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Abstract

Background: Longitudinal categorical variables are sometimes restricted in terms of how individuals transition
between categories over time. For example, with a time-dependent measure of smoking categorised as never-
smoker, ex-smoker, and current-smoker, current-smokers or ex-smokers cannot transition to a never-smoker at a
subsequent wave. These longitudinal variables often contain missing values, however, there is little guidance on
whether these restrictions need to be accommodated when using multiple imputation methods. Multiply imputing
such missing values, ignoring the restrictions, could lead to implausible transitions.

Methods: We designed a simulation study based on the Longitudinal Study of Australian Children, where the
target analysis was the association between (incomplete) maternal smoking and childhood obesity. We set varying
proportions of data on maternal smoking to missing completely at random or missing at random. We compared
the performance of fully conditional specification with multinomial and ordinal logistic imputation, and predictive
mean matching, two-fold fully conditional specification, indicator based imputation under multivariate normal
imputation with projected distance-based rounding, and continuous imputation under multivariate normal
imputation with calibration, where each of these multiple imputation methods were applied, accounting for the
restrictions using a semi-deterministic imputation procedure.

Results: Overall, we observed reduced bias when applying multiple imputation methods with restrictions, and fully
conditional specification with predictive mean matching performed the best. Applying fully conditional
specification and two-fold fully conditional specification for imputing nominal variables based on multinomial
logistic regression had severe convergence issues. Both imputation methods under multivariate normal imputation
produced biased estimates when restrictions were not accommodated, however, we observed substantial
reductions in bias when restrictions were applied with continuous imputation under multivariate normal imputation
with calibration.

Conclusion: In a similar longitudinal setting we recommend the use of fully conditional specification with
predictive mean matching, with restrictions applied during the imputation stage.

Keywords: Fully conditional specification, Longitudinal categorical data, Missing data, Multiple imputation,
Multivariate normal imputation, Restricted transitions
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Background

The problem of missing data is prominent in longitu-
dinal studies as these studies involve gathering informa-
tion from respondents at multiple waves over a long
period of time [1]. One approach for handling such
missing data is multiple imputation (MI), which has be-
come a frequently used method for handling missing
data in observational epidemiological studies [2]. MI is a
two stage process [3]. In the first stage, the incomplete
dataset is replicated multiple times, with the missing
values replaced by values drawn from an appropriate im-
putation model. In the second stage, the analysis of
interest is performed on each of the imputed datasets
and resulting parameter estimates are combined using
Rubin’s rules [3]. Multivariate normal imputation
(MVNI), and fully conditional specification (FCS), are
widely available MI methods that have been used in lon-
gitudinal studies [4, 5] to impute missing values.

MVNI imputes missing values by fitting a joint imput-
ation model for all the variables with missing data, as-
suming that these variables follow a multivariate normal
distribution [6]. FCS uses univariate regression models
fitted to each variable with missing data depending on
the type of variable with missing data [7, 8]. When
handling missing values in longitudinal data, standard
implementations of MVNI and FCS can be applied by
treating repeated measurements of the same variable at
different time points as distinct variables, sometimes re-
ferred to as the “Just Another Variable” approach [9].
For example, measurements of quality of life at different
time points are treated as separate variables. This needs
to be done for all the longitudinal variables. This ap-
proach does not explicitly model the longitudinal struc-
ture of the data, although it does allow for the
correlations between the repeated measurements. The
two-fold FCS algorithm is a recently proposed version of
ECS that takes into consideration the longitudinal struc-
ture of the data by imputing missing values in a variable
at a certain time point, using information only from the
specific time point and immediately adjacent time points
[9, 10]. Two-fold FCS may help to reduce convergence
issues encountered with FCS in longitudinal studies with
large numbers of waves and incomplete variables [9].

In many epidemiological studies, variables are col-
lected that involve several restrictions. One example
is that of restricted-transition variables. These are categor-
ical variables where the set of possible future states depends
on its current and previous states. For example, with a
time-dependent measure of smoking categorised as never-,
ex-, and current-smoker, current- or ex-smokers cannot
transition to a never-smoker at a subsequent wave. Oral
contraceptive use measured repeatedly as a never-user,
ex-user or current-user is another example of a time-
dependent variable which is restricted such that an ex- or
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current-user cannot transition into a never-user at a subse-
quent wave. However, never-users may start using oral con-
traceptives at any time.

