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CASE REPORT

NOTCH2NLC‑related oculopharyngodistal 
myopathy type 3 complicated with focal 
segmental glomerular sclerosis: a case report
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Abstract 

Background:  Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by 
progressive ocular, facial, pharyngeal, and distal limb muscle involvement. Recent research showed that GGC repeat 
expansions in the NOTCH2NLC gene were observed in a proportion of OPDM patients, and these patients were desig-
nated as having OPDM type 3 (OPDM3). Heterogeneous neuromuscular manifestations have been described previ-
ously in studies of OPDM3; however, kidney involvement in this disease has rarely been reported.

Case presentation:  Here, we report the case of a 22-year-old Chinese patient with typical manifestations of OPDM 
complicated with focal segmental glomerular sclerosis (FSGS). This patient with sporadic FSGS exhibited distal motor 
neuropathy and rimmed vacuolar myopathy in clinical and pathological examinations. An expansion of 122 CGG 
repeats located in the 5’ untranslated region (UTR) of the NOTCH2NLC gene was identified as the causative mutation 
in this patient. The clinical and histopathological findings fully met the criteria for the diagnosis of OPDM3. In addition, 
intranuclear inclusions were detected in the renal tubule epithelial cells of this patient, indicating that the kidney may 
also be impaired in NOTCH2NLC-related GGC repeat expansion disorders (NREDs).

Conclusions:  Our case report demonstrated the clinicopathological cooccurrence of sporadic FSGS and OPDM3 in 
a patient, which highlighted that the kidney may show inclusion depositions in OPDM3, thus expanding the clinical 
spectrum of NREDs.
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Background
Oculopharyngodistal myopathy (OPDM) is a rare, clin-
icopathologically distinct muscular disease. The typical 
clinical manifestations are insidiously progressive ptosis, 
ophthalmoparesis, facial and masseter weakness, dys-
phagia, and distal limb muscle weakness [1]. Myopatho-
logical findings include rimmed vacuoles and chronic 
myopathic changes without myonecrosis or inflamma-
tion  [2]. Since first described in 1977  [3], OPDM has 
affected more than 300 individuals worldwide [1, 2, 4–9]. 
To date, three causative genes have been identified for 
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OPDM, LDL receptor-related protein 12 (LRP12), GAIP/
RGS19-interacting protein (GIPC1), and NOTCH2NLC, 
which are responsible for OPDM1, OPDM2, and 
OPDM3, respectively  [9–12]. The diagnosis of OPDM 
previously depended on clinical manifestations, histo-
pathological findings, and genetic exclusion of similar 
conditions. Ultrastructural examinations of the central 
and peripheral nervous system tissues, skeletal muscles, 
and skin show abundant round, eosinophilic intranuclear 
inclusions (positive for ubiquitin and p62) [13, 14]. Here, 
we report the case of a 22-year-old man with progres-
sive aggravating limb weakness and moderately increased 
creatine kinase in serum. GGC repeat expansions in the 
5’-UTR of the NOTCH2NLC gene further confirmed the 
diagnosis of OPDM3. Interestingly, we observed intra-
nuclear inclusions in the renal tubule epithelial cells of 
this patient, which indicated that the kidney, in addition 
to the central and peripheral nervous systems, may be 
involved in NOTCH2NLC-related OPDM3.

Case presentation
A 22-year-old patient presenting with progressive aggra-
vating limb weakness for more than 7  years was hospi-
talized because of a high creatine kinase (CK) level in 
serum. During the 7 years before admission, the patient 
exhibited gradual deterioration of limb strength, as well 
as slurred speech and dysarthria. At first, he had trouble 
squatting and was prone to ankle sprains. Four years later, 
he began to walk unsteadily, fall easily, and have difficulty 
climbing stairs. His handwriting also became clumsy. 
After one year, he complained of swallowing difficulty, 
especially when taking solid food. The parents brought 
the patient to our hospital, as his clinical symptoms 
showed a tendency of progressive worsening. In addition, 
one year before being admitted to our unit, the patient 
had been hospitalized for proteinuria and was diagnosed 
with FSGS based on the findings of a renal biopsy sam-
ple evaluation, and he received oral benazepril 5 mg daily 
after discharge. His mother stated that the parents did 
not exhibit any similar symptoms, while one of his uncles 
was born with mental retardation.

