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Abstract
Myxoid liposarcoma (MLPS) is genetically characterized by FUS-DDIT3 or EWSR1-
DDIT3 gene fusion and the high frequency of hotspot mutations (C228T or C250T) 
in the promoter region of telomerase reverse transcriptase (TERT) that encodes the 
TERT protein. The latter leads to telomerase reactivation, a mechanism of telomere 
maintenance. Although the TERT promoter hotspot mutation is a poor prognostic 
factor in various tumors, its effect on MLPS has not been reported in detail. In the 
present study, we examined the clinicopathological characteristics, prognosis, and tel-
omere maintenance mechanisms in 83 primary tumor samples of MLPS, which were 
resected surgically at the Cancer Institute Hospital, Japanese Foundation for Cancer 
Research, Tokyo, Japan, from 2008 to 2020. TERT promoter hotspot mutations were 
observed in 77% (63/82) cases, and alternative lengthening of telomeres (ALT) was 
absent in all cases. Among the cases without TERT promoter hotspot mutations, TERT 
rearrangements, and minor point mutations in the TERT promoter region were found 
in 3 and 2 cases, respectively. TERT mRNA expression was observed consistently even 
in patients for whom no genomic TERT aberrations were detected, and the presence 
of TERT promoter hotspot mutation did not correlate significantly with either over-
all and metastasis-free survival (P  =  .56, P  =  .83, respectively) or clinicopathologi-
cal features. Therefore, patients with MLPS characteristically shows TERT expression 
and a high prevalence of TERT aberrations. Our findings suggest that TERT aberra-
tion is not prognostic factor, but might occur at an early stage and play a key role in 
tumorigenesis.
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1  |  INTRODUC TION

Telomeres, which play a crucial role in cellular survival, shorten with 
each cell cycle, which leads to senescence or apoptosis.1 In verte-
brates, they consist of non-coding tandem repeats of 5′-TTAGGG-3′ 
at the 3ʹ ends of chromosomes, which protect the chromosome 
ends from progressive degradation.2,3 By maintaining telomere 
length (TL) via 2 known mechanisms: reactivation of telomerase 
and telomerase-independent alternative lengthening of telomeres 
(ALT),1 tumor cells can avoid senescence and apoptosis caused by 
telomere shortening and obtain immortality.

Up to 90% of human cancers are reported to possess reacti-
vated telomerase.4 Telomerase, a reverse transcriptase, adds a 
telomere repeat sequence to the 3′ end of telomeres. It is com-
posed of a catalytic protein subunit, telomerase reverse transcrip-
tase (TERT) encoded by TERT, and a telomerase RNA component 
(TERC) encoded by TERC, which is used as a template for elongat-
ing telomeres.5 Telomerase activity is observed in the germline and 
stem cells, but is absent in most somatic cells.6 In normal human 
somatic cells, TERT is repressed epigenetically, while TERC is ubiq-
uitously expressed, and TERT re-expression is regarded as a limit-
ing factor for controlling telomerase activity.7-10 In human cancer, 
2 hotspot mutations in the TERT promoter (c. −124 C>T and c. −146 
C>T), also called C228T and C250T, respectively, are known to be 
the most prevalent genetic changes that upregulate TERT mRNA 
expression by creating a binding site for E-twenty six (ETS) tran-
scription factors.5,11,12

Most of the remaining 10%-15% cancers achieve immortalization 
via a telomerase-independent ALT pathway.13,14 ALT is based on ho-
mologous recombination of telomeric sequences and is associated 
with deactivating mutations in the chromatin remodeling genes, 
ATRX and its binding partner DAXX.13,15 Phenotypically, ALT-positive 
cells are characterized by highly heterogeneous TLs, presence of 
ALT-associated PML protein nuclear bodies and extrachromosomal 
telomeric circles, and genomic instability.13,16-18

Myxoid liposarcoma (MLPS) accounts for 5% of all adult soft 
tissue sarcomas and 20%-30% of liposarcomas.19 It exhibits the 
reciprocal translocation, t(12;16)(q13;p11), in approximately 95% 
of patients, which results in the fusion of FUS-DDIT3, and t(12;22)
(q13;q12) in nearly 5% of patients, resulting in the formation of 
EWSR1-DDIT3.20,21 Soft tissue sarcomas generally show a high 
frequency of ALT, while MLPS is the only exception and is known 
to have a high prevalence of TERT promoter (TERTp) mutations 
(22.2%-79.1%).5,14,22-26 It has also been reported that 5%-18% of pa-
tients with MLPS have ALT,27,28 and telomerase activation and ALT 
are not mutually exclusive.27 Costa et al27 have reported that ALT 
is associated with aggressive behavior in the study of all types of 
liposarcoma, including a limited number of MLPS cases. However, 
the relationship between telomere maintenance mechanisms and 
prognosis in MLPS still remains unclear.