Guidance on how MI methods should be applied for
handling missing data in such variables is limited in the
statistical literature. For incomplete smoking data (non-,
ex- and current-smoker), Welch et al. [9] focused on a
simulation scenario where non-smokers at baseline did not
transition into other smoking categories, and used deter-
ministic imputation for the non-smoking category in this
simulation study. Specifically, all respondents observed as
non-smokers at any of the time points, were imputed as
non-smokers for missing time points. Missing values for
the remaining respondents were imputed stochastically, as
either a current-smoker or ex-smoker [9]. Although this
semi-deterministic approach is appealing, it may not always
be appropriate as in real-world situations some
non-smokers may start smoking. Similarly, in the contra-
ceptive use example, never-users may start using oral con-
traceptives over time. Another simulation study by
Kalaycioglu et al. [5] explored a number of scenarios for
handling missing values in longitudinal data, including a
categorical treatment variable, which had transition restric-
tions. However, little information was available on how
missing values were handled in this variable.

While the primary goal of MI is to obtain valid infer-
ences, and not to replace the actual missing values per
se [11], it is important to assess the impact of implaus-
ible imputation values on the parameter estimates of
interest [6, 7, 12]. Therefore, the aim of this paper was
to evaluate the performance of possible MI approaches
(namely MVNI, FCS, and two-fold FCS algorithm) for
handling missing values in a longitudinal categorical
variable with restrictions on transitions over time. We
report the findings of a case study from the Longitudinal
Study of Australian Children (LSAC), and a simulation
study based on the LSAC [13] where approximately 65%
of data on maternal smoking were set to missing
completely at random (MCAR) or missing at random
(MAR). In this study, maternal smoking was a
time-dependent categorical exposure variable with re-
strictions, measured repeatedly over six time points.

Methods

Motivating example: Longitudinal study of Australian
children (LSACQ)

The Longitudinal Study of Australian Children (LSAC)
is a prospective study of 10,000 children, involving two
cohorts, the infant cohort (B) and the child cohort (K).
Data collected at six time points, from 2004 to 2014
[13] was available for this study. LSAC obtained written
informed consent from the caregiver on behalf of each
of the study children, as the children were minors at the
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time of data collection and was approved by the Australian
Institute of Family Studies Ethics Committee.

Epidemiological analysis of interest

Childhood obesity is a growing epidemic in most de-
veloped countries, and a common problem among
Australian children [14]. Many severe health diseases
are attributable to childhood obesity [15]. Importantly,
exposure to maternal smoking has been found to be
an important risk factor of childhood obesity [16—19].
The motivating example for our simulation study was
to quantify the relationship between exposure to ma-
ternal smoking and body mass index (BMI).

Target analysis model

The analysis of interest was the association between mater-
nal smoking measured at one wave and BMI for age
z-scores (BMIz) measured at the subsequent wave, esti-
mated using a linear mixed-effects model with a random
intercept and adjusted for child’s current age, birthweight,
and sex, breastfeeding, maternal age at child birth, maternal
education, and family socio-economic status (see Eq. 1 and
Table 1 for description of the variables, and Fig. 1a for the
causal diagram).

Table 1 Description of variables from the Longitudinal Study of
Australian Children used in the simulation study for respondent i at
wave j

Variable Type Grouping/Units Label

Study child’s BMI Continuous  z-score BMIz;

for age®

Maternal smoking Categorical 0=Never-smoker ~m_smoking;;
1 = Ex-smoker
2 =Current-
smoker

Maternal depression Categorical 0=No m_depression;;
1=VYes

Maternal age at Continuous  Years m_age;

child birth

Maternal education Categorical 0=Not m_education;
completed
1 =Completed

Breastfeeding Categorical 0=No breastfed;
1=VYes

Family socio-economic Continuous z-score ses;

status

Study child's sex Categorical 0=Female sex;
1=Male

Study child’s birth Continuous  kilograms birthweight;

weight

Study child’s age Continuous Months scagey;

Abbreviations: BMI, body mass index
“Raw BMI measurements converted into BMI for age z-scores using the 2000
Centre for Disease Control growth charts
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BMIz;; = (By + boi) + 22:1/31# [mdsmokingiﬁ j1=a
+B,scage; + Bs|breastfed; = 1]
+,m_age; + Bs|m_education; = 1]
+fBcbirthweight; + B, [sex; = 1]

+pgses; + €;
(1)

where i =1,.., N, and N =1000 for waves j=1,...,6; €;
is identically and independently distributed as €; ~ N
(0,02); a=0 (never-smoker — reference category), 1
(ex-smoker) and 2 (current-smoker); fSo is the
population parameter for mean BMIz when other
covariates are set to zero and by; is the random inter-
cept for individual i, assumed to be normally distrib-
uted with mean zero, and constant variance; S; - f5s
are the population parameters for the mean change in
BMIz associated with the covariates.

