
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Journal of King Saud University – Computer and Information Sciences 34 (2022) 4874–4887
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Analysis of COVID-19 severity from the perspective of coagulation index
using evolutionary machine learning with enhanced brain storm
optimization
https://doi.org/10.1016/j.jksuci.2021.09.019
1319-1578/� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: shibeibei1993zjfph@163.com (B. Shi), 154671045@qq.com

(H. Ye), aliasghar68@gmail.com (A.A. Heidari), 7270684@qq.com (L. Zheng),
huzhongyi@wzu.edu.cn (Z. Hu), chenhuiling.jlu@gmail.com (H. Chen), pl_wu@
163.com (P. Wu).

1 https://aliasgharheidari.com
Beibei Shi a,b, Hua Ye c, Ali Asghar Heidari d,1, Long Zheng c, Zhongyi Hu d, Huiling Chen d,e,⇑,
Hamza Turabieh f, Majdi Mafarja g, Peiliang Wuh,⇑
aAffiliated People’s Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
bDepartment of Public Health, International College, Krirk University, Bangkok 10220, Thailand
cDepartment of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing 325600, China
dCollege of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
e Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325035, China
fDepartment of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
gDepartment of Computer Science, Birzeit University, P.O. Box 14, West Bank, Palestine
hDepartment of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 July 2021
Revised 14 September 2021
Accepted 18 September 2021
Available online 1 October 2021

Keywords:
Coronavirus Disease 2019
Coagulation index
Brain Storm optimization algorithm
Support vector machine
Harris hawks optimization
Coronavirus 2019 (COVID-19) is an extreme acute respiratory syndrome. Early diagnosis and accurate
assessment of COVID-19 are not available, resulting in ineffective therapeutic therapy. This study designs
an effective intelligence framework to early recognition and discrimination of COVID-19 severity from
the perspective of coagulation indexes. The framework is proposed by integrating an enhanced new
stochastic optimizer, a brain storm optimizing algorithm (EBSO), with an evolutionary machine learning
algorithm called EBSO-SVM. Fast convergence and low risk of the local stagnant can be guaranteed for
EBSO with added by Harris hawks optimization (HHO), and its property is verified on 23 benchmarks.
Then, the EBSO is utilized to perform parameter optimization and feature selection simultaneously for
support vector machine (SVM), and the presented EBSO-SVM early recognition and discrimination of
COVID-19 severity in terms of coagulation indexes using COVID-19 clinical data. The classification perfor-
mance of the EBSO-SVM is very promising, reaching 91.9195% accuracy, 90.529% Matthews correlation
coefficient, 90.9912% Sensitivity and 88.5705% Specificity on COVID-19. Compared with other existing
state-of-the-art methods, the EBSO-SVM in this paper still shows obvious advantages in multiple metrics.
The statistical results demonstrate that the proposed EBSO-SVM shows predictive properties for all met-
rics and higher stability, which can be treated as a computer-aided technique for analysis of COVID-19
severity from the perspective of coagulation.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In December 2019, a serious coronavirus first emerged in
Wuhan, China, and later spread rapidly across the world in a short
period of time (Li et al., 2020; Hu et al., 2021; Li et al., 2021; Singh
et al., 2020). On January 30, 2020, the World Health Organization
(WHO) declared that the novel coronavirus outbreaks a Public
Health Emergency of International Concern (PHIC) (World Health
Organization, 2020). According to the recommendations by the
WHO, the novel coronavirus was named coronavirus disease
(COVID-19) in February 2020 (World Health Organization, 2020).
As of May 23, 2020, there have been a total of 5,103,006 confirmed
cases of COVID-19 worldwide with 333401 fatal cases (World
Health Organization, 2020). Despite governments worldwide hav-
ing put great effortsthere is still a lack of effective strategies to con-
trol the spread of the disease. The rising number of COVID-19
patients can lead to a shortage of health care resources and
increase the workload of medical staff. Once the medical capacity
of the hospital is overloaded, it may increase the risk of COVID-
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19 patient mortality. A recent study has found that if the novel
coronavirus is not effectively controlled, it could collapse the entire
health care system in a short time (Pourhomayoun and Shakibi,
2020). Therefore, it is urgently required to develop a new predic-
tion model for early recognition and classify the severity of
COVID-19. Developing an effective prediction model can help med-
ical institutions decide whether the patient needs to get attention
first, whether the patient has a higher priority for hospitalization,
whether the patient can get a greater level of monitoring and treat-
ment, and thereby rationally and effectively allocate medical
resources and reduce the healthcare burden.

