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Abstract: Silymarin is a traditional drug and food supplement employed for numerous liver disorders.
The available studies indicate that its activities may be broader, in particular due to claimed benefits
in some cardiovascular diseases, but the contributions of individual silymarin components are unclear.
Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites
for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively.
Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective
concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in
the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers
B. Interestingly, the most active compound was a metabolite—silychristin-19-O-sulfate. Although initial
experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially
block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were
negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to
have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is
low or negligible.

Keywords: milk thistle; Silybum marianum; sulfates; metabolites; vasorelaxant; aorta; thrombocytes;
blood coagulation

1. Introduction

The dietary utilization of the milk thistle (Silybum marianum (L.) Gaertn., Asteraceae) was probably
first mentioned by the ancient Greeks (Theophrastus of Eresos, ca. 371–287 BC and Pedanios Dioscurides,
ca. 40–90 AD), with medicinal properties being described even in medieval times (Hildegard von
Bingen). Liver protection has been the most popular application, encompassing traditional use against
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Amanita phalloides poisoning and snake bites, as well as the treatment of inflammatory liver diseases,
liver cirrhosis, hepatitis C, and other liver pathologies. In fact, the milk thistle represents the most often
recommended herbal product for patients with chronic liver diseases [1]. Silymarin, an extract of the
milk thistle fruits (cypselae), has been largely tested for many other pharmacological effects, including
those on metabolic syndrome [2–4]. This pathological condition is characterized by a complex of
metabolic and other risk factors (hypertension, dyslipidemia, insulin resistance, diabetes, abdominal
obesity, and pro-inflammatory and pro-thrombotic states), and represents a rising global health problem,
which can progress to severe clinical complications such as acute myocardial infarction. Silymarin seems
to target principal risk factors of metabolic syndrome and the mechanism of its action is likely complex.
It involves the stabilization of cellular membranes, regulation of cell permeability, direct antioxidant
activity, a reduction in insulin resistance and restoration of pancreatic beta cell function [4], antagonism
at the human angiotensin (AT1) receptor [5], normalization of the function of the endothelium and
vascular elasticity [6,7], and anti-atherosclerotic effects [8]. In studies with rats or mice, silymarin intake
resulted in cardioprotective [9,10], antidiabetic, anti-inflammatory, and hypolipidemic effects [11–14].
Recently, silymarin was also reported to influence human blood coagulation by decreasing the platelet
aggregation via inhibition of the cyclooxygenase (COX) activity [15]. Overall, silymarin seems to be
generally beneficial to health: it is a popular component of various food supplements and has an
excellent safety profile, as oral doses up to 2.1 g per day are tolerated well without adverse effects [16].

Chemically, silymarin is a mixture of natural substances with a slightly variable composition [17].
It contains approximately 70–80% flavonolignans (e.g., silybin (syn. silibinin), isosilybin, silychristin,
isosilychristin, silydianin), and other flavonoids (e.g., taxifolin, quercetin, apigenin). The remaining
20–30% is represented by a relatively undefined polymeric flavonoid fraction. Flavonolignans (except
silydianin) exist in silymarin as diastereomeric pairs referred to as A and B in various ratios [18].
There are limited data on the effects of (optically) pure silymarin components and their metabolites on
the cardiovascular system.

The aim of this study was to investigate two types of potential cardiovascular effects of isolated
silymarin flavonolignans and of their sulfated metabolites. Briefly, these compounds were screened
ex vivo for vasorelaxant properties on isolated rat aorta, and for antiplatelet effects in human
blood. Whenever possible, isolated diastereomers were used to address possible differences in their
pharmacological action.

2. Materials and Methods

2.1. Animals

The experiments were carried out on male normotensive Wistar:Han rats purchased from Charles
River (Düsseldorf, Germany). The animals were bred in the animal house of the Faculty of Pharmacy in
Hradec Králové (Charles University) and kept at a temperature of 23–25 ◦C with a 12-h dark/light cycle.
Rats were provided a standard diet and tap water ad libitum. The study (reg. No. MSMT-7041/2014-10)
was approved by the Czech Ministry of Education, Youth and Sports and conformed to the Guide for
the Care and Use of Laboratory Animals published by the US National Institutes of Health (8th edition,
revised 2011, ISBN-13: 978-0-309-15400-0).