Simulation of complete data
The simulation study was based on six waves of the
LSAC infant cohort, which had a participation of 5107
children at wave 1 (see Additional file 1: Table S1). Data
were generated as specified below based on the casual
diagram in Fig. 1la. This process was repeated to gener-
ate 1000 complete datasets. A detailed description of
the simulation procedure is provided in the Additional
file 1.

After simulating the time-independent variables, the
time-dependent exposure (m_smoking) and outcome
(BMlIz) were simulated as follows:

e Maternal smoking at wave O (i.e. during pregnancy)
(m_smoking; ;) was generated from a multinomial
logistic regression model:

logit { Pr (mdsmokingiyo = a)} = N + Ny 77-4ge;
4N,  [m-education; = 1] + n; ses;

(2)

e Maternal smoking at waves j = 1,...,6 (m_smoking;)
was generated in two stages.

e Stage 1: Maternal smoking was generated for
respondents who were never-smokers at the previ-
ous wave using the multinomial logistic regression
model:
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Fig. 1 a) Causal diagram for the association between maternal smoking and subsequent body mass index (BMI) for age z-scores
developed based on the literature; m_age, maternal age at child birth; m_education, maternal education; sex, study child’s sex;
birthweight, study child’s birth weight; ses, family socio-economic status z-score; breastfed, breastfeeding patterns; BMIz2-BMIz6, study
child’s BMI for age z-scores at waves 2 to 6; m_smoking0-m_smoking6, maternal smoking at waves 0 to 6; m_depression0-
m_depression6, maternal depression at waves 0 to 6; b) Causal diagram for MAR missingness. R; is an indicator variable of missingness
where maternal smoking at wave j were assigned to missing if Rj = 1. Only variables required to model the MAR missingness are shown

in the figure
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logit { Pr <m4smokingivj = b| m_smoking, ; | = 0)}
= (oo + Gy am-age; + {y ,[m_education; = 1]
+0s5a {m_depressioniv 1= 1} + (g 05€5;

(3)

— Stage 2: Maternal smoking for the remaining
respondents (current- or ex-smoker) was generated
using the logistic regression model:

logit { Pr (m_smokingi’j =2| m_smokingi,/_l:tO)}
= Ko + Kim_age; + Ka[m_education; = 1]
+K3 [m_depressioni, 1= 1}

+Kyq [m_smokingi’ 1= 2} + Ksses;

(4)

e BMI for age z-scores (BMlIz;;) were generated for
waves j = 2,...,6 using the linear mixed-effects model
in Eq. 1 so that the chosen values for ;, (a=1, 2)
of Eq. 1 are the true values for the parameters of
interest.

We considered f1,; =0.10 and 1, =0.15. In general,
parameter values used in the simulation process were
chosen to mimic the LSAC data (see Additional file 1:
Table S2).

Generation of missing data

For each of the 1000 simulated datasets, and at each
wave, maternal smoking values were randomly assigned
to missing such that for some individuals, measurements
in all subsequent waves were also missing (i.e. dropout)
while for others future values of maternal smoking could
be missing or observed (i.e. intermittent missingness).
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The proportions of missingness per waves were as in the
LSAC (see Additional file: Fig. S1). Missingness was gen-
erated under an MCAR mechanism, or either of two
MAR mechanisms, representing weak or strong associa-
tions between the probability of missingness and predic-
tors of missingness (see Table 2).

Specifically, under each MAR mechanism, it was as-
sumed the probability of missingness in maternal smok-
ing followed a logistic regression model dependent on
BMIz and the auxiliary variable maternal depression
(Fig. 1b). The d-separation criterion [20] was used to
show that missingness is independent of unobserved
data conditional on maternal depression at wave j
(m_depression;) and BMIz measured at the subsequent
wave (BMlIz, ;) that is, the MAR assumption holds
given these variables (see Additional file 1). The models
used to generate missing values in maternal smoking
were:

Model A: missing for all subsequent waves

logit{ Pr(Riy =1)} = vo1 + w1 [m,depressioni,l =1
+ VzBMIZiJ

Pr(R;; = 1|R;j-1 = 1) = 1;2</<5

logit{ Pr(Ri,; =1R ;.1 = 0)}

=+ W1 m_depressionl-vj = 1}

+ VzBMIZL'_Jud; 2SjS 5 (5)
Model A introduces monotone missingness, such that,
if the measurement at wave j is specified as missing
using model A, then the individual will have measure-
ments missing for all subsequent waves j+1, ..., 5.
Model B: intermittent missingness between waves j-1
and j

logit{ Pr(Ri,/ = 1)} = wo,j + w1 m,depressionivj = 1}

+0)28MIZ,‘7]'+1; jS 5

(6)

Table 2 Specifications of the parameters in the logistic regression models used to impose missing data under the missing at

random scenarios

Variable Odds Ratio

MAR (weak) MAR (strong)?

