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Insulin glycation by methylglyoxal results in
native-like aggregation and inhibition of fibril
formation
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Abstract

Background: Insulin is a hormone that regulates blood glucose homeostasis and is a central protein in a medical
condition termed insulin injection amyloidosis. It is intimately associated with glycaemia and is vulnerable to
glycation by glucose and other highly reactive carbonyls like methylglyoxal, especially in diabetic conditions.
Protein glycation is involved in structure and stability changes that impair protein functionality, and is associated
with several human diseases, such as diabetes and neurodegenerative diseases like Alzheimer’s disease, Parkinson’s
disease and Familiar Amyloidotic Polyneuropathy. In the present work, methylglyoxal was investigated for their
effects on the structure, stability and fibril formation of insulin.

Results: Methylglyoxal was found to induce the formation of insulin native-like aggregates and reduce protein
fibrillation by blocking the formation of the seeding nuclei. Equilibrium-unfolding experiments using chaotropic
agents showed that glycated insulin has a small conformational stability and a weaker dependence on denaturant
concentration (smaller m-value). Our observations suggest that methylglyoxal modification of insulin leads to a less
compact and less stable structure that may be associated to an increased protein dynamics.

Conclusions: We propose that higher dynamics in glycated insulin could prevent the formation of the rigid cross-
b core structure found in amyloid fibrils, thereby contributing to the reduction in the ability to form fibrils and to
the population of different aggregation pathways like the formation of native-like aggregates.

Background
Insulin is a small protein hormone that is crucial for the
control of glucose metabolism. It regulates blood glu-
cose levels by indirectly stimulating glucose transport
across the cell membrane and by down regulation of
enzymes involved in gluconeogenesis. External adminis-
tration of insulin is critical in Diabetes type I, where
autoimmune response causes a progressive and perma-
nent destruction of the insulin-producing cells in the
pancreas due to an interplay of environmental and
genetic factors [1-3]. Insulin is composed of two poly-
peptide chains, the A-chain (21 residues) and the B-

chain (30-residues) linked together by two disulfide
bonds [4,5]. In the secretory vesicles of the pancreas the
predominant form of insulin is a zinc-coordinated hex-
amer, formed by the association of three dimers, and
stabilized by two to four zinc ions. However, when
released into the blood stream, insulin is present in its
biologically active form, i. e. the monomer [6,7]. Mono-
meric insulin is an amyloid protein forming amyloid-like
fibrils in vitro, which are promoted by elevated tempera-
tures, low pH, and increased ionic strength [8,9]. Insulin
amyloid-like fibrils are the hallmark of a clinical condi-
tion observed in insulin-dependent diabetic patients,
called insulin injection amyloidosis [10]. In this patholo-
gical condition, full-length insulin molecules are found
in fibrillar form at the site of frequent insulin injections
[9,11,12]. Additionally it was recently shown that serum
samples from Parkinson’s disease patients display an
autoimmune response to insulin oligomers and fibrils
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[13], possibly indicating the presence of insulin aggre-
gates in this disease as well. Insulin fibril formation has
also been a limiting factor in long-term storage of insu-
lin for treatment of diabetes. Thus, better understanding
of insulin fibrillation mechanisms could lead to new
therapeutic strategies, safer handling and more cost-
effective storage of insulin. Upon fibrillation, insulin
undergoes structural changes from a predominantly a-
helical state to a b- sheet rich conformation. The a- to
b-transition appears only to occur upon fibril assembly
[14], and recently Vestergaard and co-workers proposed
that insulin oligomers have an overall helical shape [15].
Being intimately related with glycaemia, it is likely that
insulin may be modified by reactive a-ketoaldehydes
such as 3-deoxyglucosone, glyoxal and methylglyoxal.
These highly reactive compounds have been considered
the most accountable for toxicity at high glucose con-
centrations [16]. In fact, hyperglycemia induces the gly-
cation of insulin in pancreatic b cells [17] and glycated
insulin is unable to regulate glucose homeostasis in vivo
and to stimulate glucose transport and adipose tissue
lipogenesis [17]. Protein glycation is a post-folding mod-
ification whereby amino groups in lysine and arginine
side chains react irreversibly with carbonyl molecules
forming advanced glycation end-products (AGE). Glyca-
tion exerts profound effects on protein structure, stabi-
lity and function. AGE formation in proteins is
associated to the clinical complications of diabetes melli-
tus [18], cataracts [19], uraemia [20], atherosclerosis [21]
and age-related disorders [22]. Glycated proteins are
present in b-amyloid (Ab) deposits in Alzheimer’s dis-
ease [23-25], in Lewy inclusion bodies of a-synuclein in
Parkinson’s disease [26] and in transthyretin amyloid
deposits in familial amyloidotic polyneuropathy (FAP)
[27]. In all these amyloid pathologies, b-sheet fibril
structure and the presence of AGE are common fea-
tures, suggesting a possible role for glycation in amyloid
formation pathogenesis. Methylglyoxal is the most sig-
nificant glycation agent in vivo, being one of the most
reactive dicarbonyl molecules in living cells. This com-
pound is an unavoidable by-product of glycolysis, arising
from the non-enzymatic b-elimination reaction of the
phosphate group of dihydroxyacetone phosphate and D-
glyceraldehyde 3-phosphate [28]. Methylglyoxal irrever-
sibly reacts with amino groups in lipids, nucleic acids
and proteins, forming methylglyoxal-derived advanced
glycation end-products (MAGE). In Ab, glycation by
methylglyoxal promotes the formation of b-sheets, oligo-
mers and protofibrils and also increases the size of the
aggregates [29]. Argpyrimidine is a specific methyl-
glyoxal modification occurring in arginine residues, and
was associated with amyloid diseases [27]. However, lit-
tle is known about the effects of methylglyoxal glycation
on the fibrillation of insulin. The aim of this work is to