2.2. Silymarin Flavonolignans

All of the tested silymarin flavonolignans and their metabolites were isolated or synthetized
at the Institute of Microbiology of the Czech Academy of Sciences in Prague (IM CAS), as reported
below. Silybin was isolated from silymarin (Liaoning Senrong Pharmaceutical, Panjin, China,
batch No. 120501) by its quick suspension in methanol and filtration, yielding solid silybin A+B
(49.8% of silybin A, 48.0% of silybin B). Silybin diastereomers were chemoenzymatically resolved
by immobilized lipase B from Candida antarctica (Novozyme 435, Novo-Nordisk, Copenhagen,
Denmark) [19]. A series of consecutive acetylations and solvolyses was used to obtain silybin
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A (99.2%) and silybin B (99.0%). Silychristin (87.1% of silychristin A, 9.2% of silychristin
B) was isolated from silymarin by Sephadex LH-20 chromatography as described in [20].
The 2,3-dehydro-derivatives, i.e., 2,3-dehydrosilybin (racemate, 98.2%), 2,3-dehydrosilybin A (95.1%),
2,3-dehydrosilybin B (97.4%), and 2,3-dehydrosilychristin (91.2%, containing 8.8% of silychristin A)
were prepared by oxidation of the respective parent compounds as published previously [21,22].
Silybin A 20-O-sulfate (93%), silybin B 20-O-sulfate (99.9%), silychristin-19-O-sulfate (99.9%),
2,3-dehydrosilybin-20-O-sulfate (98%), 2,3-dehydrosilybin-7,20-O-disulfate (96%), 2,3-dehydrosilybin
A 20-O-sulfate (98%), and 2,3-dehydrosilybin B 20-O-sulfate (94%) were prepared using aryl
sulfotransferase from Desulfitobacterium hafniense according to the previously described procedure [22].
The structures of all compounds tested are shown in Figure 1, NMR and MS spectra of all compounds
used were identical to authentic standards available in the Laboratory of Biotransformation, IM CAS;
HPLC chromatograms are presented in Figure S1.
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Figure 1. Structures of the compounds tested.

2.3. Reagents

Urethane, norepinephrine bitartrate, phenylephrine, sodium nitroprusside, acetylcholine, dimethyl
sulfoxide (DMSO), indomethacin, ethylenediaminetetraacetic acid (EDTA), terutroban, acetylsalicylic
acid, 1-benzylimidazole, and kaempferol were purchased from Sigma-Aldrich (Prague, Czech Republic).
The Krebs solution salts and 96% ethanol were purchased from Penta s.r.o. (Prague, Czech Republic).
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Arachidonic acid was bought from Medista (Prague, Czech Republic). Heparin sodium was purchased
from Zentiva (Prague, Czech Republic); U-46619, thromboxane B2 ELISA kit, prostaglandin H2,
and the COX inhibitor screening kit were from the Cayman Chemical Company (Ann Arbor, MI,
USA). Collagen was obtained from Diagnostica a.s. (Prague, Czech Republic), and saline from B.
Braun (Prague, Czech Republic).

2.4. Ex Vivo Experiments on Isolated Rat Aortas

For these experiments, the rats were anesthetized with urethane (1.2 g·kg−1 injected
intraperitoneally), and exsanguinated via the abdominal aorta. The thoracic aorta was very gently
excised from the rat, and transferred to a Petri dish. It was cleaned of connective tissue and blood,
and then cut into rings measuring 3 mm in length. When needed for mechanistic studies, the endothelial
layer was mechanically disrupted by gently rubbing the luminal surface with dental floss. The rings
were maintained in tissue baths with Krebs solution (in mM: NaCl 94.8, KCl 4.7, KH2PO4 1.18,
MgSO4·7H2O 1.18, CaCl2·2.5, NaHCO3 25, D-glucose 11.6) oxygenated with carbogen (95% O2/5%
CO2) at 37 ◦C. Each aortic ring was placed between two stainless-steel wire hooks, one of them
rigidly attached to the end of a fixed support rod and the second connected to a transducer and
a computer equipped with S.P.E.L. Advanced kymograph Software (Experimetria Ltd., Budapest,
Hungary). This arrangement enabled the measurement of tissue contraction or relaxation.

Aortic rings were stretched at a tension of 2 g and equilibrated for 40 min and washed with Krebs
solution every 10 min. Thereafter, the tissue baths were filled with another 5 mL of Krebs solution.
The aortic rings were contracted with norepinephrine (the final concentration in the bath was 1 µM).
To confirm an intact endothelium, acetylcholine (10 µM) was added to the bath when the contraction
became stable. The endothelium-free vessels did not respond to acetylcholine. After that, acetylcholine
and norepinephrine were completely removed by repeated washing with Krebs solution.