Therefore, in the present study, we investigated the 2 types 
of telomere maintenance mechanism, telomerase reactivation and 
ALT, in a large number of patients with MLPS. Then, we examined 

the relationship between the telomere maintenance mechanism 
and disease prognosis or clinicopathological parameters in patients 
with MLPS.

2  |  MATERIAL S AND METHODS

2.1  |  Patient and tumor selection

In total, 83 MLPS samples included in the present study were re-
sected surgically from each patient at the Cancer Institute Hospital, 
Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan, 
between 2008 and 2020. All samples were obtained from primary 
lesions in patients, 3 of whom were treated preoperatively with 
chemotherapy, radiation therapy, or chemoradiotherapy. Medical 
records from January 2008 to October 2020 were reviewed retro-
spectively to obtain clinical information such as sex, age, treatment 
history, follow-up data, and tumor size. Primary cases of 36 patients 
with dedifferentiated liposarcoma (DDLPS) were retrieved from 
the pathology files of the Cancer Institute Hospital, JFCR, between 
2009 and 2017. DDLPS cases were used as a control for ALT and tel-
omere length analyses. Unstained sections from formalin-fixed par-
affin- embedded (FFPE) specimens were available for all 83 MLPS 
cases and 36 DDLPS cases, and frozen tumor specimens were avail-
able for 75 MLPS cases. This study was conducted in accordance 
with the principles embodied in the Declaration of Helsinki, and was 
approved by the Institutional Review Board of the JFCR (IRB number 
2020-1120, August 18, 2020).

2.2  |  Histological review

The slides of all MLPS cases were reviewed by 2 pathologists (JK 
and KY) using the French Fédération Nationale des Centers de 
Lutte Contre le Cancer (FNCLCC) system.29 Examined factors in 
the grading system were as follows: tumor differentiation (MLPS or 
high-grade MLPS), mitotic activity (0-9, 10-19, or ≥20 mitoses per 
10 high-power fields), and tumor necrosis (absent, <50%, or ≥50%). 
High-grade MLPS was defined by the presence of ≥5% round cell 
component, which was characterized by marked increase in cellular-
ity, reduction in myxoid matrix, and the presence of round cells with 
nuclear overlap.30

2.3  |  Tissue microarrays

Tumor tissues were fixed in 20% neutral buffered formalin and em-
bedded in paraffin. Three histologically representative sites were 
selected from each MLPS case and 2 representative areas were 
selected from each DDLPS case. Tissue microarrays (TMAs) were 
generated as described previously.31 Briefly, selected sites were 
punched with a 2 mm-diameter coring needle on the donor paraffin 
blocks and displaced to the array in the recipient block.
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2.4  |  Immunohistochemistry

For immunohistochemistry, the 4-μm thick TMA sections of MLPS 
were stained with antibodies against p53, FOXM1, NY-ESO-1, and 
Ki-67. Primary antibodies are listed in Table  S1. For p53 and NY-
ESO-1, nuclear staining of ≥10% tumor cells was required for a case 
to be positive. A cut-off point of ≥10% nuclear staining for p53 was 
based on previous reports.20,32 For FOXM1, tumors with moderate 
to strong nuclear staining in ≥1% tumor cells were recorded as posi-
tive. The Ki-67 labeling index (LI) was calculated as the percentage 
of positive cells. For statistical analyses, we divided the patients into 
2 groups: Ki-67 low (LI <5%) and Ki-67 high (LI ≥5%).

2.5  |  Fluorescence in situ hybridization

To identify rearrangements of DDIT3, FUS, EWSR1, and TERT, and 
amplification of MDM2 and TERT, fluorescence in situ hybridization 
(FISH) was performed using bacterial artificial chromosome (BAC) 
clone-derived DNA probes. DNA from the BAC clones was extracted 
using PI-80X (Kurabo) and labeled fluorescently with the nick trans-
lation kit (Abbott Molecular Inc). The names of the BAC clones used 
will be provided upon request. The unstained 4-μm thick TMA sec-
tions were hybridized with fluorescent DNA probes and the hybrid-
ized slides were stained with 4′,6-diamidino-2-phenylindole (DAPI) 
and examined using a BX51 fluorescence microscope (Olympus).

