY þ 1Þ.
Each observation is a unique patient. The first breast cancer dataset
has 78 observations and 4751 genes, the second has 253 observa-
tions and 11 331 genes, DLBCL has 240 observations and 7399
genes, AML has 116 observations and 6283 genes and NSCLC has
123 observations and 939 genes.

We randomly split each dataset into 3-fold for training,
validation and testing with proportions 40%, 30% and 30% re-
spectively. We set the number of components d¼3 and search over
5 log-linearly spaced k values. Other choices for d and k yield similar
results. We train all methods on the training set, use the validation
set to choose any necessary tuning parameters and report perform-
ance of each method on the test set. We repeat the entire process
(data splitting, validation and testing) 10 times to reduce any bias
induced by the random splits. In all cases, all methods were tuned to
optimize validation-set MSE.

Table 2 shows the average prediction MSE and the average num-
ber of selected features for SuffPCR and any alternative methods
that perform feature selection. SuffPCR works better than all the al-
ternative methods on 4 out of 5 datasets with a comparatively small
number of features selected. The DLBCL data are difficult for both
sparse and PC-based methods. As described above, FPS cannot be
used for these data sets because of the number of genes. Non-sparse
alternatives have much smaller MSE, suggesting that many genes
may play a roll in mortality rather than only a subset. SPCA is
designed to maximize the variance explained by the principal com-
ponents subject to a penalty on the non-sparsity, and it does not
seem to work well in regression tasks. DSPCA has relatively low pre-
diction MSE, and it does in principle perform feature selection,
though it generally produces a dense model. While Ridge, Random
Forests and SVM predict well in general, they do not perform any
feature selection, which is a key objective here, so show their MSE
in the Supplementary Material.

To assess the potential relevance of the genes selected by
SuffPCR to the cancer type from which they were identified, we fur-
ther explored the DLBCL data and extracted the selected genes. (We
do the same with AML in the Supplementary Material.) We first
find the best k via 5-fold cross-validation on all the data and then
train SuffPCR with this k. Our model selects 87 features correspond-
ing to 32 unique genes and 2 expressed sequence tags (ESTs) for
DLBCL. Seventeen of the identified genes encode ribosomal pro-
teins, overexpression of which is associated with poor prognosis
(Ednersson et al., 2018). A further nine genes encoding major histo-
compatibility complex class II (MHCII) proteins were detected, a
notable finding in light of the fact that MHCII downregulation is a
means by which some DLBCLs evade the immune system (de
Charette and Houot, 2018). Discovering these large groups of simi-
larly functioning genes illustrates the benefits of SuffPCR relative to
alternatives. CORO1A encodes the actin-binding tumor suppressor
p57/coronin-1a, the promoter of which is often hypermethylated,
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Fig. 2. This figure compares the performance of SuffPCR against alternatives when the features come from a row-sparse factor model under favorable conditions for SuffPCR.

Boxplots and ROC curve (far right figure) are over 50 replications. We have omitted the other methods from the ROC curve for legibility, but their behavior is similar to lasso.

TPR and FPR stand for true/false positive rate, respectively. Note that (as one would expect from the simulation conditions) SPC has the worst performance in terms of the

ROC curve while both SuffPCR and Elastic net have AUC of almost 1
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Fig. 3. This figure compares the performance of SuffPCR against alternatives when the features come from a row-sparse factor model extracted from the NSCLC data.

Boxplots and ROC curve (far right figure) are over 50 replications. In terms of the ROC curve, SPC and AIMER have the best performance, though SuffPCR is not far behind.

But note that SPC has much worse precision and recall
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and therefore likely silenced in DLBCL (Li et al., 2002). FEZ1 ex-
pression has been used in a prognostic model (Liu et al., 2019).
RAG1, encoding a protein involved in generating antibody diversity,
can induce specific genetic aberrations found in DLBCL (Miao
et al., 2019). RYK encodes a catalytically dead receptor tyrosine kin-
ase involved in Wnt signaling and CXCL5 encodes a chemokine. To
our knowledge, neither gene has been implicated in DLBCL and
thus may be of interest for further exploration. EST Hs.22635
(GenBank accession AA262469) corresponds to a portion of
ZBTB44, which encodes an uncharacterized transcriptional repres-
sor, while EST Hs.343870 (GenBank accession AA804270) does not
appear to be contained within an annotated gene. The
Supplementary Material lists the selected genes and associated refer-
ences. A separate listing of the genes encoding ribosomal and
MHCII proteins are given in the Supplementary Material.