detail the molecular mechanisms of insulin fibril forma-
tion in the presence of methylglyoxal, which may be
related to insulin toxicity and/or malfunction. We ana-
lyzed the effects of methylglyoxal on the structure, stabi-
lity and fibrillation of insulin in a concentration-
dependent manner. Full glycation pattern analysis of
insulin showed that a single residue modification
reduces insulin fibrillation by blocking the formation of
the seeding nuclei and that by contrast, methylglyoxal
glycation stabilizes soluble aggregates that retain native-
like structure as showed by circular dichroism
experiments.

Results
Characterization of insulin glycation by methylglyoxal
Prior to mass spectrometry analysis, non-glycated and
glycated insulin were probed using a specific antibody
towards methylglyoxal-derived glycation adducts. As
shown in Figure 1A, a dose and time dependent glyca-
tion is clearly detected. To unequivocally identify gly-
cated peptides and amino acid residues, non-glycated
and glycated insulin were digested using chymotrypsin
followed by MS and MS/MS analysis. A modified gly-
cated peptide should be exclusively present in the MS
spectrum of glycated insulin with a mass value corre-
sponding to the insulin peptide plus the specific mass
increment characteristic of a MAGE modification (72
Da for the lysine specific MAGE CEL and 54, 80 and
144 Da for the arginine-specific MAGE hydroimidazo-
lones, argpyrimidine and tetrahydropirimidine respec-
tively). This information was used to construct an
inclusion list of modified peptides to be fragmented by
an additional MS/MS experiment using the MALDI-
TOF/TOF instrument. The sequence information thus
obtained allowed the unequivocal identification of
MAGE-modified peptides and also assignment of speci-
fic modified amino acid.
A comparative analysis of peptide mass spectra from

the glycated and unmodified insulin reveals noticeable
differences with several new peptides appearing exclu-
sively in the glycated insulin (Figure 1B and Table 1).
To identify MAGE-modified peptides and assign the gly-
cated amino acid residues, the theoretical digestion was
performed considering up to three chymotrypsin mis-
scleavages (PeptideMass, Expasy, http://www.expasy.ch/
tools/peptide-mass.html) and added to the resulting
peptide masses the mass increment imposed by a
MAGE modification (72, 54, 80 and 144 Da). Using this
approach, several peptides, appearing only in the peptide
mass spectrum of glycated insulin with a specific MAGE
mass increment were observed (Figure 1B). For example,
the species at m/z of 991.4788 may correspond to the B-
chain peptide 41-48 (LVCa|qGERGF) with m/z 937.4603
plus 54.018 Da, a mass increase characteristic of a
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hydroimidazolone (MGH) modification. This strongly
suggests that the arginine residue 46 is glycated by
methylglyoxal with the formation of a hydroimidazolone.
In agreement, the observed peptide with an m/z
934.4578 corresponds to the same peptide with a hydro-
imidazolone at R46 but without cysteine alquilation (Ca|

q). To unequivocally confirm these data, MS/MS experi-
ments were performed to provide sequence information.
When using the CID fragmentation technique, bond
breakage mainly occurs through the lowest energy path-
way, that is, the peptide bond, leading to b-ions (when
the charge is retained by the amino-terminal fragment)
or y-ion (when it is retained by the carboxy-terminal
fragment). Thus, if an amino acid residue is modified,
the particular y and complementary b ions, which
encompasses the modification, will have the particular
amino acid mass value plus 54.018 Da for

Figure 1 Detection and location of MAGE-modified peptides. (A) Dot-blot analysis with a specific antibody towards methylglyoxal-derived
glycation adducts. A dose and time-dependent glycation is clearly detected. (B) The panels show representative sections of the MALDI-TOF/TOF
spectra of peptides from unmodified and glycated insulin. New m/z peaks, absent from the control, are clearly detected in the mass spectra of
the glycated insulin (highlighted in red). These new m/z values correspond to the mass of an insulin peptide plus the mass increment
characteristic of a hydroimidazolone modification (54 Da). These peptides were analyzed by MS/MS, confirming the glycation of the arginine
residue 46. (C) MS/MS spectrum of a glycated insulin peptide with m/z 991.4788, showing the y and b fragment ions. The detected fragment
ions arise from the amino acid sequence LVCALQGERGF, with a hydroimidazolone modification on the arginine residues. All the reported glycated
peptides were confirmed by MS/MS data.