2.6  |  Telomere-specific immunostaining FISH

For assessing ALT, combined telomere-specific FISH and immunoflu-
orescence labeling of PML were performed on unstained 4-μm thick 
TMA sections as described previously.33,34 Tissue sections were 
hybridized with peptide nucleic acid (PNA) probes for the telomere 
and the centromere (Table S2). After post-hybridization washes, tis-
sue sections were incubated with an anti-PML antibody (Table S1). 
They were then incubated with biotinylated anti-mouse immuno-
globulins (1:1000 dilution; Dako), followed by incubation with Alexa 
Fluor 647 streptavidin (1:1000 dilution; Thermo Fisher Scientific). 
The nuclei were stained with DAPI. The slides were examined under 
a BX51 fluorescence microscope at ×600 magnification. The criteria 
used for interpreting the FISH results were the same as those men-
tioned previously.35 Briefly, the sample was considered ALT positive 
if ≥1% of tumor cells displayed ultrabright intranuclear foci of tel-
omere FISH signals. At least 500 cells were assessed in each sample. 
Telomere-PML colocalization was used to support classifying cases 
as ALT positive.

2.7  |  DNA extraction

Genomic DNA was extracted from fresh-frozen specimens 
using the DNeasy Blood and Tissue Kit (Qiagen) according to the 

manufacturer's protocol. In cases for which fresh-frozen specimens 
were unavailable, DNA was extracted from 3-10 (depending on the 
size of the tumor sample) 10-µm thick sections of FFPE specimens 
using the RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher 
Scientific).

2.8  |  DNA sequencing of the TERT promoter region

For detection of TERTp hotspot mutations, C228T and C250T, we 
performed genomic PCR and Sanger sequencing as described previ-
ously.36 Briefly, PCR was performed using PrimeSTAR® GXL DNA 
polymerase (TaKaRa Bio). In addition, to detect other minor TERTp 
point mutations, a broader TERT promoter region (−280 to +80 bp 
from the ATG start site) was amplified. The primers are listed in 
Table S2.

2.9  |  TERT mRNA expression analysis

Relative TERT mRNA expression of each RNA sample (MLPS and non-
tumor soft tissue) was assessed using real-time reverse transcription 
PCR (real-time RT-PCR). Total RNA was isolated from fresh-frozen 
specimens using the RNeasy Mini Kit (Qiagen) and was converted 
to cDNA using SuperScript III Reverse Transcriptase (Thermo Fisher 
Scientific) and random primers. Real-time RT-PCR was conducted 
in triplicate using the TaqMan Fast Advanced Master Mix (Thermo 
Fisher Scientific). The previously reported primer-probe sets 
(Table S2) and TaqMan Gene Expression Assays (#Hs99999905_m1; 
Thermo Fisher Scientific) were used for TERT and GAPDH, respec-
tively.37 TERT expression levels were normalized using GAPDH, and 
relative expression was calculated using the 2−ΔΔCt method.

2.10  |  Measurement of absolute telomere length

The mean TL of each DNA sample (MLPS, DDLPS, and normal tis-
sue) was measured using the Absolute Human Telomere Length 
Quantification qPCR Assay Kit (ScienCell Research Laboratories) ac-
cording to the manufacturer's instructions.

2.11  |  Statistical analysis

All statistical analyses were conducted using EZR (Saitama Medical 
Center, Jichi Medical University, Saitama, Japan), which is a graphi-
cal user interface for R (R Foundation for Statistical Computing).38 
Significance was defined as P < .05. The Mann-Whitney U test was 
used to compare the relative values of TERT mRNA and TL. Overall 
survival (OS) was defined as the interval between the date of tumor 
resection and the date of death or last follow-up, and metastasis-free 
survival (MFS) was defined as the duration from the date of tumor 
resection to the date of identification of distant metastasis. Cox 
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univariate regression models were used to evaluate the association 
between the potential clinicopathological factors and OS or MFS. 
Survival curves were estimated using the Kaplan-Meier method 
and compared statistically using the log-rank test. Fisher exact test 
was used for the comparison of categorical variables between the 
2 groups, and paired t test was used for comparison between the 2 
corresponding groups.

3  |  RESULTS

3.1  |  Clinicopathological characteristics

Table 1 summarizes the clinical and pathological features of the pa-
tients. In total, 83 cases of MLPS comprised 52 men and 31 women, 
with a median age of 42 y (range: 21-76 y). The mean and median 
tumor sizes were 10.1 and 9.5 cm, respectively (range: 3.0-27.0 cm). 
Twenty-three patients (28%) had high-grade MLPS (Figure 1A,B). In 
the FNCLCC grading system, 41 cases were grade I, 37 cases were 
grade II, and 5 cases were grade III. Positive results for p53, FOXM1, 
and NY-ESO-1 were observed in 27 (33%), 42 (51%), and 65 (78%) 
patients, respectively. The number of Ki-67 LI high cases was 30 
(36%).