Model A Equation 5° Model B Equation 6° Model A Equation 5° Model B Equation 6°
Maternal depression at wave j exp(vy) =1.67 exp(w;) = 1.61 exp(vy) =2.80 exp(w) = 2.70
BMI for age z-scores at wave j+ 1 exp(v,) = 1.64 exp(w,) = 1.58 exp(v,) =2.60 exp(w,) = 2.50

Abbreviations: BMI, body mass index; exp., exponential; MAR, missing at random
#0dds ratio for MAR (Strong) = square of the Odds ratio for MAR (Weak)

PModels A and B represent the logistic regression models used to generate missingness in maternal smoking from waves 1-5 under MAR, in all subsequent waves

and intermittently respectively
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where R; ; is an indicator variable of missingness, and
maternal smoking was assigned to missing for respond-
entiat wavejif R, ;=1.

Model B was only applied to the respondents who
were not specified as missing using model A. The strong
MAR scenario was obtained by doubling the log of the
odds ratios used in the weak MAR scenario (see Table 2
for parameter values).

For each mechanism (MCAR or MAR), the overall
missingness proportion for maternal smoking was set
at 45 % and 65%, representing realistic and extreme
scenarios respectively [21], resulting in 6 simulation
scenarios.

Methods to handle missing data

For comparison with MI methods, we first performed a
complete case analysis (CCA), excluding all respondents
with missing values for maternal smoking at any of the 5
waves, and an available case analysis (ACA), including
available data at each wave in the analyses [22]. These ap-
proaches are commonly used due to simplicity [2, 22-24].
CCA and ACA are expected to produce biased estimates
under the MAR scenarios explored in this study. Both
CCA and ACA condition on the missingness indicator R;
(see Fig. 1b). This missingness indicator is a collider as it
lies in the pathway ‘m_depressionj—R«— BMlIz; , , open-
ing a backdoor path between the exposure and outcome
of interest that is not blocked in the analysis model given
that maternal depression is an auxiliary variable not in-
cluded in the target analysis. Therefore, in principle we ex-
pect biased estimates under CCA and ACA [25], although
this bias may be small.

We then assessed three MI methods, MVNI, FCS, and
two-fold FCS, to multiply impute missing values in ma-
ternal smoking at waves 1 to 5. Given that the missing-
ness mechanism generated satisfies the MAR
assumption given m_depression; and BMlIz;, ;, as ex-
plained previously, we expect in principle that appropri-
ate MI methods incorporating the target analysis
variables as well as the auxiliary maternal depression
variable to produce unbiased estimates under the
missing data scenarios considered. Specifically, we con-
sidered two versions of each of these MI methods; the
standard version, and the restriction-adapted version
that accounts for restrictions in transitions over time.

Standard version

In the standard implementation of MVNI and FCS,
repeated measurements of maternal smoking were in-
cluded as distinct variables in the imputation model
(i.e. one variable for each time point). This ‘single-le-
vel’ imputation was used to impute missing data at
all the time points. The correlation between the re-
peated measures is captured in this approach [4, 5],
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However, treating repeated measurements of the same
variable as distinct variables fails to account for the
temporal ordering of the data which may affect im-
putation [9].

With MVNI, due to the assumption of multivariate nor-
mality, the imputed values for maternal smoking could
take non-integer values. Therefore, we used two methods
for imputation; maternal smoking imputed as indicators
using MVNI, followed by projected distance-based round-
ing (indicator-PDBR) [26], and maternal smoking imputed
as a continuous variable using MVNI, followed by calibra-
tion (continuous-calibration) [27, 28], to re-categorise im-
puted values into the original categories (see Additional
file 1, Figure S2 and S3).

Within the FCS framework we considered three
univariate imputation methods: multinomial logistic
regression, ordinal logistic regression (treating the
smoking variable as continuous based on the numer-
ical codes 0, 1, 2), and predictive mean matching
(PMM) (using a linear prediction model to obtain
predicted values and k=5 and 10 for randomly draw-
ing from k™ nearest observed values to the predicted
value) [29].

With the two-fold FCS algorithm, missing values in
maternal smoking were imputed using information from
only specific and immediately adjacent time points, and
assuming a multinomial logistic imputation model (or-
dinal logistic regression is not available in current imple-
mentation of two-fold FCS) [30].