Table 1 Assignment of glycated amino acid residues

Observed
mass
(Da)

Theoretical
mass (Da)

Peptide
sequence

Mass
Increase
(Da)

MAGE Glycated
residue

934.496 880.435 LVCGERGF
(41-48)

54.061 MGH R46

991.521 937.456 LVC*GERGF
(41-48)

54.040 MGH R46

1138.590 1084.524 LVCGERGFF
(41-49)

54.066 MGH R46

1171.590 1027.503 LVCGERGFF
(41-49)

144.087 THP R46

1228.616 1084.524 LVC*GERGFF
(41-49)

144.092 THP R46

In all cases, the observed peptide mass has a mass increment specific of a
methylglyoxal-derived AGE modification. The specific MAGE are indicated in
the table and the modified amino acid residues are highlighted in the peptide
sequence. (MGH - hydroimidazolone; THP - tetrahydropyrimidine)

*peptide with cysteine alquilation.
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hydroimidazolone. Taken the peptide with m/z of
991.4788 [LVCa|qGER(MGH)GF] (Figure 1C), we
observed that the mass difference between y1 and y2
ions corresponds to an F residue, and the mass differ-
ence between y2 and y3 ions corresponds not to the
addition of an G and R residue (57 + 156 Da) but to the
addition of G and R residue plus the MGH modification
on arginine (267 Da in total). The remaining mass dif-
ferences between consecutive y ions also show this mass
increment. The same feature is observed for the b ions.
This clearly confirms that the amino acid residue R46 is
modified by methylglyoxal. Only modified amino acid
residues with confirmed sequence information were
considered. Results are summarized in Table 1.
In the end, only the arginine residue in insulin was

found to be glycated with the formation of either hydro-
imidazolone or tetrahydropirimidine. Similar results
were observed in a previous study that characterized
methylglyoxal modification of insulin. In that study the
modification of the arginine residue with a 54 Da mass
increase was detected [30]. Even though authors claimed
that this mass increase corresponds to a Schiff base for-
mation, this mass increment is characteristic of an
MGH advanced glycation end-product. The glycation
reactions by methylglyoxal are very fast [31] so the for-
mation of advanced glycation products are expected. In
this work, we observed that the arginine residue may
also be modified with the formation of a tetrahydropiri-
midine (mass increment of 144 Da). This result is in
agreement with our previous data showing the inherent
heterogeneity of in vitro methylglyoxal glycation reac-
tions [32]. In contrast, no evidences of glycation in the
N-terminal and the lysine residue were observed by our
mass spectrometry analysis. Although the N-terminal of
insulin was found to be the major glycation target when
using glucose as glycation agent [33,34], it is well known
that methylglyoxal preferentially reacts and modify argi-
nine residues [35].

Methylglyoxal reduces insulin fibril formation
To investigate the effects of methylglyoxal on insulin
fibril formation, insulin was incubated with methyl-
glyoxal at different concentrations in the appropriate
aggregation conditions described in the “Methods” sec-
tion. The insulin fibrillation process as a function of
time and methylglyoxal concentration was monitored by
ThT fluorescence and circular dichroism (Figure 2).
Methylglyoxal glycation of insulin resulted in a substan-
tial dose-dependent decrease in ThT fluorescence inten-
sity at the end of the fibrillation which is consistent
with a reduced insulin fibril formation (Figure 2A).
These differences were probed not to occur by ThT
quenching caused by methylglyoxal or AGEs (Figure
2B). To further explore the biochemical mechanism on

the inhibition of fibril formation by methylglyoxal glyca-
tion, a kinetic analysis was performed. The fibrillation
kinetics represented in Figure 2A exhibit characteristic
sigmoidal curves with an initial lag phase, a subsequent
growth phase and a final equilibrium phase. Such curves
are consistent with a nucleation-dependent polymeriza-
tion model, in which the lag corresponds to the nuclea-
tion phase and the exponential part to fibril growth
(elongation) [36-39]. Equation 1 was fitted to the experi-
mental data and yielded values for the fibrillation lag
time and for the apparent first-order rate constant (kapp)
of fibrillation [40,41]. The dependence of the kinetic
parameters of fibrillation on methylglyoxal concentra-
tion is represented in Figure 2C1 and 2C2. Clearly, the
lag time increases as a function of methylglyoxal con-
centration, changing from 2.8 h in unmodified insulin to
9.1 h upon methylglyoxal glycation. By contrast, no sig-
nificant changes in the apparent rate constant of fibrilla-
tion were observed. These results show a longer
nucleation phase which indicates that methylglyoxal gly-
cation blocks the formation of the seeding nuclei, with-
out changing the fibril elongation rate.
To detect changes in protein conformation during the

fibrillation process, insulin fibril formation was moni-
tored by circular dichroism (Figure 2D). Insulin pre-
sented a mainly a-helical secondary structure with
spectral local minima at 222 and 208 nm and a positive
band below 200 nm, which are characteristics of a-heli-
cal conformations (Figure 2 - time 0 h). CD spectra col-
lected at several time points along the fibrillation
pathway, showed that fibril formation is accompanied by
a conformational transition, suggesting loss of a-helix
and gain of b-sheet. This shift was most extensive when
methylglyoxal was absent and decreases with methyl-
glyoxal in a concentration-dependent manner. These
results show that glycation preserves insulin native con-
formation, blocking the a-helix to b-sheet transition
characteristic of amyloid fibril formation. This is in
agreement with the reduction of fibril formation
observed in ThT kinetic measurements and suggests
that there is a structural inertia to conformational
changes in glycated insulin that is responsible for block-
ing the seeding nuclei formation, leading to a reduced
fibril formation.