In the next step, each tissue bath was filled with another 5 mL of Krebs solution and the aortic rings
were contracted with phenylephrine (1 µM). After stabilization, the tested compound was cumulatively
added to the bath to final concentrations ranging from 100 nM to 1 mM. The next dose was always
applied after stabilization of the previous response. At the end of each experiment, maximal relaxation
was induced by adding sodium nitroprusside (10 µM) to the bath. This concentration produces 99%
vasorelaxation of rat aorta, and was calculated using the vasorelaxant curve of sodium nitroprusside
obtained in our pre-experiments.

The tested substances were dissolved in DMSO, and the final concentration of DMSO in the bath
never exceeded 2%. As the negative control, the same concentrations of DMSO but without the tested
substance were cumulatively added to several aortic rings in each experiment.

2.5. Platelet Aggregation Experiments

2.5.1. Blood Volunteers

Blood samples from 22 healthy, non-smoking volunteers were collected by venipuncture into
plastic disposable syringes containing heparin sodium (170 IU/10 mL). Whole blood was used for
all measurements in an impedance aggregometer Multiplate (Roche Diagnostic, Basel, Switzerland).
For other experiments, platelet-rich plasma was obtained as the supernatant after centrifuging the
blood for 8 min at 214× g (VWR Compact Star CS4 centrifuge, VWR International Ltd., Lutterworth,
U.K.); the number of platelets was counted in a Neubauer Improved counting chamber (Marienfeld,
Lauda-Königshofen, Germany) with the use of an inverted Nikon Eclipse TS100 microscope (Nikon
Corporation, Tokyo, Japan) and adjusted to 3.5 × 108 per mL by autologous platelet-poor plasma
prepared by further centrifugation of the remaining blood at 2771× g for 10 min. The COX
inhibitor indomethacin (at a final concentration of 10 µM), or the thromboxane synthase inhibitor
1-benzylimidazole (20 µM) were added immediately after the blood collection for experiments focusing
on the inhibition of thromboxane synthase and COX, respectively. The study was approved by the
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Ethics Committee of Charles University, Faculty of Pharmacy in Hradec Králové (approval date:
November 12, 2012) and conforms to the latest Helsinki Declaration. All volunteers signed written
informed consent for the study.

2.5.2. Platelet Aggregation Induced by Collagen and Arachidonic Acid

The aggregometer Multiplate was used for the measurements. Briefly, 300 µL of whole blood
were diluted with the same volume of preheated 0.9% sodium chloride and incubated with 5 µL
of the tested compound dissolved in DMSO (at a final concentration of 0.8%) for 3 min at 37 ◦C.
Platelet aggregation was then induced with collagen or arachidonic acid and monitored for 6 min.
The dose of the inducer was first set to the minimal concentration, which caused maximal aggregation,
and the second calibration was carried out using acetylsalicylic acid (ASA) and kaempferol to fit our
standard curves. The final concentrations of collagen and arachidonic acid were in the ranges of
0.41–1.22 µg·mL−1 and 86–196 µM, respectively.

2.5.3. Cyclooxygenase-1 (COX-1) Inhibition

COX-1 inhibition was determined with ELISA using a commercial kit from Cayman Chemicals.
ASA or the tested compounds were incubated with ovine COX-1 at 37 ◦C and then arachidonic acid (at a
final concentration of 100 µM) was added to start the reaction. After 2 min, the reaction was stopped
with hydrochloric acid and the amount of prostaglandin H2 formed was measured after its reduction to
prostaglandin F2α by SnCl2, according to the COX inhibitor screening kit manual [23]. The percentage
inhibition was relative to the positive control, which contained only the solvent and arachidonic acid.

Analogously, platelet-rich plasma pretreated with 1-benzylimidazole (see above) to block further
metabolism of prostaglandin H2 was used to test the inhibition of human COX-1 instead of ovine
COX-1. ASA was also used as a standard here. The percentage of inhibition was calculated as in the
previous test.

2.5.4. Thromboxane A2 Synthase Inhibition

Thromboxane A2 synthase inhibition was evaluated according to the method of Chang et al. [24]
with minor modifications. Indomethacin-containing platelet-rich plasma was incubated with the
tested compound for 3 min at 37 ◦C. After the addition of prostaglandin H2 (50 ng), the mixture was
incubated precisely for 5 min. The reaction was terminated by the addition of cold EDTA solution
(2 mM, 4 ◦C) and the mixture was centrifuged at 10,500 g for 2 min. The thromboxane B2 levels in the
supernatants were measured using a commercial kit [25]. 1-Benzylimidazole was used as a standard.
The percentage inhibition was relative to the positive control, which contained only the solvent and
prostaglandin H2.