We used a linear mixed-effects model with a ran-
dom intercept as our analysis model. Even though we
used a multilevel analysis model, missing data were
imputed using single-level fixed-effect imputation
methods. These single-level fixed-effect MI methods
allow an unstructured correlation structure between
the repeated measurements. This indicates that no
unnecessary assumptions are made about the correla-
tions, which makes the single-level fixed-effect MI
methods more general than a multilevel MI method.
Furthermore, all imputation models included all vari-
ables in the analysis model as predictors, as well as
the time-dependent auxiliary variable maternal de-
pression [31]. Hence the MI methods considered are
approximately compatible with the analysis model.
Even though single-level fixed-effect MI may lead to
increased precision, the statistical literature has
highlighted limitations of this method: it can inflate
the sampling variance, lead to low coverage probabil-
ities, and may be computationally demanding. These
issues are discussed by Enders et al. [32].

Restriction-adapted version
We used a semi-deterministic approach, where miss-
ing values in maternal smoking at waves 1 to 5 were



De Silva et al. BMIC Medical Research Methodology (2019) 19:14

imputed according to a three-stage process, as
follows:

e Stage 1: If a respondent was observed as a never-
smoker at a specific wave, any missing values in all
previous waves were deterministically assigned to be
a never-smoker (Fig. 2a).

e Stage 2: If a respondent was observed as a current-
or ex-smoker at a specific wave, any missing values
in all subsequent waves were imputed stochastically
as current- or ex-smokers (i.e. as a binary variable)
(Fig. 2b).

e Stage 3: For the remaining scenarios (Fig. 2c), the
missing values were imputed stochastically as never-
, current- or ex-smokers.

In stage 3, it is inevitable that a small proportion of
imputed values will violate the restrictions. However, we
accepted these implausible values as it would be difficult
to further introduce restrictions within the already exist-
ing restrictions.

Performance measures for evaluating different methods
We estimated the target analysis parameters (f;, . (a
= 1,2) of Eq. 1) by fitting the linear mixed-effects model
in Eq. 1.

We compared the performances of CCA, ACA, and
the different MI methods (standard and restriction-
adapted versions) using the absolute bias (difference be-
tween true value and average of MI estimates calculated
from 1000 simulations); empirical standard error (square
root of variance of 1000 estimates); and coverage of 95%
confidence interval (proportion of simulated datasets in
which the true parameter value was contained in the es-
timated 95% confidence interval). The relative bias (bias
relative to true parameter value), the model-based stand-
ard error (average of standard errors of 1000 estimates)
and mean square error (MSE), which is a combined
measure of bias and efficiency [33], were also reported.
The Monte Carlo errors for the MI estimates were used
to assess the variation in estimated parameters across
the simulations [34].

Case study analysis
In addition to the simulation study, we also provide
an empirical comparison of the methods considered,
using the data from the LSAC infant cohort. We used
wave-specific measures of whether the mother cur-
rently smoked or not to derive the never-smoker,
ex-smoker and current-smoker at waves 1 through 6
(see Additional file 1).

Stata 13 statistical software [35] was used for all
analyses.
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Results

Results from simulation study

The standard and two-fold FCS methods with multi-
nomial logistic regression imputation models failed to
converge in all 1000 simulations for each of the 6
simulation scenarios. Standard FCS with ordinal logistic
regression  imputation showed extremely high
non-convergence rates (up to 95%). The results for
standard and two-fold FCS methods with multinomial
logistic regression imputation, and FCS with ordinal re-
gression are no longer considered in the following de-
scription of the results.

As expected we observed minimal bias under CCA
and ACA when data were MCAR, with the relative bias
not exceeding 3% (Figs. 3a and 4a). In both MCAR
scenarios, the MI methods (FCS with PMM,
indicator-PDBR and continuous-calibration) produced
more biased estimates than CCA and ACA (a minimum
relative bias of 0.05% produced by CCA and for the MI
methods a maximum relative bias of 19.01% produced
by continuous-calibration without restrictions). How-
ever, when data were MAR, the CCA resulted in more
bias than most MI approaches, particularly in the strong
MAR scenario (Figs. 3c and 4c). ACA still produced low
bias (relative bias less than 10%) (Additional file 1:
Tables S4-S7) and performed better than all of the MI
methods in nearly all scenarios. FCS with PMM per-
formed better than the other MI methods in terms of
bias, in most MAR scenarios, under the standard imple-
mentation of MI, and we observed further reductions in
bias under the restriction-adapted version, with the rela-
tive bias remaining under 10% for all missingness sce-
narios. Both imputation approaches under MVNI
resulted in a high level of bias under the standard ver-
sion. Convergence issues in up to 0.3% of the simula-
tions across the 6 missingness mechanisms when no
restrictions were applied were observed with
indicator-PDBR. Little difference was observed in bias
for indicator-PDBR with restrictions compared to the
standard version; however, the non-convergence was
lowered to a maximum of 0.1% across the 6 scenarios.
We observed substantial reductions in bias for
continuous-calibration (a reduction of relative bias of up
to 26%, Fig. 4c) under the restriction-adapted version
compared to the standard implementation.