Methylglyoxal induces protein oligomerization
To investigate the early steps of protein aggregation,
samples were collected at indicated incubation times
and analyzed by size exclusion chromatography and
PAGE (Figure 3). Non-glycated insulin appears as a sin-
gle molecular species (elution volume of 14.04 ml) cor-
responding to the insulin monomer mass. No hexameric
insulin species were detected confirming that the insulin
sample preparation produced monomeric solution. The
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same feature was observed for glycated insulin at time 0
(elution volume of 13.68 ml), as it can be observed
either by SEC or gel electrophoresis. The difference in
the elution volumes is explained by an increased hydro-
dynamic radius of glycated insulin, which may be caused
by a less compact structure formed upon glycation. Dur-
ing incubation time, the unmodified insulin monomer
changes into amyloid fibrils. This can be observed from
the native-PAGE (Figure 3B) where a reduction of insu-
lin monomer (only species present at time 0 h) conco-
mitant with the appearance of high molecular mass
fibrils, unable to enter the separation gel, is clearly

detected. Likewise, the insulin amyloid fibrils are unable
to pass through the SEC column’s filter and enter the
stationary phase and thus a reduction of the SEC insulin
monomer peak intensity with time is observed (Figure
3A). Interestingly, intermediate oligomeric species are
apparently absent or in undetectable concentration. This
may be due to the nature of soluble oligomers: they are
intermediates of the aggregation process, and are there-
fore an extremely transient and labile species [42]. As
soon as their concentration reaches a few percent, the
oligomers are rapidly converted into amyloid fibrils with
an organized b-structure. A very different scenario

Figure 2 Effect of methylglyoxal concentration on the kinetics of fibril formation of human insulin. (A) Kinetics of fibrillation at different
MGO concentrations monitored by ThT fluorescence. The symbols represent the average of ThT fluorescence intensities determined in three
experiments, and the lines represent the best fit using the equation 1. Methylglyoxal concentrations used were 0 (•), 0.1 (■), 0.25 (◇), 0.5 (□), 1 (×),
2.5 (○) and 5 (+) mM. The decreasing in fluorescence intensities of the curves plateau are correlated with increasing methylglyoxal
concentrations. (B) Evaluation of ThT quenching by methylglyoxal and AGEs. Non-glycated insulin fibrils were probed by ThT fluorescence after 8
h incubation (blue). Subsequently insulin fibrils were mixed with methylglyoxal (red) and glycated insulin containing AGEs (green) and probed
again by ThT fluorescence. Fluorescence spectra show no quenching of ThT fluorescence induced by either methylglyoxal (red) or AGEs (green).
(C) Dependence of the kinetic parameters lag time (C1) and apparent rate constant (C2) as a function of methylglyoxal concentration. Lag time is
taken as x0-2τ and the k is given by 1/τ. (D) a- to b- transition of insulin at the indicated methylglyoxal concentrations during the fibrillation
process followed by circular dichroism. CD spectra were collected at time 0 h (black), 3 h (blue), 5 h (green) and 7 h (red) incubation.
Measurements were all performed at 37°C with agitation of the reaction mixture.
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emerged when methylglyoxal is added. In this case, SEC
peak intensity also becomes reduced, but other species
are clearly detected on the chromatogram, correspond-
ing to insulin soluble aggregates (Figure 3A). These
aggregates are also observed in gel electrophoresis and
show apparent molecular masses consistent with tri-
meric and tetrameric forms of insulin (Figure 3B).
Moreover, high molecular mass species are only
detected in the later incubation times compared to the
control (without methylglyoxal). Taken together, these
results show that methylglyoxal-induced glycation
reduces insulin fibril formation and promotes the popu-
lation of oligomeric states.
Protein glycation has been referred to induce protein

aggregation due to cross-link formation [43,44]. How-
ever, when using methylglyoxal, only the lysine-lysine
dimer MOLD is formed [45], which is a minor advanced

glycation end-product compared to other AGE [46]. The
fact that only a single arginine residue is glycated and
that significant amounts of glycated insulin are in aggre-
gated forms suggest that major non-covalent interac-
tions are likely to be involved. The nature of the
interactions in glycated insulin aggregates was evaluated
by SDS-PAGE. The denaturing conditions of the SDS-
PAGE induced significant dissociation of the glycated
insulin tetramer (Figure 3C) showing that mainly non-
covalent interactions are present in the insulin
aggregates.

Methylglyoxal effects on insulin structure and stability
Our final set of experiments was aimed to investigate
the structural changes imposed by methylglyoxal-derived
glycation that might be associated to fibril inhibition
and stabilization of oligomeric species. In these

Figure 3 Effects of methylglyoxal on the early steps of insulin aggregation. Insulin (3 mg.ml-1) was incubated in the absence of
methylglyoxal and in the presence of 5 mM of the glycation agent with stirring. Samples were collected at specific incubation times and
immediately analysed by size exclusion chromatography (A) and PAGE (B). Sample buffer in PAGE did not contain SDS and b-mercaptoethanol in
order to preserve the insulin oligomerization. To investigate the nature of insulin aggregates, the monomeric form of glycated insulin collected
at incubation time 0 h (M) and the tetrameric form of glycated insulin collected at time 18 h (T) were analysed by a standard SDS-PAGE (C).
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experiments insulin was incubated without agitation, a
condition that does not promote aggregation, as
observed by SEC experiments (see Additional File 1: Fig-
ure S1). In these conditions, insulin is glycated but
remains almost entirely in monomeric form. In contrast
with the results obtained when insulin was incubated in
aggregation conditions, the CD spectra of non-glycated
insulin remains unchanged during the incubation period
(Figure 4A), while glycated insulin undergoes slight
spectral changes (Figure 4B and 4C). Spectra deconvolu-
tion shows a redistribution of secondary structure ele-
ments in glycated insulin with a respective increase in
b-sheet content, an increase in unordered structure and
a reduction in the relative a-helical content (Table 2).
We then assess the conformational stability of glycated
and native insulin (Figure 4D and 4E). GdnHCl-induced
denaturation was found to be reversible, as judged by