3.2  |  Genetic background of tumors

A break-apart in DDIT3 was confirmed in all 83 MLPS patients: 74 
had FUS (FUS-DDIT3 fusion) and 9 had EWSR1 break-apart (EWSR1-
DDIT3 fusion) (Table  1). MDM2 amplification was confirmed using 
FISH in all 36 DDLPS cases.

3.3  |  Assessment of alternative 
lengthening of telomeres

The telomere-specific FISH of 83 MLPS and 36 DDLPS cases 
(Figure  1C-F) showed that all MLPS cases were ALT negative and 
31% (11/36) DDLPS cases were ALT positive. Telomere/PML colo-
calization was also confirmed in all 11 ALT-positive DDLPS cases. 
ALT-negative cases showed relatively uniform intensity of tumor 
telomeric signals (Figure 1C,D), while ALT-positive cases showed a 
marked heterogeneity in telomere signal intensity (Figure 1E,F).

3.4  |  Evaluation of TERT promoter hotspot 
mutation and TERT expression

DNA sequencing around the TERTp mutation hotspot was per-
formed using 82 MLPS samples, as the PCR reaction failed for 1 
sample because of poor DNA quality. We detected TERTp hotspot 
mutations in 63/82 cases (77%), C228T mutation in 58 cases, and 
C250T mutation in 5 cases. Next, we performed real-time RT-PCR 

for 42 samples whose RNA were available: 31 MLPS tumor sam-
ples (16 with TERTp hotspot mutation and 15 without TERTp hot-
spot mutation), and 11 non-tumor soft tissue samples (5 muscle 
tissue and 6 adipose tissue). TERT mRNA expression was detected 
in all 31 MLPS cases, and the expression levels of both MLPS sam-
ples with or without a TERTp hotspot mutation were significantly 
higher than those in the non-tumor soft tissue samples (P ≤ .001, 
respectively) (Figure 2). In the non-tumor soft tissue, TERT mRNA 

TA B L E  1  Clinical and pathological features

n %

Sex

Male 52 63

Female 31 37

Age (y)

<50 62 75

≥50 21 25

Median age (y; range) 42 (21-76)

Size (cm)

<10 46 55

≥10 37 45

Median tumor size (cm; range) 9.5 (3-27)

Location

Thigh 48 58

Lower leg 12 14

Knee 6 7

Buttock 4 5

Inguinal region 3 4

Other 10 12

Histotype

MLPS 60 72

High-grade MLPS 23 28

Necrosis (%)

None 49 59

<50 29 35

≥50 5 6

Mitotic count

0-9/10 HPF 79 95

10-19/10 HPF 4 5

≥20/10 HPF 0 0

FNCLCC grade

I 41 49

II 37 45

III 5 6

Fusion gene

FUS-DDIT3 74 89

EWSR1-DDIT3 9 11

Abbreviations: FNCLCC, French Fédération of Cancer Centers; HPF, 
high-power fields; MLPS, myxoid liposarcoma.
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F I G U R E  1  Histology and telomere-
specific immunostaining fluorescence 
in situ hybridization (FISH). A, B, 
Representative histology of myxoid 
liposarcoma (MLPS). Scale bar, 50 µm. 
A, Traditional area of MLPS; B, round 
cell components. C-F, Representative 
images of telomere-specific FISH in 
alternative lengthening of telomeres 
(ALT)-positive and ALT-negative cases. 
C, D, The ALT-negative case of MLPS (C) 
and dedifferentiated liposarcoma (DDLPS) 
(D). The centromere signals (green) are 
approximately the same intensity as the 
telomere signals (red). E, F, The ALT-
positive case of DDLPS. E, The large and 
bright red telomere signals indicated ALT. 
F, The green signals of promyelocytic 
leukemia protein colocalized with the ALT-
associated highly bright telomere signals 
(arrow)

(A) (B)

(C) (D) (E) (F)

F I G U R E  2  Relative TERT mRNA 
expression. TERT mRNA expression 
was detected in all 31 patients with 
myxoid liposarcoma (MLPS), whereas 
it was not detected in non-tumor soft 
tissue samples, with the exception of 1 
case. Data are shown as box plots that 
represent the first and third quartiles of 
the distribution. The median is shown in 
the center and the whiskers cover data 
within 1.5× of the interquartile range from 
the box. *P-value < .001, **P-value = .006 
(Mann-Whitney U test)

Relative TERT mRNA 
expression level

MLPS

Non-tumor soft 
tissue (n = 11)

TERTp hotspot 
mutation + (n = 16)

TERTp hotspot 
mutation − (n = 15)

ND 0 0 10

Low 0 8 1

High 16 7 0

Abbreviations: MLPS, myxoid liposarcoma; ND, not detected; TERTp, TERT promoter.