In recent years, machine learning and optimization approaches
(or a hybrid of them) have become highly critical in the field of
medicine (Jordan and Mitchell, 2015; Rajkomar et al., 2019).
Machine learning methods for diagnosing different diseases were
widely used, predictive model creation helped clinical decision
making, and significant risk factors related to the disease were
identified (Obermeyer and Emanuel, 2016; Bhagyashree et al.,
2018). Optimization is a root idea in not only development of e-
healthcare systems but also areas such as fault diagnosis of rolling
bearings (Deng, 2020; Zhao et al., 2019), scheduling problems
(Pang et al., 2018; Zhou et al., 2018), bankruptcy prediction (Cai
et al., 2019; Yu et al., 2021; Zhang et al., 2020), wind speed predic-
tion (Chen et al., 2019), image segmentation (Zhao et al., 2020;
Zhao et al., 2020), engineering design problems (Ba et al., 2020;
Gupta et al., 2019; Liang et al., 2020; Zhang et al., 2020). The explo-
ration and exploitation competencies of these stochastic search
methods can play a significant role in dealing with medical data
classification (Lufeng et al., 2017; Huang et al., 2019; Li et al.,
2018; Zhao et al., 2019), PID optimization control (Zeng et al.,
2015; Zeng et al., 2014; Zeng et al., 2019), feature selection (Hu
et al., 2021; Li et al., 2017; Liu et al., 2015; Zhang et al., 2020;
Zhang et al., 2020), hard maximum satisfiability problem (Zeng
et al., 2011; Zeng et al., 2012), parameter optimization (Heidari
et al., 2019; Shen et al., 2016; Wang and Chen, 2020; Wang
et al., 2017), gate resource allocation (Deng et al., 2020; Deng
et al., 2020), detection of foreign fiber in cotton (Zhao et al.,
2015; Zhao et al., 2014), and prediction cases in educational con-
cerns (Lin et al., 2019; Jixia et al., 2019; Wei et al., 2020; Wei
et al., 2017; Zhu et al., 2020). In particular, the machine learning
technique may contribute to improving the diagnostic quality,
reducing the workload of radiologists, anatomical pathologists,
and the accuracy of diagnoses in diseases (Obermeyer and
Emanuel, 2016), to minimize error and missed diagnosis incidence.
Machine learning techniques have now become an important tool
in clinical work. During the COVID-19 outbreak, machine learning
methods were developed and used to identify, track and manage
COVID-19, COVID-19 epidemic. In recent years, the use of artificial
intelligence (AI) is popular in many fields of life sciences (De-
Kuang Hwang et al., 2019; Alam et al., 2019). In the field of oph-
thalmology, for example, AI has achieved the level of a specialist
in the distinction of diseases (Kermany et al., 2018). AI can help
radiologists to diagnose benign and malignant thyroid nodules in
radiology in qualitative terms (Wang et al., 2019). With the rapid
growth of AI, AI machine learning technologies have been widely
used for disease diagnosis; predictive models have been created
to support clinical decision making in medical fields, and key fac-
tors related to illness have been quickly established (Obermeyer
and Emanuel, 2016; Bhagyashree et al., 2018; Lee et al., 2014). As
a result, AI technology based on machine learning is increasingly
important in the medical field in computing technology.
Machine-based AI technology has also been used for diagnosis of
disease (Albahri et al., 2020). Computer tomography (CT) or X-
ray image recognition (Kang et al., 2020; Albahli, 2021), disease
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epidemic, surveillance,and control (Yang et al., 2020; Zheng et al.,
2020) in the course of the COVID-19 outbreak. By using classical
and ensemble machine learning algorithms, Khanday et al.
(2020) categorized textual clinical reports in four groups. Effect
design has been carried out using frequency term/inverse docu-
ment frequency (TF/IDF), word bag, and report length. Term fre-
quency/inverse document length was used. These features have
been given to classifying conventional and ensemble machines.
Booth et al. (2021) designed a prognostic model for mortality in
COVID-19 infection using machine learning. Prakash et al. (2020)
used machine learning algorithms to analysis, prediction and eval-
uation of covid-19 datasets. Erraissi and Banane (2020) used a
machine learning model to predict the number of cases contami-
nated by COVID-19, and the results showed the possibility of
achieving better scores prediction after using the proposed
method. Many documents show that machine learning algorithms
have shown great potential in solving new coronary covid-19-
related problems.