CD experiments after dialysis of GdnHCl-denatured
insulin (data not shown). Fits were made using the lin-
ear extrapolation method [47] in a non-linear least
squares fitting procedure and yielded values for ΔGo

(H2O), the conformational stability, and m, the depen-
dence of ΔGoon denaturant concentration. Table 3
shows the values obtained from the curves in Figure 4D
and 4E for ΔGo(H2O), m, and Cm, the denaturant con-
centration at the midpoint of the unfolding transition.
Glycated insulin has a smaller conformational stability
with ΔGo(H2O) of 2.66 ± 0,27 kcal.mol-1 against 3,34 ±
0,33 kcal.mol-1 for unmodified insulin. This decrease in
conformational stability is also supported by the smaller
Cm value of glycated insulin. In addition, glycation
resulted in a weaker GdnHCl-dependence of unfolding
(smaller m-value). The m-value has been correlated with
the difference between accessible surface areas in the

Figure 4 Effects of methylglyoxal on insulin structure and stability. Insulin (3 mg/ml) was incubated with 1 and 5 mM of methylglyoxal at
37°C without stirring for 48 h and compared with non-glycated insulin. Insulin secondary structure was monitored far-UV CD. Circular dichroism
spectra were recorded as a function of time at different methylglyoxal concentrations (A - 0 mM; B - 1 mM; C - 5 mM). Spectra were collected at
time zero (blue) and after 24 h (red) and 48 h (green) incubation. Deconvolution of the CD spectra are present in Table 2. Protein
conformational stability was evaluated for native insulin (D) and glycated insulin (E) by guanidinium hydrochloride equilibrium denaturation
curves at pH 7.4 and 37°C monitored by circular dichroism at 222 nm. The curves are non-linear least squares fits to a two-state unfolding
model equation [71,72] representing the entire denaturation curve and using a linear extrapolation method to the experimental circular
dichroism data [47]. The insets are the residues plot.
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unfolded and folded states: m ∝ ΔA, where ΔA = AU -
AN [48]. This weak dependence may reflect a less com-
pact folded structure or a more compact unfolded state.
Putting these results together with the SEC experiments
where glycated insulin has a small elution volume then
the native insulin, suggest that the presence of a less
compact structure is a more likely scenario, which may
be the basis of a higher susceptibility to different unfold-
ing and aggregation pathways.

Discussion
Insulin is a protein hormone that regulates glucose con-
centration in blood. It is intimately related with glycae-
mia and is vulnerable to glycation by glucose and other
highly reactive carbonyls like methylglyoxal. Addition-
ally, it has the ability to aggregate and form amyloid-like
fibrils that are characteristic of a clinical condition called
insulin injection amyloidosis [10]. In this work we have
investigated the effects of methylglyoxal-modification of
insulin on structural and fibril-forming properties. Mass
spectrometry data showed that methylglyoxal specifically
modifies a single arginine residue in the B-chain. This is
in agreement with a previous study that observed a
methylglyoxal-derived modification on the arginine resi-
due of the B chain [30]. The glycation of insulin in our
experimental conditions promoted the coexistence on
insulin molecules with the arginine residue modified to
a hydroimidazolone and to a tetrahydropirimidine

modification. This heterogeneity in in vitro glycation
was already observed [32]. No modification on the lysine
residues and N-terminal were detected by our experi-
mental approach. Insulin glycation by D-glucose also led
to the coexistence of protein molecules glycated at dif-
ferent residues [34]. In opposition to our results, the N-
terminus of both chains and the lysine residue 29 were
modified upon glucose glycation. This difference is not
surprising since it is well documented that methyl-
glyoxal preferentially reacts and modifies arginine resi-
dues [35].
Previous reports showed that AGE modifications

accelerated the fibrillation of several proteins and pep-
tides including b-amyloid peptide, tau and albumin
[49,50]. Additionally, AGE-modified proteins were
detected in amyloid deposits from several amyloidosis
such as Alzheimer’s [24,51], Parkinson’s [26,52] disease
and FAP [27]. In contrast with those amyloidogenic pro-
teins, modification of b-2-microglobulin and a-synuclein
by different glycation agents resulted in inhibitory effects
on the formation and extension of fibrils [53,54]. Our
data also showed that insulin fibril formation is substan-
tially reduced upon methylglyoxal modification. The
observed differences might be a consequence of the
inherent properties of the native structure of each pro-
tein, or differential structural changes induced by AGE
modifications as result of different glycation agents. In
most of the cases mentioned above, fibrillation enhance-
ment is achieved by modifying amyloidogenic proteins
with glycating sugars like glucose or fructose while
small and highly reactive carbonyls like methylglyoxal
are apparently more prone to reduce fibril formation. A
good example comes from a-synuclein where glyoxal
and methylglyoxal inhibit fibril formation [54] while D-
ribose glycation does not [55]. This suggests that differ-
ent glycation agents lead to specific structural con-
straints that have a major role in protein fibrillation
kinetics.

Table 2 Distribution of the structural element fractions for native and glycated insulin along time obtained by
deconvolution of CD spectra using CDSSTR algorithm available on Dichroweb (Dichroweb; http://www.cryst.bbk.ac.uk/
cdweb/html/home.html) [69,70]

[MGO] (mM) Time (h) a-Helix b-Sheet b-Turns Unordered structure NRMSD

0 0 31 23 22 24 0.028

24 33 23 21 23 0.033

48 32 22 22 24 0.029

1 0 31 24 21 24 0.027

24 28 26 22 26 0.032

48 24 27 22 27 0.036

5 0 32 22 22 24 0.022

24 23 27 21 27 0.029

48 23 28 21 27 0.035

The NRMSD parameter represents the normalized root mean square deviance.