2.4 Theoretical guarantees
When the sparse factor model described in Section 2.2.1 is true,
SuffPCR enjoys near-optimal convergence rates. We now make the
necessary assumptions concrete and note that some can be weakened.

A1 Yi ¼ XT
i b� þ �i; i ¼ 1; . . . ; n, where �i 
 Nð0; ryÞ; ry > 0.

A2 Xi 
 Npð0;RÞ; i ¼ 1; . . . ; n.

A3 R ¼ VLVT, is symmetric, VTV ¼ Ip, L is diagonal.

A4 li ¼ k2
i 1ði � dÞ þ r2

x and k1 � kd :¼ / > 0.

A5 jjdiagðVdVT
dÞjj0 � s and minjfðVdVT

dÞjj _ 0g > 2s.

A6 as n; p!1; n > ðs2 þ dÞ logðpÞ eventually.

Assumptions A1–A4 are the same as those used in Section 2.2.1 to
generate data from a linear factor model. Assumption A5 says that
the number of true nonzero coefficients b� must be no more than s
and that the size of the associated components must be large enough.
Assumption A6 means that eventually, we must have at least as many
observations n as a logarithmic function of p times the true number of
components plus the square of the number of nonzero b� coefficients.

THEOREM 1. Suppose Assumptions A1–A6 hold and let bb be the estimate

produced by SuffPCR with k ¼ ck1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
and t < 2s where t is the

threshold used in Algorithm 1 and s is given in A5. Then

1

n
jjXðbb � b�Þjj22 ¼ OP

ðs2 þ dÞ logðpÞ
n

� �
:

THEOREM 2. Suppose Assumptions A1–A6 hold and let bb be the estimate

produced by SuffPCR with k ¼ ck1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
and 2s > t > s where t is

the threshold used in Algorithm 1 and s is given in A5. Then

jsuppðbbÞ�suppðb�Þj ¼ OP
s2 logðpÞ

n

� �
;

where A�B ¼ A=B [ B=A is the symmetric difference operator and

supp denotes the support set.

In both results above, c is a positive number (possibly different be-
tween the two) that is independent of n and p but may depend on
any of the other values given in A1–A6. Theorem 1 gives a conver-
gence rate for the prediction error of SuffPCR comparable to that of

Lasso though with explicit additional dependence on d. Under
standard assumptions with fixed design, this dependence would not
exist for Lasso. On the other hand, our results are for random design
with d small, along with different constants absorbed by the big-O.

Theorem 2 shows that our procedure can correctly recover the set of
nonzero b� as long as the threshold t is chosen correctly. We note
that this result is a direct consequence of Vu et al. (2013, Theorem
3.2). In practice, the condition 2s > t > s cannot be verified, al-

though the ‘elbow’ condition we employ in the empirical examples
seems to work well. Finally, we emphasize that, as is standard in the
literature, these results are for asymptotically optimal tuning param-
eters k; t rather than empirically chosen values. The proof of

Theorem 1 is given in the Supplementary Material. These results
suggest that SuffPCR is nearly optimal as p and n grow.

3 Discussion

High-dimensional prediction methods, including regression and
classification, are widely used to gain biological insights from large

datasets. Three main goals in this setting are accurate prediction,
feature selection and computational tractability. We propose a new
method called SuffPCR which is capable of achieving these goals
simultaneously. SuffPCR is a linear predictor on estimated sparse
principal components. Because of the sparsity of the projected sub-

space, SuffPCR usually selects a small number of features. We con-
duct a series of synthetic, semi-synthetic and real data analyses to
demonstrate the performance of SuffPCR and compare it with exist-
ing techniques. We also prove near-optimal convergence rates of

SuffPCR under sparse assumptions. SuffPCR works better than al-
ternative methods when the true model only involves a subset of
features.
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