On admission to our unit, we did not detect any prob-
lems in a general physical examination. The patient dis-
played facial weakness, mild palpebral ptosis, and limited 
abduction of the right eye, with dysarthria and slurred 
speech. His gag reflex was also weakened. According to 
the Medical Research Council (MRC) score, the proxi-
mal muscle strength in his upper and lower limbs was 
5/5. The MRC score in the distal upper limbs was 4+/5, 
while it was 4/5 in the distal lower muscles. His muscle 
tone was normal, but the tendon reflexes were absent. 
The young man showed bilateral gastrocnemius atro-
phy, as well as interosseus, thenar, and hypothenar 

muscle atrophy. Babinski signs were noted bilaterally. 
Sensation and coordination were intact. No severe cog-
nitive impairments were identified in this patient. He 
scored 27/30 on the Mini-Mental State Examination 
(MMSE) and scored 27/30 on the Montreal Cognitive 
Assessment (MoCA). Routine blood tests revealed that 
the patient’s erythrocyte count was low at 4.22X1012/L 
(normal, 4.3–5.8 × 109/L), and the haemoglobin level was 
122 g/L (normal, 130–175 g/L). A twenty-four hour uri-
nary protein quantification showed an increased protein 
level of 3.22 g/d. Laboratory investigations also revealed 
an elevated serum CK level of 1505.9 U/L (normal 
50–310 U/L). The results of the other laboratory tests 
were unremarkable.

Brain magnetic resonance imaging (MRI) revealed dif-
fuse leukoencephalopathy on T2-weighted fluid-attenu-
ated inversion recovery (T2-FLAIR) and high-intensity 
signals along the corticomedullary junction on diffusion-
weighted imaging (DWI), while no abnormal findings 
on apparent diffusion coefficient (ADC) mapping were 
observed (Fig. 1A-L). Muscle MRI of the patient showed 
fatty infiltration and muscle atrophy of the lower limb 
muscles (Fig. 1M, N). Needle electromyography showed 
a long duration, high amplitude, and decreased phase 
number of motor unit action potentials (MUAPs), which 
indicated neurogenic changes in the tested muscles. 
Nerve conduction studies (NCSs) revealed reduced con-
duction velocities in all tested motor and sensory nerves 
and prolonged distal latencies in the right middle median 
and ulnar nerves. Decreased compound muscle action 
potentials were observed in the left peroneal nerve and 
bilateral tibial nerves.

The evaluation of the skin biopsy sample revealed 
eosinophilic, p62-positive, intranuclear inclusions in 
adipocytes, sweat gland cells, and fibroblasts (Fig.  2A). 
The evaluation of the quadriceps biopsy sample revealed 
rimmed vacuolar fibres and a small proportion of angu-
lar atrophic fibres, but no hypertrophic fibres, necrosis, 
inflammatory infiltration, or ragged red fibres, which 
would suggest mitochondrial dysfunction, were observed 
(Fig. 2B, C). A renal biopsy was performed, and an evalu-
ation of the biopsy sample revealed segmental sclerosis 
and localized tubular atrophy (Fig. 2D, E). Periodic acid 
silver methenamine (PASM) plus Masson trichrome 
(MASSON) staining showed that of the 12 identified 
glomeruli, four were found to have segmental sclero-
sis, and four had global sclerosis. Cellularity was absent, 
and membrane thickness was normal. One-third of renal 
tubules were atrophied, with corresponding renal inter-
stitial fibrosis and lymphomonocyte infiltration. Haema-
toxylin and eosin (H&E) staining showed eosinophilic 
intranuclear inclusions in renal tubular epithelial cells 
(Fig. 2F,). Electron microscopy further clarified inclusions 
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without limiting membranes in renal tubular epithelial 
cells (Fig. 2G).