2.5.5. Antagonism at Thromboxane A2 Receptors

Antagonism at thromboxane A2 receptors was analyzed in the aggregometer Multiplate.
The inducer of aggregation was U-46619, a stable agonist of thromboxane A2 receptors. The final
concentration of U-46619 was 1.09 µM; terutroban was used as a standard.

2.6. Statistical Analysis

GraphPad Prism 7.03 (GraphPad Software, San Diego, CA, USA) was used for all data analysis.
Results were analyzed by comparing 95% confidence intervals of vasorelaxant curves and by EC50

followed by ANOVA with the Tukey multiple comparison test.
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3. Results

3.1. Ex Vivo Experiments on Isolated Rat Aorta

The majority of the 15 tested flavonolignans, including optically pure compounds, racemates and
their metabolites, exhibited a vasorelaxant effect on rat aorta; however none of them induced a complete
vasorelaxation at the tested concentrations ranging from 100 nM to 1 mM. Silychristin-19-O-sulfate,
silybin A, silychristin, 2,3-dehydrosilybin A, and silybin exhibited the highest vasorelaxant activities,
with detectable vasorelaxant effects as low as hundreds of nM (see Figure 2) and half maximal effective
concentrations (EC50 values) between 19 and 30 µM. In contrast, 2,3-dehydrosilybin B, silybin A
20-O-sulfate and 2,3-dehydrosilybin-7,20-O-disulfate were not effective (Figure 3). The activity of
stereoisomers A with the 10R,11S-configuration was in general higher than that of B stereoisomers
(10S,11S; Figure S2). The activity of their equimolar mixture was in between that of individual
stereoisomers (Figure S3). We also evaluated the effect of sulfation on the vasorelaxant activity, and the
results show that monosulfation in contrast to disulfation did not decrease the activity (Figure S4).

The most potent vasorelaxant non-conjugated flavonolignan silybin A was chosen for subsequent
analysis of the role of the endothelium in its activity. The data from endothelium-denuded rat aortic
rings clearly show that the removal of the endothelium from the rings abolished its vasorelaxant
activity (Figure 4).
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Figure 2. Vasodilatory effect of silychristin on aortic rings precontracted with phenylephrine.
The percentage of relaxation was calculated using the standard vasorelaxant drug sodium nitroprusside,
which produces 99% vasorelaxation at 10 µM. Data are expressed as means ± SEM, n = 5.
The concentration of DMSO is shown below the x axis. * p < 0.05 vs. DMSO.
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The first screening of antiplatelet activity was performed using collagen as the trigger and the 
standard antiplatelet drug acetylsalicylic acid (ASA) as a benchmark. The initial experiments were 
performed with high final concentrations (120 and 240 µM) to select the most active compounds 
(Figure 5). Six substances reached the same activity as ASA at 240 µM (Figure 5), and 2,3-

Figure 3. Ex vivo vasorelaxant effects of silymarin flavonolignans on intact rat aortic rings precontracted
with phenylephrine. Data are expressed as EC50 values, with the error reflecting the 95% confidence
interval; n = 4 with the exception of silychristin and 2,3-dehydrosilybin A-20-O-sulfate (n = 5);
2,3-dehydrosilybin A (n = 6); and 2,3-dehydrosilybin B-20-O-sulfate and 2,3-dehydrosilybin B (n = 3).
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Figure 4. Role of endothelium in vasorelaxant activity of silybin A. The effect was studied on intact or
endothelium-denuded (e.d.) rat aortic rings precontracted with phenylephrine. Data are expressed as
means ± SEM, n = 4. The concentration of DMSO is shown below the x axis. * p < 0.05.