TA B L E  2  Relative TERT mRNA 
expression
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expression was detectable in 1/11 samples. The expression levels 
in cases with TERTp hotspot mutations were significantly higher 
than those in cases without the mutation (P  =  .006). Cases in 
which TERT mRNA expression levels were higher than the lowest 

level of TERT mRNA expression in cases with TERTp hotspot muta-
tion were classified as the high expression group, while the other 
cases were classified as the low expression group. In cases with-
out TERTp hotspot mutation, 7 cases were classified in the high 

F I G U R E  3  Fluorescence in situ hybridization (FISH) analysis of TERT rearrangements. A, Probe design for TERT split FISH and the 
obtained signal patterns. TERT is shown with the direction of transcription, indicated by the arrow. Three bacterial artificial chromosome 
(BAC) clones located around or downstream of TERT were labeled with FITC (green), and 2 BAC clones that cover the upstream region of 
TERT were labeled with Texas Red (red). Small green or red signal indicates structural variation in the corresponding covered genomic region. 
The double-headed arrows with the letters A, B indicate the suspected locations of the break points estimated based on the observed signal 
patterns. B, Detection of TERT rearrangements using TERT split FISH. Three cases harbored TERT rearrangements (case 19 B a-c; case 65 d-f; 
case 80 g-i). (a-c) In case 19, a small green signal (arrow) overlapped with a red signal, which indicated TERT rearrangement. (d-f, g-i) In case 
65 and case 80, a small red signal (arrowheads) overlapped with a green signal, indicative of TERT rearrangement. (j-l) Representative images 
of cases without TERT rearrangement

(A)

(B)

A B C

D E F

G H I

J K L
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expression group and 8 cases were classified in the low expression 
group (Table 2).

3.5  |  Analysis of TERT structural change and other 
minor TERT promoter point mutations

TERT mRNA expression was observed irrespective of TERTp hot-
spot mutations; therefore, we searched for other TERT or TERTp 
aberrations. The original probe for TERT split FISH was designed to 
estimate roughly the location of the break point (Figure 3A). FISH 
analysis detected TERT rearrangements in 3/19 MLPS (16%) cases 
without TERTp hotspot mutations (Figure 3B). Two signal patterns 
were observed and the break points were estimated to be located 
in 1 of the 2 regions upstream or around TERT (Figure 3A). Among 
the 3 cases, cases 19 and 65 showed the high expression of TERT 
mRNA (Figure 2), while case 80 was not analyzed as frozen mate-
rial was not available. Clinicopathologically, cases 19 and 80 were 
classified as high-grade MLPS, and cases 19 and 65 experienced dis-
tant metastases (Table S3). TERT rearrangement was not observed 

in cases with TERTp hotspot mutations. TERT amplification was not 
observed in any MLPS case. Next, we performed direct sequenc-
ing analysis to detect other minor TERTp mutations reported previ-
ously.24,39 Among 19 MLPS cases without TERTp hotspot mutation, 
16 cases were analyzed by direct sequencing of the DNA from the 
frozen material. In addition to the hotspot TERTp mutations (C228T 
and C250T), A161C and C237G mutations in the TERT promoter re-
gion were detected in 2 cases (Figure 4). The other 14 cases did not 
harbor any mutations. The A161C mutated case expressed high lev-
els of TERT mRNA, while the C237G mutated case showed low TERT 
expression (Figure 2).

3.6  |  Analysis of telomere length

Telomere length was analyzed in 50 samples using DNA extracted 
from frozen materials: 30 tumor samples from 16 MLPS cases with 
TERTp hotspot mutation, 8 MLPS cases without TERTp hotspot mu-
tation, 3 ALT-positive and 3 ALT-negative DDLPS cases, and 20 nor-
mal tissue samples. Normal tissue samples, which were non-tumor 
soft tissue obtained from the same patient, were used as a control. 
Matching tumor and normal tissue samples were available from 15 
patients with TERTp hotspot mutations and 5 patients without the 
mutations (Table  3). The mean TL was as follows: 6.12  ±  4.68  kb 
in MLPS, 7.78  ±  1.78  kb in normal tissue, and 10.2  ±  7.15  kb in 
DDLPS. The mean TL of the MLPS cases did not differ significantly 
between TERTp hotspot mutation-positive and mutation-negative 
cases (P =  .74) (Figure 5). Irrespective of the TERTp hotspot muta-
tion, the mean TL of the MLPS tumor samples was shorter than that 
of the matched normal samples (Table 3). However, a paired t test 
did not reveal any significant difference between tumor samples and 
their matched normal tissue samples in both groups with or without 
TERTp hotspot mutations (P = .37, P = .46, respectively). In DDLPS 
cases, the mean TL of the ALT-positive cases (16.8 ± 3.44 kb) was 
markedly longer than that of the ALT-negative cases (3.49 ± 1.23 kb) 
(Table 3).