For all MI methods with no issues of convergence, we
found substantial gains in precision compared to CCA.
However, for ACA we observed slightly larger empirical
standard errors compared to these MI approaches.
Across these MI methods, there was minimal difference
in precision irrespective of the imputation approach and
whether it was applied with or without restrictions. The
gain in precision for MI compared to CCA and ACA
was also reflected in the MSE, in which the MI methods
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a
Wave
0 1 2 3 4 5
never
never
never
never
b
Wave
0 1 2 3 4 5
ex/ current
ex/ current
ex/ current
ex/ current ;
ex/ current
C
Wave
0 1 2 3 4 5
never ex/ current
never ex/ current
never ex/ current
never ex/ current
never ex/ current
never ex/ current
never ex/ current
never ex/ current
never ex/ current
never ex/ current

Fig. 2 a) Scenarios to be imputed under stage 1 of the restriction process (never-smoker); b) Scenarios to be imputed under stage 2 of the
restriction process (ex- or current-smoker); €) Scenarios to be imputed under stage 3 of the restriction process (never-, ex- or current-smoker);
Grey boxes refer to data to be imputed at each stage if incomplete
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Fig. 3 Absolute and Relative bias (%), Coverage (%), and Mean square error for complete case analysis (CCA), available case analysis (ACA),
indicator based imputation using multivariate normal imputation with projected distance-based rounding (indicator-PDBR), imputation as a
continuous variable using multivariate normal imputation with calibration (continuous-calibration), and predictive mean matching (PMM)
for handling increasing proportions of missing data (0.45, 0.65), for the parameter estimates for current-smokers relative to never-smokers
for the simulation study, when data are a) missing completely at random; b) missing at random (weak); ¢) missing at random (strong).
Results are not shown for fully conditional specification with multinomial and ordinal logistic imputation and two-fold fully conditional
specification methods because the imputation models failed to converge in some or all of the simulations. Minimal differences were
observed between the results of predictive mean matching with 5 and 10 nearest observations. Therefore, only the results for this
method with 5 nearest observations are presented. Complete case analysis and available case analysis are presented under without
restrictions for comparison purposes only

produced a substantially lower MSE compared to CCA,
and a slightly lower MSE compared to ACA. FCS with
PMM performed better in terms of MSE than the other
imputation approaches in most missingness scenarios
when no restrictions were applied, however, we did not
observe much difference in MSE when restrictions were
applied.

The coverage was within 93.6 and 96.4% for the nominal
level of 95% (expected range for coverage based on 1000
simulations) for most scenarios. However, a slight
over-coverage was reported by both continuous-calibration
and FCS with PMM for parameter estimates corresponding
to ex-smokers relative to never-smokers, under both stand-
ard and restriction-adapted versions.

Results from case study

Similar to the simulation study, the multinomial and or-
dinal logistic imputation models fitted under the FCS
methods (both with and without restrictions) did not
converge. Additionally, indicator-PDBR with restrictions,
which showed some convergence issues in the simula-
tion study, did not converge with the real data.

As shown in Fig. 5, the CCA produced slightly large
estimates for the mean differences and wider confi-
dence intervals compared to the ACA and the MI
methods that converged. The ACA gave smaller
standard errors and narrower confidence intervals
than all MI methods. Continuous-calibration and FCS
with PMM were the only MI methods with
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Fig. 4 Absolute bias, Relative bias (%), Coverage (%), and Mean square error for complete case analysis (CCA), available case analysis (ACA),
indicator based imputation using multivariate normal imputation with projected distance-based rounding (indicator-PDBR), imputation as a
continuous variable using multivariate normal imputation with calibration (continuous-calibration), and predictive mean matching (PMM) for
handling increasing proportions of missing data (0.45, 0.65), for the parameter estimates for ex-smokers relative to never-smokers for the
simulation study, when data are a) missing completely at random; b) missing at random (weak); ¢) missing at random (strong). Results are not
shown for fully conditional specification with multinomial and ordinal logistic imputation and two-fold fully conditional specification methods
because the imputation models failed to converge in some or all of the simulations. Minimal differences were observed between the results of
predictive mean matching with 5 and 10 nearest observations. Therefore, only the results for this method with 5 nearest observations are
presented. Complete case analysis and available case analysis are presented under without restrictions for comparison purposes only

restrictions that converged. We observed minimal differ-
ences in the estimates and confidence intervals when
these methods were used with restrictions compared to
without restrictions (Additional file 1: Table S3).