Genetic analysis using repeat-primed polymerase chain 
reaction (RP-PCR) and polymerase chain reaction ampli-
fication for GC-rich regions (GC-PCR) were performed 
to confirm the diagnosis  [15]. Genetic analysis revealed 
121 CGG expansions in the 5’-untranslated region of 
NOTCH2NLC (Fig. 3A, B). In addition, the coding exons 
of 804 genes associated with diseases of the urinary system 
were selected by a gene capture strategy using the Gen-
Cap custom enrichment kit (MyGenostics, Beijing), and 
enriched libraries were sequenced on an Illumina NextSeq 
500 sequencer (Illumina, San Diego, CA, USA) for paired-
end reads of 150 bp. Two missense mutations (c.316G > T 

in exon 3 and c.2398C > T in exon 18) were identified in 
the NPHS1 gene, including one mutation that had been 
reported in the Human Gene Mutation Database (HGMD) 
to be associated with nephrotic syndrome. The mutational 
sites were confirmed by Sanger sequencing (Fig.  3C, D), 
but verification by Sanger sequencing was not performed 
for his parents. At the one-year follow-up after discharge, 
the patient did not re-examine his proteinnuria, and  his 
muscle strength had progressively reduced.

Discussion and conclusions
Oculopharyngodistal myopathy is considered to be 
a rare, adult-onset hereditary muscle disease with 
both autosomal-dominant and autosomal-recessive 

Fig. 1  Brain (A-L) and muscle MRI (M, N) findings. Brain MRI revealed bilateral subcortical high-intensity lesions in the centrum semiovale and 
anterior and posterior horns of the lateral ventricle on T2WI (D, E, F) and FLAlR (G, H, I) images. The corresponding lesions were characterized by 
high signal intensity on DWI sequences (J, K, L). Muscle MRI showed fatty infiltration and the atrophy of the lower limb muscles. The distal muscles 
(N calf level) were more severely affected than the proximal muscles (M thigh level), and the posterior muscles were more severely affected than 
the anterior muscles
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inheritance patterns. Three causative genes have been 
identified for OPDM. According to the genetic defect, 
this disease has been categorized into OPDM1, OPDM2, 
and OPDM3, which are associated with 5’-UTR CGG 
repeat expansions in LRP12, GIPC1, and NOTCH2NLC, 
respectively  [9–11]. This patient exhibited the typical 
clinical manifestations of OPDM, including dysarthria, 
dysphagia, facial weakness, ptosis, and weakness in distal 
limbs. Rimmed vacuoles in H&E and mGT stained sec-
tions indicated that the dominant myopathic changes of 
OPDM were present in this patient. Gene analysis iden-
tified CGG expansions in the 5’-untranslated region of 
NOTCH2NLC, which further confirmed the diagnosis 
of OPDM3. In addition, the patient displayed peripheral 
neuropathy in electromyography and hyperintense linear 
lesions in corticomedullary junctions in DWI, which are 
thought to be typical changes of adult-onset NIID  [16]. 

However, this patient did not exhibit typical syndromes 
of adult-onset NIID, such as dementia, episodic encepha-
lopathy, or parkinsonism. Yu et al. reported the presence 
of peripheral neuropathy and white matter changes in a 
proportion of OPDM3 patients and proposed that sub-
clinical white matter involvement may be due to the long 
disease duration [9].

The expansion of CGG repeats in NOTCH2NLC was 
first identified as the genetic cause of neuronal intra-
nuclear inclusion disease (NIID)[11, 17, 18]. Subse-
quently, the pleiotropy of NOTCH2NLC was identified 
as being causative for many types of neurodegenerative 
diseases  [15, 19, 20]. Recent research further expanded 
the clinical spectrum of NOTCH2NLC-related disor-
ders to OPDM3[9] and other peripheral neuropathies 
and myopathies [13, 21]. An increasing number of stud-
ies have shown evidence of NOTCH2NLC CGG repeat 