F I G U R E  4  TERT promoter mutations in 
myxoid liposarcoma samples. Schematic 
figure showing the TERT promoter region 
on chromosome 5 and the genomic 
DNA sequence of the mutational region 
with a wild-type strand and a mutated 
strand. Newly created E-twenty six (ETS) 
binding sites are shown. Representative 
sequencing chromatograms show each 
heterozygous mutation (indicated by red 
arrows)

TA B L E  3  Mean telomere length

Mean telomere length (kb) ± SD

Tumor Normal tissue

MLPS

TERTp hotspot 
mutation +

5.91 ± 4.84 (n = 16) 7.52 ± 1.81 
(n = 15)

TERTp hotspot 
mutation −

6.53 ± 4.29 (n = 8) 8.54 ± 1.42 (n = 5)

DDLPS

ALT + 16.8 ± 3.44 (n = 3)

ALT − 3.49 ± 1.23 (n = 3)

Abbreviations: ALT, alternative lengthening of telomeres; DDLPS, 
dedifferentiated liposarcoma; MLPS, myxoid liposarcoma; SD, standard 
deviation; TERTp, TERT promoter.
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3.7  |  Prognostic analysis

We assessed the impact of TERTp hotspot mutations and all TERT 
genomic aberrations on survival rate and distant metastasis. The 
median follow-up time was 74 mo (range, 4-146 mo), and 10/83 pa-
tients died due to the disease. The 5- and 10-y OS were 91% and 
82%, respectively. Kaplan-Meier and log-rank analysis showed 
that the TERTp hotspot mutations did not significantly affect OS 
(P  =  .56) and MFS (P  =  .83) (Figure  6), and that the TERT aberra-
tions did not differ significantly in terms of OS (P =  .85) and MFS 
(P  =  .73). Clinicopathologically, age ≥50  y (P  =  .040), tumor size 
≥10  cm (P  =  .012), presence of necrosis (P  =  .012), and FNCLCC 
grade (P  =  .002) were significantly associated with OS (Table  4). 
Immunohistochemically, there was no significant correlation be-
tween MFS or OS and p53, FOXM1, NY-ESO-1, or Ki-67 positiv-
ity (Table  S4). In contrast, positive correlations were suggested 
between p53, FOXM1, NY-ESO-1, and Ki-67 positivity and the 
aforementioned poor prognostic factors: p53 and high FNCLCC 
grade (P  =  .004), p53 and necrosis (P  =  .028), FOXM1 and high 
FNCLCC grade (P = .038), NY-ESO-1 and age (P = .033), NY-ESO-1 

and necrosis (P =  .011), and high Ki-67 LI and histotype (P =  .005) 
(Table S5). Finally, TERTp hotspot mutation was not related to prog-
nosis and was not associated with clinicopathological and immuno-
histochemical prognostic factors (Table 5).

4  |  DISCUSSION

In the present study, 82% (68/83) of MLPS cases harbored TERT/
TERTp aberrations, including TERTp hotspot mutations (63 cases), 
TERTp minor point mutations (2 cases), and TERT rearrangements (3 
cases). In the remaining 18% (15/83) of cases, TERT/TERTp aberra-
tions were not detected and TERT mRNA expression was present in 
all 11 cases with available RNA. No samples were ALT positive.

The prevalence of TERTp mutations in MLPS here was slightly 
higher or similar to that reported previously.5,22-26 However, unlike 
previous studies, no ALT-positive MLPS cases were observed, re-
gardless of using a similar FISH method.27,28 The reason for this dis-
crepancy is unclear, although this may be because all patients in our 
study were in a molecularly homogeneous group harboring DDIT3 

F I G U R E  5  Telomere length of myxoid 
liposarcoma (MLPS). The mean telomere 
length of MLPS samples was compared 
with that of matched normal tissues. Data 
are shown as box plots that represent the 
first and third quartiles of the distribution. 
The median is shown in the center and 
the whiskers cover data within 1.5× of 
the interquartile range from the box. 
*P-value = .009, **P-value = .52, ***P-
value = .74 (Mann-Whitney U test)

F I G U R E  6  Analysis of outcomes for 
patients with TERT promoter (TERTp) 
hotspot mutation. A, B, Kaplan-Meier 
curves of the groups with or without 
TERTp hotspot mutation. A, Analysis 
of overall survival (OS). B, Analysis of 
metastasis-free survival (MFS)

(A) (B)
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rearrangement. Using telomere-specific FISH, the most commonly 
used technique for detecting ALT,5 the frequency of ALT in DDLPS 
was similar to that reported previously.27,28 Furthermore, the mean 
TL in DDLPS cases with ALT was strikingly longer than that in those 
without ALT, which was as expected. Therefore, the method we 
used for detecting ALT was sufficiently sensitive.