Table 3 Thermodynamic parameters from GdnHCl
unfolding studies of native and glycated insulin

ΔGo(H2O)
(kcal·mol-1)

m
(kcal·mol-1.M-1)

Cm
(M)

Insulin 3.34 ± 0.33 0.63 ± 0.10 5.31 ± 0.98

Glycated Insulin 2.66 ± 0.27 0.52 ± 0.09 5.10 ± 0.98

Parameters were obtained by a direct fit of the model equations to
experimental data in Figure 4 D and E. ΔGo(H2O) is the protein conformational
stability; m is the dependence of ΔGoon denaturant concentration; Cm is the
denaturant concentration at the midpoint of the unfolding transition.
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Insulin offers a structural simplicity of two short poly-
peptide chains constrained by one intramolecular and
two intermolecular disulphide bonds and has well-
known molecular mechanisms of fibril formation [8,56].
The insulin B-chain segment with the sequence LVEA-
LYL is the smallest segment in the basis of fibril assem-
bly, being crucial to the cross-b spine of the insulin
fibril [56]. In full-length insulin molecules, there must
be conformational changes for the LVEALYL side chains
of the segment to be exposed and to interact with each
other [56]. However, insulin glycation leads to native-
like aggregation, as showed by CD experiments. This
suggests that glycation impairs insulin conformational
alterations, causing the inhibitory effects observed in the
fibrillation process. Moreover our kinetic analysis of
insulin aggregation showed an increase in fibrillation lag
time. The lag time can be used to monitor the nuclea-
tion phase prior to the exponential stage of fibril elonga-
tion. Increasing lag time indicates that methylglyoxal
glycation inhibits the fibrillation process by blocking the
formation of the seeding nuclei. Accordingly fibril for-
mation is reduced due to lack of a critical concentration
of seeds.
Despite the inhibition of fibril formation, size exclu-

sion chromatography experiments showed that glycation
induces insulin aggregation. However these aggregates
are small, soluble, non-fibrillar and native-like in struc-
ture, and apparently are not a consequence of a covalent
crosslinking of insulin monomers. This implies that
aggregation of modified insulin is not a merely result of
a chemical reaction, but an outcome of complex folding
interactions that are established and populates an off-
pathway to fibril formation. A subject of intense investi-
gation is whether the amyloid fibril deposits or the pre-
fibrillar aggregates, called protofibrils, are the most
potent mediators of cell damage, cytotoxicity and neuro-
toxicity. The finding that the severity of cognitive
impairment in protein misfolding diseases correlates
with the levels of small oligomeric species and not with
the large fibrillar species has led researchers to the con-
clusion that the soluble small aggregates are the primary
cause of the pathological symptoms [57-60]. Moreover,
accumulation of AGE-modified proteins has been
related to cellular responses including oxidative stress
and the release of pro-inflammatory cytokines mediated
by AGE:RAGE interaction [61,62]. Therefore it will be
interesting to evaluate the cytotoxicity of the insulin gly-
cated aggregates.
In order to understand what structural restrictions

could cause this behavior, we investigated the effects of
methylglyoxal glycation on the structure and stability of
insulin. Circular dichroism experiments showed that
modified insulin has a small conformational stability and
a slight increase in b-sheet content when compared to

the unmodified protein. This lower conformational sta-
bility is accompanied by a weaker dependence of ΔGoon
denaturant concentration which is related to a less com-
pact native structure or a more compact unfolded state
[48]. Size exclusion chromatograms of glycated insulin
showed a slight decrease in retention time of the insulin
monomer, supporting the idea of a less compact native
structure. Although most of the proteins have well-
defined structures, they are not static molecules. Pro-
teins are dynamic entities and possess an inherent flex-
ibility. Having a lower contribution of van der Waals
interactions, it is likely to expect that a less compact
structure may result in a more dynamic one. The term
dynamics is used for intrinsic protein molecular
motions, while the term flexibility is used for the ability
of a protein to adapt its structure to external stimuli.
Accordingly, proteins are flexible as a consequence of
their dynamics, yet their dynamics do not automatically
result in flexibility. We propose that higher dynamics in
glycated insulin could lead to impairment of the forma-
tion of the rigid cross-b core structure found in amyloid
fibrils, resulting in a higher susceptibility to different
unfolding and aggregation pathways. In this case other
aggregation pathways that preserve native-like structure
and comparable dynamics, like the small and soluble
aggregates of glycated insulin observed in size exclusion
chromatography, could be more likely populated.

Conclusions
Insulin is a nearly all-alpha protein playing a central role
in blood glucose homeostasis and is associated with a
medical condition termed insulin injection amyloidosis,
characterized by the formation and deposition of amy-
loid fibrils from insulin. Due to its main physiological
role, insulin is a target for glycation by methylglyoxal.
Protein glycation mostly impairs protein functionality by
changing protein structure and stability, and AGE-modi-
fied proteins have been related to cellular responses
including oxidative stress and the release of pro-inflam-
matory cytokines. Glycation has been associated with
human conformational diseases, such as Alzheimer’s dis-
ease, Parkinson’s disease and Familiar Amyloidotic Poly-
neuropathy, which are associated to the formation of
amyloid fibrils. Our results show that glycation of insu-
lin by methylglyoxal reduce insulin fibril formation and
leads to the formation of insulin native-like aggregates.
In addition they suggest that modification of insulin
leads to a less compact and less stable structure that
may be associated to an increased dynamics, preventing
the formation of the rigid cross-b core structure found
in amyloid fibrils. Overall the present study points that
methylglyoxal adducts can trigger a drifting from an
amyloid aggregation to a native-like aggregation path-
way, a mechanism that might be important in the
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context of the amyloidogenicity of AGE-modified pro-
teins involved in conformational diseases.