This study is first developed from the point of view of the coag-
ulation indexes, an evolutionary SVM to diagnose COVID-19. How-
ever, in SVM, penalty factor C and the c value can change the
accuracy and efficiency of the learning process, and it is sensitive
to these values. Both core operators are employing this proposed
method (EBSO-SVM) to improve and re-establish the search capac-
ity for the brain storm optimization algorithm (BSO) (Shi, 2011),
abstracted from the Harris hawks optimization, that can ensure
substantial convergence and spring potential of the local stagnant.
Though, a large number of evolutionary algorithms has been
designed such as monarch butterfly optimization (MBO) (Wang
et al., 2019), slime mould algorithm (SMA) (Li et al., 2020), moth
search algorithm (MSA) (Wang, 2018) and Harris hawks optimiza-
tion (HHO) (Algorithm and applications, 2019). Typical BSO col-
lects a group of specialists with various backgrounds, expertise,
and skills to find a solution to the problem. Due to the effective
learning and utilization of the samples sampled in the optimization
process and its ease of implementation. The proposed EBSO algo-
rithm is verified on 23 benchmarks, composed of 7 unimodal
benchmark functions, six multimodal benchmark functions, and
ten fixed-dimension multimodal benchmark functions. Finally,
COVID-19 clinical data were used for EBSO-SVM and other SVM
competitors based on other optimization algorithms, along with
coagulation indexes. The EBSO core compensation is validated by
evaluating the experimental findings, and different performance
evaluation indexes can establish a strong EBSO-SVM for determin-
ing COVID-19 status from the perspective of the coagulation index.
The results of the test showed that the EBSO-SVM proposed was
seemingly beneficial.

The key contributions in this study are as follows:

� The two core operators have taken the opportunity to improve
the brain storm optimizing algorithm, EBSO, from harris hawks
optimization.

� The proposed EBSO algorithm is verified on 23 benchmarks
composed of 7 unimodal benchmark functions, six multimodal
benchmark functions, and ten fixed-dimension multimodal
benchmark functions.

� The EBSO has successfully solved the optimization of SVM’S
parameters and feature selection at the same time.

� An efficient EBSO-SVM technique is used to assist COVID-19
diagnosis from the coagulation index perspective.

The paper was organized according to next arrange. The mate-
rials and processes are reported in paragraph 2. The proposed EBSO
algorithm is defined in Section 3. Section 4 describes the proposed
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EBSO-SVM model. Section 5 describes the designs of the tests. The
results of EBSO-SVM on COVID-19 data set-simulations are
described in Section 6, and the results of EBSO on 23 benchmarks
are also exhibited in this section. The findings are discussed in Sec-
tion 7. Section 8 shows the conclusion and path of the future.
Table 1
List of the features used in this study and their definitions.