Telomerase is upregulated mainly by TERTp hotspot mutations; 
however, some genetic aberrations, including TERT rearrangement 
and amplification, TERC amplification, and epigenetic changes are 
also involved in telomerase activation.5,40 Among TERTp point mu-
tations, the A161C with high level of TERT mRNA and C237G muta-
tions were detected. A161C creates an ETS binding site within the 
TERT promoter region, which has strong transcriptional activities.39 
C237G is a previously unreported mutation and does not form an 
ETS binding site.39,41 Three cases harbored TERT rearrangement 
and the 2 for which total RNA could be extracted showed high TERT 
mRNA expression levels.

Here, we report for the first time TERT rearrangement in MLPS. 
In previous studies, TERT rearrangements were suggested to activate 
TERT transcription via juxtaposition of superenhancers in neuroblas-
toma and pheochromocytoma.42-44 The positions of breakpoints 
were identified as both upstream and downstream of TERT.42,45 
Furthermore, TERT gene fusions were reported in some tumors, in-
cluding sarcomas.40,46-48 In our study, the 2 patterns of break points 
were estimated to be located upstream or around TERT, respectively, 
as reported previously.42,45 Therefore, it was suggested that TERT 
transcription was activated by the juxtaposition of superenhancers 

or due to the creation of TERT gene fusion in the 3 cases with TERT 
rearrangement.

Although TERTp mutations are linked to adverse clinical param-
eters in various tumor entities,5,26 few studies have examined the 
association between telomerase activation status and prognosis in 
soft tissue and bone tumors. These studies include the association 
of the TERTp mutation with increased risk in solitary fibrous tumors 
(SFTs)49 and the correlation between TERT mRNA expression and 
poor survival in osteosarcoma.50 In contrast, we found that survival 
and metastasis rate did not differ significantly, irrespective of the 
TERTp hotspot mutation in MLPS. In addition, the clinicopathologi-
cal parameters (age, tumor size, necrosis, and FNCLCC grade), which 
were significantly associated with worse prognosis, did not correlate 
with TERTp mutations. Immunohistochemically, there was no associ-
ation between TERTp hotspot mutation and p53 and NY-ESO-1 ex-
pression, which have been reported as adverse prognostic factors in 
MLPS,20,32,51 as well as with FOXM1, which correlated with a worse 
prognosis in various carcinomas and sarcomas.52 In contrast, 3 cases 
with TERT rearrangement tended to be graded higher both clinically 
or pathologically, this significance was unclear because of the small 
number of cases. To our knowledge, this study is the first to demon-
strate a relationship between telomere maintenance mechanism and 
prognosis in MLPS in detail.

Our results suggested that for the following 3 reasons telo-
merase activation mechanisms could be present in almost all MLPS 
cases. First, TERT mRNA expression was observed even in cases with 
no TERTp mutation or TERT rearrangement. After MLPS, SFT has 

Metastasis-free survival Overall survival

HR 95% CI P-value HR 95% CI P-value

Age (y): ≥50 (vs <50) 2.41 0.98-5.92 .055 3.68 1.06-12.7 .040

Sex: male (vs female) 2.36 0.79-7.06 .13 2.36 0.56-11.1 .28

Size (cm): ≥10 (vs 
<10)

3.70 1.41-9.71 .008 14.1 1.78-111.9 .012

Location: trunk (vs 
limb)

0.81 0.24-2.77 .74 1.31 0.28-6.16 .73

Histotype: high-
grade MLPS (vs 
MLPS)

1.55 0.61-3.90 .36 1.32 0.34-5.16 .69

Necrosis: present (vs 
absent)

3.69 1.46-9.30 .006 7.30 1.54-34.6 .012

Mitotic score (/10 
HPF): ≥10 (vs 
<10)

2.88 0.66-12.5 .16 3.22 0.39-26.6 .28

FNCLCC grade: I, 
II, III

3.37 1.71-6.62 <.001 5.38 1.89-15.4 .002

TERTp hotspot 
mutation: present 
(vs absent)

0.90 0.33-2.47 .83 0.67 0.17-2.59 .56

Abbreviations: CI, confidence interval; FNCLCC, French Fédération of Cancer Centers; HPF, high-
power fields; HR, hazard ratio; MLPS, myxoid liposarcoma; TERTp, TERT promoter. Bold values 
show significant difference.