Discussion

We compared the performance of MI methods, MVNI,
ECS, and two-fold FCS, applied with and without restric-
tions, in addition to CCA and ACA, for handling miss-
ing data in a categorical variable with restrictions over
time. We considered 6 different scenarios of missing
data in maternal smoking, a longitudinal categorical ex-
posure with three levels; never-smoker, ex-smoker and
current-smoker, where an ex- or current-smoker at a
specific wave is restricted from transitioning into a
never-smoker.

Consistent with previously published studies [9, 21,
36-38], CCA and ACA produced negligible bias
under MCAR. CCA excluded all individuals with
missing data in at least one wave from the analysis.
Missing data in maternal smoking were generated
such that missingness was dependent on the outcome,
BMI for age z-scores, after conditioning on the vari-
ables of the target analysis model. Therefore, as ex-
pected CCA produced biased estimates when data
were MAR, with larger bias in the stronger MAR sce-
nario. In contrast, in nearly all missingness scenarios
investigated, ACA produced less biased estimates than
MI without restrictions. This may be due to ACA
accounting for most of the missingness mechanism due to
the correlation between the repeated measurements. The
imputation of implausible transitions under standard MI
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without restrictions is a possible reason for why this
method produced more biased estimates than ACA.
Furthermore, standard MVNI and FCS methods do not
account for the temporal ordering of the repeated mea-
surements as they treat repeated measurements of the
same variable as distinct variables [9], which may explain
the under-performance. However, simulation studies by
Kalaycioglu et al. [5] and De Silva et al. [4] have shown
that both MVNI and FCS may not be to susceptible to this
issue as they have both been shown to have very good per-
formance when including as much information as possible
(ie. all the repeated measurements) in the imputation
model, as implemented in our study. Conversely, Kalay-
cioglu et al. [5] reported more biased estimates using
ACA compared with MI without restrictions in the pres-
ence of multiple longitudinal variables with missing data,
many of which were not restricted. In terms of precision,
we observed substantial and slight gains with MI in both
standard and restriction-adapted versions compared to
CCA and ACA respectively, consistent with previous
studies [4, 5]. This was presumably because we used ma-
ternal depression (a fully observed time-dependent vari-
able) in the imputation models, which was a strong
predictor of missingness [4, 21, 31, 39, 40].

The standard FCS approach imputing smoking using
multinomial or ordinal logistic regression imputation
failed to converge in 95-100% of the simulated datasets.
Our findings agree with the results of simulation studies
by Welch et al. [9] and Kalaycioglu et al. [5], which re-
ported convergence issues in FCS, albeit of smaller pro-
portions. Welch et al. [9], assumed that non-smokers at
baseline remained non-smokers throughout, and only
current- and ex-smokers transitioned between the two
categories, thus converting the imputation of maternal
smoking into a binary imputation. Despite this, approxi-
mately 25% of the simulated datasets did not converge
with standard FCS [9]. Of note, application of the
two-fold FCS in our simulation study, which reduced
the number of categorical predictor variables in each
univariate imputation model [30] where imputation of
smoking was performed using multinomial logistic re-
gression, still did not overcome the convergence issues.
We observed similar convergence issues as seen in the
simulation study with the real data.

Multinomial logistic regression faces difficulties of
convergence when the imputation model includes a
large number of categorical variables with rare categories
and/or high collinearity. In our study, under FCS, six
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categorical smoking variables (one for each time point)
were included in the multinomial logistic imputation
model, and only a small number of ex-smokers were
present in the simulated data mimicking the real cohort.
Even though under the two-fold FCS algorithm only four
categorical smoking variables (current and immediately
adjacent time points, and smoking during pregnancy)
were included in the multinomial logistic imputation
model, all of these variables had a rare category leading
to convergence issues.

FCS with PMM imputation produced the least biased
estimates when compared to other MI methods irre-
spective of whether restrictions were applied. It also pro-
duced the smallest MSE across the 6 missing
mechanisms, gaining precision over ACA, which per-
formed best in terms of bias. While all other MI
methods either failed to converge for all simulated data-
sets or resulted in large bias, PMM performed well both
with and without restrictions. PMM replaces missing
values with observed values [29, 41], therefore, even
without restrictions, the proportion of implausible tran-
sitions imputed was low. PMM also avoids the problems
arising from rounding methods related to MVNIL Slight
issues of over-coverage were observed under PMM. Rod-
well et al. [42] also reported issues with coverage when
using PMM for imputing limited range variables, due to
the matching algorithm used in Stata for PMM imput-
ation. PMM uses three different types (0, 1 and 2) of
matching to calculate a predictive distance between an
observed value and a value obtained from a linear pre-
dictor, and identifies k observations which minimise this
predictive distance. The ‘mi impute pmm’ command
in Stata uses type 2 matching. PMM can also be imple-
mented in R using the ‘mice’ package which uses type
1 matching. Type 2 matching differs from type 1 match-
ing in that it does not adequately account for the uncer-
tainty around the parameter of the imputation model
when computing the predictive distance. A simulation
study by Morris et al. [41] reported under-coverage for
PMM under both type 1 and type 2 matching, with type
2 matching leading to slightly worse coverage probabil-
ities for this reason. Therefore, the coverage probabilities
may have been better when implementing PMM using
the ‘'mice’ package in R compared to the ‘mi impute
pmm’ command in Stata.