No. Feature Abbreviation

F1 Gender Gender
F2 Age Age
F3 Prothrombin time PT
F4 International normalized ratio INR
2. Materials and methods

2.1. Data collection

The participants in our study were from the Wenzhou Rural ret-
rospective study. The Ethics Committee of the Affiliated Yueqing
Hospital of Wenzhou Medical University (approval No.
202000002) approved the present study. A total of 51 participants
aged between 18 to 93 years were recruited from the Affiliated
Yueqing Hospital of Wenzhou Medical University over the period
between January 21 and March 20, 2020. The following general
clinical information was collected for each participant: gender,
age, and coagulation function indexes. Coagulation functions were
measured using an automated blood coagulation analyzer (Sysmex
CA-7000 analyzer, Kobe, Japan).

In our study, the diagnosis of COVID-19 was carried out and
guided according to the criteria issued by the National Health Com-
mission of the People’s Republic of China. The etiological criteria
for diagnosing COVID-19 are at least one of the following: (i) severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) confirmed
by positive real-time reverse transcriptase-polymerase chain reac-
tion (RT-PCR) on the nasopharyngeal swab, sputum, or stool sam-
ples; (ii) to sequence the virus genome, which is highly
homologous to the genome of SARS-CoV-2. According to clinical
characteristics, COVID-19 patients are classified into four cate-
gories: mild, general, severe, and critically ill patients. Mild
patients with the following characteristics: (i) patient has no
symptoms or mild symptoms; (ii) patient has no lung involvement.
General patients with the following characteristics: (i) the clinical
manifestations of COVID-19 patients were fever, dry cough, fati-
gue, nose congestion, runny nose, myalgia, sore throat, diarrhea,
and so on; (ii) the lungs affected by SARS-CoV-2. Severe patients
with at least one of the following characteristics: (i) patient pre-
sent with dyspnea and respiratory rate (RR) greater than 30
breaths/min; (ii) patient blood oxygen saturation lower than
6 93%; (iii) patient oxygenation index (arterial partial pressure
of oxygen to fraction inspired oxygen) below 300 mmHg
(1 mmHg = 0.133 kPa). Critical ill patients with at least one of
the following characteristics: (i) patient required intubation and
mechanical ventilation because of acute respiratory failure; (ii)
patient present with shock; (iii) patient present with multiple
organ failure. On admission, initial COVID-19 severity was assessed
by sixth revised trial version of the Novel Coronavirus Pneumonia
Diagnosis and Treatment Guidance (El-Solh et al., 2020; Cheung
et al., 2021). Cases meeting any of the following criteria were
defined as severe cases: (1) RR greater than 30 breaths/min; (2)
patient blood oxygen saturation lower than 93%; (3) patient oxy-
genation index below 300 mmHg; (4) patients with respiratory
failure needing mechanical ventilation, septic shock, and/or multi-
ple organ dysfunction. Taken together, depending on the clinical
symptoms and clinical guidelines, the confirmed COVID-19 cases
were further classified into two categories: mild and general cases
were categorized as the non-severe group, severe and critical cases
were categorized as the severe group (Szklanna et al., 2021;
Suvarna et al., 2021).
F5 Prothrombin time activity PTA
F6 Fibrinogen FIB
F7 Activated partial thromboplastin time APTT
F8 Thrombin time TT
F9 D-dimer D-D
2.1.1. Statistical analysis
Statistical analysis was performed with SPSS, version 21 (IBM,

Somers, NY, USA). The differences in coagulation function indica-
4876
tors and age between the non-severe COVID-19 and severe
COVID-19 groups were analyzed by an independent sample
t-test. The data are expressed as the mean �standard deviation
(�x �SD). P-values less than 0.05 (P < 0.05) were considered signif-
icant. A total of 9 parameters were used as illustrated in Table 1. A
detailed description of statistical analyses is described in Table 2.

2.2. Brief introduction of support vector machine (SVM)

The SVM is the most frequently utilized machine learning
model developed based on some mathematical concepts on risk
prevention and the idea of the VC dimension. In this model, we
intend that reach an excellent compromise between decreasing
the error of the output signals in the training domain and optimiz-
ing the margin to attain the best generalization capacity and pre-
vent the overfitting concern. In some cases, the SVM was used
(Shen et al., 2016; Chen et al., 2011; Chen et al., 2014) to deal with
some small sample data sets in particular because of it adequate
velocity rate and good classification accuracy.