Methods
Insulin preparation and glycation
Insulin exists in solution as an equilibrium mixture of
monomers, dimers, tetramers and hexamers, and possi-
bly higher associated states, depending on concentration,
pH, metal ions, ionic strength and solvent composition
[63]. A solution containing only insulin in the mono-
meric form was prepared taking into account the fluc-
tuation of its association states in different milieu
conditions as described [64]. Briefly, human zinc-free
insulin (Sigma) was dissolved in ultra-pure miliQ water
to a final concentration of 6 mg.ml-1 and acidified with
H3PO4 to a pH of 5 in order to obtain monomeric insu-
lin. Insulin at pH 5 was then incubated for 15 min at
room temperature and protein concentration was deter-
mined by absorbance at 275 nm (ε275 = 4560 M-1 cm-1)
in a UV-Visible spectrophotometer Jasco V-530. Finally,
insulin was neutralized to pH 7 with NaOH 0.1 M and
diluted to a final concentration of 3 mg.ml-1. Insulin
preparation was proven to be in the monomeric form
after pH neutralization as evaluated from size exclusion
chromatography and native-PAGE experiments as
described below. Also circular dichroism experiments
showed that no structural changes or unfolding
occurred with pH variations. In all assay, monomeric
insulin was prepared in exactly the same way.
For the methylglyoxal-derived glycation of insulin, the

protein preparation (3 mg.ml-1) was incubated with
methylglyoxal (at several concentrations ranging from
0.1 to 5 mM) (a kind gift from Dr. Carlos Cordeiro,
Centro de Química e Bioquímica, FCUL, Lisbon, Portu-
gal) in 50 mM potassium phosphate buffer, pH 7.4, sup-
plemented with 150 mM of NaF, at 37°C in sterile
conditions. Samples were collected at different incuba-
tion times for analysis with the maximum incubation
time of 48 hours. Control samples were treated in the
same way but without methylglyoxal addition. To evalu-
ate the effects of methylglyoxal on insulin stability and
secondary structure changes, samples were incubated
without stirring, a condition that avoid fibril formation,
producing only glycated insulin in the monomeric state.
In contrast, for the oligomerization and fibrillation
kinetic studies, samples were incubated with vigorous
agitation. Aliquots were collected in sterile conditions at
defined incubation times from 0 to 4 hours and immedi-
ately analyzed.

Characterization of insulin glycation by methylglyoxal
using mass spectrometry and dot-blot analysis
Dot-blot assay was performed using a specific monoclo-
nal antibody towards methylglyoxal-derived glycation (a

kind gift from Dr. Ram Nagaraj, Case Western Univer-
sity, Cleveland, OH, USA), using a 1:2000 dilution.
Washes, secondary antibody and detection procedures
were performed using the BM Chemiluminescence Wes-
tern Blotting Kit (Pierce) following the manufacturer’s
instructions.
To characterize the protein modification and assign

the amino acid residues modified by methylglyoxal, a
chymotrypsin digestion of insulin was performed. Pro-
tein samples were reduced with 10 mM dithiothreitol in
100 mM NH4HCO3 buffer (pH 8.0) at 55°C for 1 h and
alkylated with 55 mM of iodoacetamide in 100 mM
NH4HCO3 buffer (pH 8.0) in the dark for 30 min. In
solution digestion were performed with chymotrypsin
(Promega) using 50:1 ratio of protein:protease in 100
mM Tris-HCl buffer (pH 7.8) containing 10 mM CaCl2
for 16 h. Protein digestion was stopped by the addition
of formic acid [(final concentration of 1% (v/v)]. The
obtained peptide mixture was purified and concentrated
by solid-phase extraction using home-made R2 Pore
microcolumns (Applied Biosystems) as previously
described [65]. Peptide mixture were eluted directly
onto the MALDI target plate with 0.5 μl of a-CHCA
matrix (5 mg.ml-1) prepared in 50% (v/v) acetonitrile
with 0.1% (v/v) formic acid. The mixture was allowed to
air dry (dried droplet method). Sample peptides were
analysed in a MALDI-TOF-TOF mass spectrometer
4800 plus (Applied Biosystems) in positive reflectron
mode for peptide mass determination. The mass spec-
trometer was externally calibrated using 4700 Calibra-
tion Mix (Applied Biosystems). Mass spectra were
collected in a result-independent acquisition mode, typi-
cally using 1000 laser shots per spectrum and a fixed
laser intensity of 3500 V. The peptides of interest (i.e.,
having a mass consistent with the mass increment of
the modifications by methylglyoxal) were selected for
MS/MS experiments using Collision Induced Dissocia-
tion (CID), with 1 kV collision energy and an air pres-
sure of 106 torr. Two thousand laser shots were
collected for each MS/MS spectrum using a fixed laser
intensity of 4500 V. Raw data were generated by the
4000 Series Explorer Software v3.0 RC1 (Applied Biosys-
tems). The identification of MAGE-modified peptide
and amino acid residues was further validated using
Peaks Studio 4.5 software (Bioinformatic Solutions Inc.),
combined with manual inspection of the assigned
sequence.