3.2. Platelet Aggregation Experiments

The first screening of antiplatelet activity was performed using collagen as the trigger and
the standard antiplatelet drug acetylsalicylic acid (ASA) as a benchmark. The initial experiments
were performed with high final concentrations (120 and 240 µM) to select the most active
compounds (Figure 5). Six substances reached the same activity as ASA at 240 µM (Figure 5),
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and 2,3-dehydrosilychristin was even more active than ASA. Nevertheless, only silybin A had an
activity comparable to ASA at 120 µM, and all compounds exhibited a steep loss of activity at lower
concentrations (Figure S5, Tables S1 and S2).
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The same setup was used to measure the effect of all flavonolignans on platelet aggregation
induced by arachidonic acid, a downstream player in the collagen aggregation pathway. Only silybin
B, silybin B-20-O-sulfate and 2,3-dehydrosilybin exhibited an effect similar to that of ASA at 120 and
240 µM (Figure 6). Similarly to experiments using collagen as the trigger, the loss of activity of all three
substances was very steep, resulting in almost no activity at 40 µM (vs. 65% inhibition by ASA, Figure
S6). The stereoisomers B were significantly more active than the stereoisomers A (Tables S3 and S4).
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The most active substances from the initial screening were subjected to a series of mechanistic
tests evaluating their effects on the arachidonic acid platelet aggregation cascade. The transformation
of arachidonic acid to prostaglandin H2 by COX-1 is the initial step in this cascade and therefore
the substances were first tested for their inhibition of this enzyme using recombinant ovine COX-1.
The only substance that inhibited the enzyme in a similar manner to ASA was 2,3-dehydrosilybin
(Figure 7b) with IC50 25.2 ± 10.4 µM (cf. 79.2 ± 27.2 µM for ASA). Other compounds were significantly
less active (Figure 7a). Interestingly, the racemate was more potent than pure stereoisomers (Figure 7b).
To confirm the effect of 2,3-dehydrosilybin in a more clinical setting, human platelets were used as a
source of COX. The effect of this flavonolignan was however low and ASA was a stronger inhibitor in
this model compared with ovine COX-1 (data not shown).
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The second step in the arachidonic acid cascade is the transformation of prostaglandin H2 to
thromboxane A2 (TXA2) by thromboxane A2 synthase, and so the active substances were also tested
for their inhibition of this enzyme at 100 µM compared to 1-benzylimidazole. 2,3-Dehydrosilychristin
was the only substance to exhibit an inhibitory activity towards this enzyme (Figure S7). Since this
compound was not very active in terms of arachidonic acid-induced aggregation, this effect at such a
high concentration was not considered to be important. The range of activities of other substances
were within the error of the method and hence insignificant.

Since silybin B, silybin-B-20-O-sulfate, and 2,3-dehydrosilybin only exhibited a weak inhibition of
COX-1 and no inhibition of thromboxane A2 synthase, we also measured their inhibition of platelet
aggregation induced by U46619, an agonist of thromboxane receptors. Silybin B and 2,3-dehydrosilybin
exhibited dose-dependent antagonistic effects, while silybin B-20-O-sulfate was almost inactive (Figure S8).

4. Discussion

Silymarin has a long history of therapeutic use, with hepatoprotection being the most important
of its applications. Besides other effects, recent reviews summarized the promising potential of
silymarin for the prevention and treatment of metabolic syndrome [2,4]. The spectrum of positive
effects of silymarin towards metabolic syndrome is very broad and encompasses lipid lowering,
anti-atherosclerotic, antidiabetic, and other positive cardiovascular effects. The latter might be at least
partly based on vasorelaxant and antiplatelet activities, the main research objectives of this work.

Pure substances are pivotal for determining the contribution of individual silymarin flavonolignans
to the observed effect. As silymarin flavonolignans are extensively metabolized, it was also important
to test selected human metabolites as well. Phase I has been repeatedly shown to play a marginal role
in silymarin metabolism [26,27]. Crucial reactions are those of phase II, and the formed conjugates
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(glucuronides, sulfates) represent a significant part of the total plasma level of silymarin constituents.
Only 12% of silybin A and 3% of silybin B remained unconjugated after their intragastric administration
to rats [27–30]. Therefore, six sulfates and one disulfate were prepared [22] and tested in this work to
compare their activity with those of the respective parent compounds.

Stereoselectivity is apparently an important factor in biological systems. For silymarin, individual
diastereomers were reported to be subject to different metabolism in humans. In particular, the same
doses of silybin A and silybin B reached different plasma levels, and were metabolized to a
different extent, with different velocity, and yielded non-identical spectra of conjugates in rats [31].
Analogously, isosilybin diastereomers also exhibited different metabolisms [28,29,31,32]. The same may
be true for their pharmacodynamic effects. Hence in this study, both equimolar mixtures (racemates)
and pure stereoisomers A and B were prepared and tested. Silychristin was an exception, as natural
silychristin containing 89% diastereomer A and 9% B was used, which could be considered to be
silychristin A of nearly 90% purity.