Fig. 2  Pathological changes in the skin, muscle, and kidney biopsy samples. Cells were imaged with an Olympus BX51 microscope with a 
DP72 camera and the Plan achromat objective, and images were acquired by CellSens software. For electron microscopy, cells were observed 
with a transmission electron microscope (TEM, JEM 1230, JEOL) with a CCD electronic imaging system, and images were acquired by Gatan 
Digital Micrograph software. A Immunohistochemical staining showed that the inclusion bodies in the skin biopsy sample were positive for p62 
(bar = 20 μm, 1000 ×). B, C Rimmed vacuoles were present in the muscle fibres of mGT and H&E stained Sects. (400 × bar = 50 μm). D, E Renal 
pathological characteristics in PASM plus Masson stained sections (In D, bar = 50 μm, 400 × ; In E, bar = 100 μm, 200 ×). The arrow in (D) shows 
segmental sclerosis. The arrow in (E) shows the localized tubular atrophy. F H&E staining of renal tubular epithelial cells (bar = 20 μm, 1000 ×). The 
arrow indicates eosinophilic inclusion bodies. G Electron microscopy of renal tissues demonstrated intranuclear inclusions without membranes 
(bar = 1 μm, 10 K ×) (marked by arrow and shown at higher magnification)
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expansions in various central and peripheral nervous 
system disorders; however, descriptions of systemic 
organ disorders have rarely been recognized in previous 
reports.

In addition to the manifestations of OPDM, our patient 
presented with proteinuria, and typical pathognomonic 
characteristics of FSGS were observed in the patients’ 
renal biopsy samples. Interestingly, eosinophilic intra-
nuclear inclusions were found in renal tubular epithelial 
cells. We wondered whether there was a linkage between 
FSGS and GGC repeat expansion in NOTCH2NLC or 
whether this finding was just a coincidence. Next-gen-
eration sequencing identified two mutations in NPHS1, 
which is a commonly mutated gene in patients with 
sporadic FSGS  [22]. However, whether the identified 
genetic variants actually contribute to disease remains 
to be further validated. It was also noted that this patient 
developed OPDM at an earlier age than in the published 
reports of recent case studies, and whether the mutations 
in NPHS1 exerted an accelerating effect on the onset of 
OPDM remains unclear. Previously, intranuclear inclu-
sions had been reported in renal tubular cells in a renal 
biopsy sample obtained 12  years preceding the diagno-
sis of NIID, and the patient presented with mesangio-
proliferative glomerulonephritis  [23]. A case of an NIID 
patient who showed lupus nephritis–like pathology in 
renal biopsy sample in whom proteinuria improved after 
proper treatment has also been reported  [24]. However, 

information on NOTCH2NLC CGG repeat expansions 
was not acquired in these reports. Interestingly, a general 
autopsy of an OPDM1 patient with CGG repeat expan-
sions in LRP12 revealed that almost all organs, including 
the kidney, showed abundant round, eosinophilic intra-
nuclear inclusions, suggesting that the disease process 
could affect various extramuscular organs, but further 
studies are required to clarify whether the extramuscular 
organ lesions induced associated symptoms [14].

Recently, in view of the coexistent GGC repeat 
expansions in NOTCH2NLC and the above pheno-
types, the term NOTCH2NLC-related GGC repeat 
expansion disorders (NREDs) was used to summa-
rize all diseases caused by the GGC repeat expansions 
of NOTCH2NLC, regardless of their diverse clinical 
manifestations  [25]. As described by Boivin et al.  [12], 
NOTCH2NLC GGC repeats are mainly translated 
into a polyG-containing protein called uN2CpolyG 
(upstream of N2C polyG-containing protein). The 
uN2CpolyG proteins are responsible for intranuclear 
inclusions and are toxic in cells and tissue samples. 
These novel genetic disorders caused by NOTCH2NLC 
GGC expansion are named polyG diseases. However, 
the underlying mechanisms of cell death caused by 
uN2CpolyG proteins are unclear. Since NOTCH2NLC 
is a human-specific gene, establishing appropriate 
models to study NREDs is still a major challenge [15].

Fig. 3  A, B Validation of GGC repeat expansions in the NOTCH2NLC gene by GC-PCR (A) and RP-PCR (B). C, D Sanger sequencing of the patient. 
Two heterozygous mutations, c.316G > T (p.D106Y) and c.2398C > T (p.R800C), in the NPHS1 gene were recognized by genetic testing. The mutation 
c.316G > T was identified within exon 3 of NPHS1 (C). The mutation c.2398C > T was identified within exon 18 of NPHS1 (D)
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In summary, we report the case of an OPDM3 patient 
complicated with FSGS in whom we confirmed the pres-
ence of intranuclear inclusions in kidney tissues, support-
ing the possibility that NREDs are spectrum disorders 
involving widespread systemic organs.
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