Analysis of insulin-fibril formation and fibrillation kinetics
To investigate the effects of MGO in insulin fibril for-
mation, solutions of monomeric insulin (prepared as
described above) were incubated with stirring at 37°C in
the presence of methylglyoxal at 0, 0.1, 0.25, 0.5, 1.0, 2.5
and 5.0 mM. Fibril formation was monitored with
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thioflavin T (ThT) binding assay as previously described
[65,66]. Briefly, aliquots of 5 μl were removed and
added to 0.5 ml of 10 μM ThT in 50 mM sodium phos-
phate buffer (pH 7.4) at room temperature and immedi-
ately analyzed. Fluorescence measurements were
performed using a Perkin Elmer LS50B spectrofluori-
meter, in quartz cuvettes with 1 cm excitation light
path. ThT fluorescence was recorded immediately after
ThT binding from 470 to 530 nm with excitation at 450
nm, an increment of 0.5 nm, an integration time of 1 s
and 5 nm slits for both excitation and emission. For
each sample, the signal was obtained as the ThT inten-
sity at 482 nm from which was subtracted a blank mea-
surement recorded prior to addition of insulin to the
ThT solution. To test if methylglyoxal alone or the
derived insulin AGEs interfere with ThT fluorescence of
insulin fibrils, non-glycated insulin fibrils were produced
in vigorous agitation by incubating monomeric insulin
preparation (3 mg.ml-1) in the absence of methylglyoxal
for 8 h. ThT fluorescence was then determined for insu-
lin fibrils alone, in the presence of methylglyoxal (5
mM), and also in the presence of methylglyoxal-glycated
insulin (3 mg.ml-1) prepared with vigorous agitation as
described above.
ThT fluorescence measurements were plotted as a

function of time and equation 1 was fitted to the experi-
mental data [40,41].

Y = (yi + mix) +
(yf + mf x)

1 + e− x−x0
τ

(1)

where Y is the fluorescence intensity and x0 is the time
to 50% of maximal fluorescence. The initial base line dur-
ing the lag phase is described by yi + mix. The final base
line after the growth phase had ended is described by yf +
mfx. The apparent first-order rate constant (kapp) for the
growth of fibrils is calculated as 1/τ, and the lag time is
calculated as x0-2τ. This expression is unrelated to the
underlying molecular events, but provides a convenient
method for comparison of the fibrillation kinetics.

Size-exclusion and PAGE experiments
Aggregation of human insulin upon methylglyoxal glyca-
tion was monitored by size exclusion chromatography
(SEC) and Native-PAGE. Solutions of monomeric insu-
lin were incubated and stirred at 37°C in the presence
of methylglyoxal at 0, 1 and 5 mM. Samples were ana-
lyzed by SEC at defined incubation times, after filtration
with a 0.2 μm Whatman filter. SEC was performed with
HPLC Jasco PU-2080 Plus isocratic pump with an UV
detector JASCO 2075. The mobile phase was 50 mM
sodium phosphate buffer pH 7.4 with 150 mM NaF.
Separation was achieved on a molecular exclusion analy-
tical column (Amersham-Pharmacia Superdex™ 75 10/

300 GL) at a flow rate of 0.4 ml/min. Eluting peaks
were monitored at 275 nm. Insulin samples were also
separated by Native and SDS-PAGE on a Bio-Rad Mini-
Protean 3 system, using a 12% separation gel and a 4%
stacking gel. On Native-PAGE all buffers were prepared
without SDS addition. Proteins were stained with
Comassie Brilliant Blue [67].

Circular dichroism and conformational stability
measurements
Secondary structure analysis was performed by far-UV
(185-260 nm) CD in a Jasco J810 spectropolarimeter
equipped with a temperature control unit Julabo F25
using an insulin concentration of 3 mg.ml-1. Far UV CD
spectra were recorded with 0.01 cm (linear) path length
quartz cuvette at 37°C in 50 mM sodium phosphate buf-
fer pH 7.4 with 150 mM NaF. For each spectrum, three
scans were averaged and protein concentration was
determined by absorbance at 275 nm using the above
mentioned insulin extinction coefficient in a UV-Visible
spectrophotometer Jasco V-530. For protein secondary
structure estimation, CD spectra were deconvoluted
using the CDSSTR [68] deconvolution algorithm on
Dichroweb [69,70]. CD spectra of the appropriate buffers
were recorded and subtracted from the protein spectra.
CD denaturation curves for non-glycated and glycated

insulin monomer were constructed using the ellipticity
at 222 nm, monitored at 37°C after 24 h incubation
with guanidinium hydrochloride (GdnHCl) at various
concentrations. The denaturation of glycated and non-
glycated insulin could be described as sigmoidal curves
and were analyzed according to a two-state unfolding
model M ↔ U using the linear extrapolation method
[47] in a non-linear least squares fitting procedure and
yielded values for ΔGo(H2O), the conformational stabi-
lity, and m, the dependence of ΔGoon denaturant con-
centration. Cm, the denaturant concentration at the
midpoint of the unfolding transition was calculated as
Cm= Go(H2O)/m. Denaturation curves for monomeric
species were analyzed considering the equation devel-
oped by Santoro & Bolen [71,72].

Additional material

Additional file 1: Figure S1. Evaluation of insulin aggregation in
non-stirring conditions. Insulin incubation in 50 mM potassium
phosphate buffer, pH 7.4 supplemented with 150 mM of NaF, at 37°C in
sterile conditions without stirring. Gel filtration experiments show that
insulin does not aggregate in this incubation conditions, remaining in
the monomeric form.
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