4.1. Ex Vivo Experiments on Isolated Rat Aorta

The vasorelaxant properties of silymarin flavonolignans were addressed ex vivo on isolated rat
aorta. This is a classical experimental model widely used in basic pharmacological research [30,33,34].
The parent flavonolignans were studied first. Silybin A, silychristin and 2,3-dehydrosilybin A
exhibited notable vasorelaxant effects, while 2,3-dehydrosilybin B was devoid of that activity (Figure 3).
Although the effects observed are incomparable with clinically used medication (EC50 value of silybin A
was 26.8 µM; that of a calcium channel blocker nifedipine is 4.47 nM [35]), these results deserve attention
since we are considering effects of a natural product used as a food-supplement, and not an approved
drug. In particular, the effect of silybin A is noteworthy, as silybin is clearly the predominant component
of the silymarin complex (approximately 30%), and it is also believed to be the main active substance
of silymarin—which is nevertheless questionable [17,36]. Importantly, the concentrations at which the
most active compounds reached a 50% vasorelaxant effect (EC50) were in the tens of µM, and this is
achievable in plasma using novel forms of administration [26,37]. Moreover, slight but observable
vasodilatory effects were present even at units of µM, and for silychristin at hundreds of nM (Figure 2).
Indeed, there are some animal studies that show silymarin or silybin to decrease blood pressure:
Antihypertensive effects of silymarin have been previously found in unilateral nephrectomized rats
with deoxycorticosterone acetate (DOCA)-induced hypertension (300 or 500 mg·kg−1 of silymarin orally
for 4 weeks) [38], and those of silybin (300 mg daily orally for 8-12 days) in spontaneously hypertensive
rats subjected to acute coronary artery occlusion [39]. Positive effects of silymarin supplementation were
also reported in humans, namely in patients with hypertension and microalbuminuria. The adjuvant
use of silymarin (420 mg daily orally for 2 months) along with antihypertensive drugs (atenolol
and furosemide) led to a drop in blood pressure, an improvement in lipid profile, and reduced
microalbuminuria vs. placebo [40]. These results could be attributed to the regulation of vascular
tonus. Moreover, silybin administered to obese diabetic mice (20 mg·kg−1 i.p. daily for four weeks)
was found to improve endothelial dysfunction, a well-known crucial factor for the maintenance of
healthy blood vessels [7].

In our experiments, the vasorelaxant effects of silymarin flavonolignans were clearly dependent
on the stereomeric configuration of the compounds under study. The stereomers B were generally
less potent than the stereomers A (silybin), or even ineffective (2,3-dehydrosilybin, Figure S2). To our
knowledge, no other study has addressed the stereoselectivity of silymarin flavonolignans in relation to
either vasorelaxant activity or cardiovascular effects. Additionally, in this work, some substances were
tested as equimolar mixtures to verify possible interactions between both diastereomers. No potentiation
or inhibition of vasorelaxant potency was observed. In all cases, the EC50 values of the mixture were
between the EC50 values of the individual diastereomers (Figure S3). However, the interactions among
flavonolignans certainly deserve further investigation, as silymarin is a complex mixture that contains
various isomeric compounds including diastereomers.
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The effects of sulfated conjugates were often comparable to those of the parent compounds (e.g.,
2,3-dehydrosilybin A-20-O-sulfate) or were slightly more potent (2,3-dehydrosilybin-20-O-sulfate
and silychristin-19-O-sulfate). Silychristin sulfate was even the most efficient substance tested.
However, the differences between active parent flavonolignans and their sulfates were generally
negligible. On the other hand, the presence of two sulfate groups (2,3-dehydrosilybin-7,20-O-disulfate)
fully abolished the vasorelaxant effect of 2,3-dehydrosilybin (Figure S4). The clinical importance of
this finding is uncertain, since the combined conjugates (including disulfates) are produced as minor
metabolites [41]. Vasorelaxation can occur by various mechanisms, both endothelium-dependent and
endothelium-independent. We have shown that the vasorelaxation induced by silybin A was clearly
dependent on the presence of intact endothelium. Further experiments are necessary to elucidate this
effect in details (e.g., NO generation, role of M receptors and/or of various potassium or L-type calcium
channels). Less expected mechanisms such as inhibition of phosphodiesterases previously reported for
some natural flavonoids [34] are also possible.

4.2. Platelet Aggregation Experiments

Platelet aggregation is a very complex process, essential for maintaining vascular hemostasis.
The normal endothelium provides a non-adhesive surface for platelets. However, after vascular
injury, platelets are exposed to subendothelial collagen fibers, which are responsible for the initial
platelet adhesion phase [42]. Hence in our initial screening, we employed collagen-triggered platelet
aggregation in the whole blood as the most suitable physiological model. Some previous results
reporting antiplatelet activity are available for a few silymarin components. Silybin and silychristin
were shown to inhibit collagen-induced platelet aggregation in platelet-rich plasma and blood platelet
aggregate formation in whole blood, and to decrease the expression of activation markers on their
surface, such as P-selectin and an active form of αIIbβ3. Silychristin was more potent than silybin in
all tests, and both substances inhibited platelets’ adhesion to collagen fibers as well [43]. In our study,
silybin exhibited a slightly stronger antiplatelet activity than silychristin. However, the difference
between them was not significant, and both substances were obviously less active than acetylsalicylic
acid (ASA), used as a standard antiplatelet drug (Figure 5). The discrepancy between these two studies
could lie in the difference between platelet-rich plasma [43] and the whole blood employed in our study.
In addition, no clinically used drug was used in the above study, so the comparison is not straightforward.
Interesting results were obtained with the individual diastereomers of silybin. Both substances at 240
µM inhibited collagen-induced aggregation in a manner comparable to that of ASA, but the loss of
effect with decreasing concentration was much steeper (Figure S4A), exhibiting no activity at achievable
plasma levels [41]. The activities of diastereomers were comparable. 2,3-Dehydrosilychristin, the most
active substance, was a significantly stronger inhibitor than silychristin, indicating the importance of the
2,3-double bond in the flavonolignan skeleton for collagen-induced aggregation. However, the same
phenomenon was not observed with 2,3-dehydrosilybin and silybin, suggesting a more complex
structure-activity relationship.