TA B L E  4  Cox analysis for metastasis-
free survival and overall survival in myxoid 
liposarcoma
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been reported to have the second highest frequency of TERTp muta-
tions in soft tissue tumors.5,22,23 In a previous study, approximately 
28% SFT cases harbored a TERTp mutation, whereas the remaining 
72% cases without TERTp mutations showed low or undetectable 
TERT mRNA expression.49 Contrary to SFT, we found that MLPS 

was a soft tissue tumor characteristically showing TERT expression. 
Second, although TERTp mutation is associated with a poor prog-
nosis in many tumors,5,26 prognosis did not differ significantly irre-
spective of TERTp hotspot mutation or other TERT aberrations in the 
present study. In addition, the clinicopathological features were not 
associated with TERTp hotspot mutations. Third, the mean TL of the 
MLPS samples was shorter than that of matched normal tissues, irre-
spective of the TERTp hotspot mutation. Analysis of 31 cancer types 
in The Cancer Genome Atlas showed that the TL of TERT-expressing 
cancer tissue was relatively shorter than that of matched normal tis-
sue in many cancers, including sarcomas, and that the TL of cancer 
tissue without TERT expression or ALT was slightly longer than that 
of matched normal tissue in sarcomas.40 Therefore, the patients with 
MLPS for whom we did not find any TERT/TERTp structural abnor-
malities may also possess some telomere maintenance mechanisms 
such as epigenetic change in TERT or TERC amplification. However, 
further investigations are necessary to confirm this hypothesis.

In MLPS, gene fusion is a driver genetic alteration required for its 
tumorigenesis; and an observational study indicated that the TERTp 
mutation may be a secondary change occurring during tumor pro-
gression.26 In contrast, our results suggested that TERT abnormal-
ities may be earlier genetic events and essential for tumorigenesis 
in MLPS, because almost all MLPS cases were suggested to possess 
telomerase reactivation mechanisms. In mouse models, FUS-DDIT3 
fusion is insufficient for malignant transformation on its own.53 
Furthermore, FUS-DDIT3 fusion in human mesenchymal stromal/
stem cells immortalized by oncogenic hits including TERT overex-
pression were able to drive MLPS formation.54 TERTp mutations were 
also suggested to appear as early tumorigenic events in urothelial 
carcinoma, cutaneous melanoma, and basal cell carcinoma.55 Chiba 
et al56 reported that TERTp mutations contributed to tumorigene-
sis by a two-step mechanism in malignant melanoma. First, those 
mutations extended cellular life span by healing the shortest telo-
meres. Next, the critically short telomeres led to genome instability 
and telomerase was further upregulated to sustain cell proliferation.

There are several limitations to this study. First, we evaluated 
TERT mRNA expression, and not TERT protein expression or telo-
merase activity, to determine the telomerase-dependent telomere 
maintenance mechanism. Although it is unclear whether TERT mRNA 
expression directly leads to telomerase reactivation, recent studies 
have shown a positive correlation between telomerase activity and 
TERT mRNA expression.40,41,57 Second, although there are several 
methods for measuring the occurrence of ALT, including the C-circle 
assay, only 1 method was used in our study.14,58 Third, this was a ret-
rospective study. Finally, the number of patients with poor outcome 
was not so large that the statistical power was limited.

In conclusion, TERT re-expression is an important and unique 
feature of MLPS among sarcomas, the majority of which have ALT. 
Our results demonstrated that telomerase activation mechanisms 
may play a critical role in tumorigenesis rather than in progression. 
Further research is warranted to confirm our findings and to exam-
ine the potential for interventions targeting telomerase reactivation 
mechanism in patients with MLPS.

TA B L E  5  The correlation between TERTp hotspot mutation 
status and clinicopathologic parameters

TERTp hotspot mutation

Absent 
(n = 19) Present (n = 63) P-value

Sex

Male 13 39 .79

Female 6 24

Age (y)

<50 16 46 .38

≥50 3 17

Size (cm)

<10 10 35 1.0

≥10 9 28

Histotype

MLPS 15 44 .57

High-grade 
MLPS

4 19

Mitotic score

<10/10 HPF 18 60 1.0

≥10/10 HPF 1 3

Necrosis (%)

None 12 36 .70

<50 7 22

≥50 0 5

FNCLCC grade

I 11 29 .76

II 7 30

III 1 4

p53

Negative 11 44 .41

Positive 8 19

FOXM1

Negative 9 31 1.0

Positive 10 32

NY-ESO-1

Negative 5 13 .75

Positive 14 50

Ki-67 LI

Low 12 40 1.0

High 7 23

Abbreviations: FNCLCC, French Fédération of Cancer Centers; HPF, 
high-power fields; LI, labeling index; MLPS, myxoid liposarcoma; TERTp, 
TERT promoter.
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