Simulation studies by Kalaycioglu et al. [5] and De
Silva et al. [4] have shown that MVNI can have very
good performance when used to impute missing longitu-
dinal data. However, the underlying assumption of
multivariate normality is not plausible in our study as
maternal smoking is a categorical variable. While MVNI
can result in valid inferences despite the departure from
multivariate normality [6, 43], adoption of a suitable
rounding method to deal with non-integer imputed

Page 12 of 14

smoking values is required for the analysis of interest.
There are number of rounding techniques available for
categorical variables at a single time point [44, 45],
rounding methods in the context of longitudinal data
are yet to be explored [32]. We observed high biases
with both MVNI approaches under different scenarios,
especially without restrictions. Presumably because,
indicator-PDBR uses an indicator based approach for
imputation followed by projected distance-based round-
ing, which does not aim to preserve the marginal pro-
portion in each category, and continuous-calibration
imputes maternal smoking as a continuous variable,
followed by calibration for rounding, which distorts the
association between the exposure and outcome, even
though it aims to preserve the marginal proportion in
each category [44, 45]. Continuous-calibration resulted
in substantial reductions in bias when restrictions were
applied, and there were slight gains in MSE from
continuous-calibration compared to indicator-PDBR,
which agrees with the findings of Galati et al. [45]. It
should, however, be noted that continuous-calibration
was originally proposed for ordinal variables [44], while
maternal smoking is technically a nominal variable.
Indicator-PDBR also faced some convergence issues,
presumably because it uses an indicator-based approach
for imputation [44].

The three-stage restriction procedure employed in our
study is an extension of the semi-deterministic approach
used by Welch et al. [9], where they simplified the im-
putation to ex- and current-smokers as discussed previ-
ously. We observed moderate to substantial reductions
in bias for PMM and continuous-calibration, and fewer
convergence issues for indicator-PDBR, when restric-
tions were applied. However, when restrictions were ap-
plied, we observed that the empirical standard errors
either slightly increased or remained the same compared
with the standard implementation of MI. The MSE was
greatly influenced by the empirical standard error due to
its relatively large magnitude compared with absolute
bias, therefore, even in scenarios which showed substan-
tial improvements in bias, little or no change in empir-
ical standard errors resulted in no changes in MSE,
when restrictions were applied.

There is currently limited guidance on the imputation
of missing values in time-dependent categorical variables
even without restrictions. With standard FCS often fa-
cing convergence issues in the presence of categorical
variables with rare categories, and unsatisfactory round-
ing methods for MVNI, this area warrants further re-
search. Enders et al. [32] suggested using a joint
imputation procedure with latent variable formulation
for categorical variables, available in the MLwiN soft-
ware [46]. The ‘jomo’ package in R is designed for multi-
level joint modelling MI [47], but to date has not been



De Silva et al. BMIC Medical Research Methodology (2019) 19:14

widely adopted. Our study was limited to currently avail-
able methods in the Stata statistical software and multi-
level MI methods such as ‘jomo’ are currently not
available in Stata. Additionally, further research is re-
quired to examine how to implement restrictions within
these multilevel imputation methods, and this was be-
yond the scope of this study.

Our simulation study was designed based on the LSAC
infant cohort to assess the performance of MI methods
in a realistic setting [4, 21, 36]. We also provide a case
study for an empirical illustration of what we observed
in the simulation study. This simulation study was de-
signed based on a single cohort, and the performance of
the methods may vary with changes in various factors
including, magnitude and structure of the correlations
between the repeated measurements, and magnitudes of
the parameters used in the simulation models [21].
Therefore, caution is required when generalising these
results.

Conclusion

The findings from this study, which was based on a lon-
gitudinal cohort study, indicate that among the MI
methods available in Stata (which are all single-level
fixed-effect models), FCS with PMM, applied with re-
strictions, performs best in terms of bias and precision,
when handling up to 65% missing values in a
time-dependent categorical exposure variable with re-
strictions on transitioning over time. In a similar longi-
tudinal setting, we would recommend the use of PMM
within the FCS framework with a suitable procedure to
implement restrictions within the imputations.

Additional file

Additional file 1: Comprehensive details and findings of simulation
study including Stata code. (DOCX 162 kb)
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