Importantly, sulfation did not significantly decrease the effect with the exception of silybin A and
2,3-dehydrosilybin, whose conjugation resulted in a significant drop in activity. All other sulfates and
2,3-dehydrosilybin-7,20-O-disulfate inhibited collagen-induced platelet aggregation to the same extent
as their parent compounds (Figure S4B).

The collagen cascade is tightly connected with the arachidonic acid cascade, but also triggers other
pathways. Silymarin and its isolated flavonolignans previously decreased the platelet aggregation
initiated by other inducers such as arachidonic acid or adenosine diphosphate (ADP) [15,44–46].
Silychristin and silybin strongly reduced arachidonic acid-induced aggregation in platelet-rich
plasma at the highest concentration tested (100 µM) to 13.3% and 24% of the control, respectively.
Furthermore, silychristin exhibited a poor but significant activity even at plasma-achievable 10 µM [15].
These findings are not consistent with our whole blood tests, where silychristin did not exhibit any
significant antiaggregatory activity compared to the control (DMSO) nor at the highest concentration
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tested (240 µM), and silybin exhibited weak inhibitory activity at the highest concentration (Figure 6).
The accepted fact is that not only platelets, but also red blood cells play a crucial role in blood
clotting [47]; hence the confirmation of the results in whole blood is physiologically more relevant.

The activity of silybin B clearly exceeded the effect of silybin A, suggesting that its stereochemistry
is crucial for antiaggregatory activity at this level. This was previously also shown for other phenolic
substances with isomeric structures: catechin and epicatechin [48], and was demonstrated for the
vasorelaxant effect in this study. However, in terms of vasorelaxant effect, these two diastereomers
showed the opposite trend (silybin B was significantly less active than silybin A); the activity of racemic
silybin was between that of its pure diastereomers (Figure 6 and Figure S6). The same tendency is
also visible for other pairs of stereoisomers tested in this study (Figure 6). In contrast, the presence
or absence of the 2,3-double bond does not play any role in arachidonic acid-induced platelet
aggregation, as racemic silybin and 2,3-dehydrosilybin did not exhibit a significantly different effect.
Similarly, no difference was found between individual diastereomers and their 2,3-dehydroderivatives
in their effects on arachidonic acid-induced aggregation.

Most sulfated conjugates were as active as their parent compounds, which is a fundamental
finding for the most active substance silybin B and its sulfate, because silybin B is conjugated faster
and to a significantly greater extent than silybin A [31]. The only negative effect of sulfation was noted
for both 2,3-dehydrosilybin A and B, where it led to an almost complete loss of activity (Figure 6).

To reveal the mechanism of action of the most active substances, they were subjected to a series of
tests evaluating their effect on individual steps of the arachidonic acid pathway. Arachidonic acid
released by phospholipase A2 from the platelet membrane is rapidly transformed to prostaglandin
H2 by COX-1. ASA, used in antiplatelet therapy, inhibits COX-1 activity while being inactive in
further steps of this pathway. Therefore, silymarin flavonolignans were tested for COX-1 inhibition.
Silybin and silychristin previously substantially inhibited human platelet COX-1 both in vitro and in
silico [15]. In contrast, both silybin diastereomers as well as their sulfates exhibited only very weak
inhibitory activity towards ovine COX-1 in our study. The most potent ovine COX-1 inhibitor (even
more than ASA) was racemic 2,3-dehydrosilybin. However, when human platelets were used as a
source of COX-1 enzyme, the effect of 2,3-dehydrosilybin was markedly decreased in contrast to ASA,
suggesting that COX-1 inhibition is clinically unimportant in this case. Such a difference in activity
between the recombinant ovine and human platelet enzyme is not uncommon [48,49] and should
always be tested. The highest effect was observed with racemic mixtures, suggesting a potentiation of
the activity of individual stereoisomers. Such an effect seems to be rare, but a similar phenomenon was
observed in a pharmacokinetic study. Silybin A metabolism with bovine liver microsomes was slower
when incubated separately than when incubated together with silybin B [32].

A further step in the arachidonic acid cascade is the transformation of prostaglandin H2 to TXA2

by thromboxane synthase. Inhibition of this step was also suggested previously as a possible mode
of action for silybin and silychristin [15]. Similar results for silybin were also obtained in another
study where calcium ionophore A23187 was used as stimulant of TXA2 formation. The IC50 value
was 69 µM [45]. Apparently, this observed result was not due to direct inhibition of thromboxane
synthase, since the enzyme was not inhibited in our experiments, where we started the reaction by
the addition of the physiological substrate, prostaglandin H2. Apart from 2,3-dehydrosilychristin,
no substance was able to block the activity of the enzyme even at 100 µM. Based on the different results
in arachidonic acid and collagen-triggered platelet aggregation, inhibition of this enzyme had likely
only little relevance to our results.

When TXA2 is formed, it binds to thromboxane receptors as the next step in the arachidonic
acid pathway. To the best of our knowledge, the antagonism of flavonolignans from silymarin on
thromboxane receptors has not been studied yet. Only three of the most active substances were
tested for their effect on U-46619 (an agonist of the above-mentioned receptor)-induced platelet
aggregation. Silybin B and 2,3-dehydrosilybin B exhibited significant concentration-dependent
inhibition of platelet aggregation at concentrations corresponding to those that were effective against
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arachidonic acid-induced platelet aggregation (Figure S8). Therefore, it is evident that this is the main
mechanism of action of these two substances.

The results presented here may contradict some previous studies suggesting silymarin
flavonolignans to be capable of significant platelet aggregation inhibition even at plasma-achievable
concentrations [15,43–46]. The main weakness of the studies published earlier is the absence of a
standard drug, which makes their comparison with our results difficult.

5. Conclusions

The cardiovascular effects of silymarin seem to be associated with its vasorelaxant activity rather
than with its antiplatelet effects. Silybin A, silychristin (90% isomer A), and 2,3-dehydrosilybin A
exhibited vasorelaxant effects ex vivo on isolated rat aorta at concentrations achievable in plasma.
The vasorelaxant activity of monosulfates was similar to those of the corresponding parent substances,
and the most active tested compound was a metabolite, silychristin-19-O-sulfate. The tested disulfate
was inactive. Vasorelaxant effects were stereoselective, and A diastereomers were generally more
potent than the B diastereomers. No potentiation or inhibition of activity was found when equimolar
mixtures of diastereomers were tested. The vasorelaxation induced by silybin A was dependent on
the presence of an intact endothelium; however, further experiments are necessary to elucidate this
mechanism in detail.

In contrast to vasorelaxant effects, silybin B, its sulfate and 2,3-dehydrosilybin B were the
only flavonolignans to exhibit antiplatelet activities, but these effects should be considered weak.
The antagonism of silybin B and 2,3-dehydrosilybin B at thromboxane receptors is the main mechanism
of action of these two substances. Despite these at first sight encouraging results, it is highly improbable
that this activity would be manifested in vivo due to the high concentrations needed to evoke this effect.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/10/2286/s1,
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ex vivo vasorelaxant effects of 2,3-dehydrosilybin and its conjugates. Figure S5. Effect of flavonolignans on platelet
aggregation induced by collagen in whole blood. Figure S6. Effect of flavonolignans on whole-blood platelet
aggregation induced by arachidonic acid. Figure S7. Comparison of tested flavonolignans and 1-benzylimidazole
on thromboxane A2 synthase activity. Figure S8. Effect of tested compounds on aggregation induced by
thromboxane analogue U-46619. Table S1. Effect of flavonolignans on collagen-induced platelet aggregation at 240
µM. Table S2. Effect of flavonolignans on collagen-induced platelet aggregation at 120 µM. Table S3. Effect of
flavonolignans on arachidonic acid-induced platelet aggregation at 240 µM. Table S4. Effect of flavonolignans on
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Abbreviations

ASA Acetylsalicylic acid
COX Cyclooxygenase
DMSO Dimethyl sulfoxide
DOCA Deoxycorticosterone acetate
EC50 Half maximal effective concentrations
e.d. Endothelium-denuded
IM CAS Institute of Microbiology of the Czech Academy of Sciences
TXA2 Thromboxane A2
U-46619 Synthetic analog of prostaglandin H2

References
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