When we set a suitable w and b for tests, the SVM model is able
to distinguish the undecided samples according to the utilization
of the hyperplanes with acceptable classification rates. SVM can
also tackle non-linear classification problems if we apply kernel-
based methods during the modeling. The non-linear feature of con-
cern is modeled as follows:

gðxÞ ¼ sgnð
Xn
i¼1

aiyiKðxi; xÞ þ bÞÞ ð1Þ

where Kðx; xiÞ is the kernel function and Kðx; xiÞ is Gaussian kernel.
For more details, readers refer to work by Shen et al. (2016). In SVM,
penalty factor C and the c parameter of the kernel can change the
accuracy and efficiency of the learning process, and it is sensitive
to these values. C can show us how much the SVM can generalize.
c can show us how much the model is fitting.

2.3. Brain storm optimization (BSO)

The brain storm optimization (BSO) algorithm has been
appeared in 2011 (Shi, 2011). That is a promising and early swarm
intelligence algorithm. Moreover, it is focused on the human
being’s collective actions, that is, brainstorming. Speciation is a
natural selection process, which means the population is differen-
tiated into individual species. BSO solutions also diverge into many
clusters. The new solutions are based on the mutation of one par-
ticle or two. The basic BSO algorithm is conceptually simple and
easy to be programmed. The original algorithm consists of four
steps: Initialization, Clustering, New particles’ generation, and
Selection. Randomly generate n potential solutions (particles),
and evaluate the n particles, Cluster n particles into m clusters
by a clustering model, and then randomly select one or two clus-
ter(s) to generate new particle, finally execute the selection opera-
tor. The detailed procedure of the BSO can be seen in Algorithm1.



Table 2
Coagulation function indicators clinical parameter in severe group and non-severe
group.

Index Non-severe (n = 30) Severe (n = 21) p-value

Age(years) 42.300 ± 11.530 61.43 ± 17.64 0.000
PT (s) 13.030 ± 0.780 14.930 ± 3.050 0.011
INR 1.030 ± 0.060 1.090 ± 0.070 0.003
PTA (%) 95.880 ± 7.350 88.280 ± 8.400 0.001
FIB (g/l) 4.170 ± 0.870 4.970 ± 1.650 0.053
APTT (s) 38.480 ± 4.310 43.650 ± 8.780 0.019
TT (s) 16.210 ± 0.740 16.520 ± 0.820 0.171
D-D(mg/l) 0.480 ± 0.260 1.990 ± 3.750 0.032
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The n is the population size, T is the maximum number of iteration,
Xb is the current best position, fvalue is current best fitness value,
Xiði ¼ 1;2; . . . ;NÞ means the population, p1 and p2 are pre-
determined probability.

Algorithm1: The pseudo-code of original BSO
48
sw

for
2.4. Core operators to be introduced

By imitating the cooperation conduct of hawks to catch the
prey, the Harris Hawks Optimizer (HHO) is built (Algorithm and
77
applications, 2019). The hawks are one of nature’s cleverest birds.
First, the Hawks seek in a number of neighborhood sites for rabbits
(bearers) and then hunt rabbits (victim). The rabbits also demon-
strate escape behavior by pursuing different methods, thereby
increasing their survival chances. The typical HHO imitates these
chasing-escaping actions and reactions in order to identify the best
answers to a single objective problem of optimization. The main
part of HHO is composed of exploration phase, transition phase
and exploitation phase. For exploring the search area, the search
algorithms are mathematically represented as follows:

Xtþ1 ¼ Xrand;t � r1 Xrand;t � 2r2Xt

�� �� r5 P 0:5
ðXrabbit;t � Xm;tÞ � r3ðlbþ r4ðub� lbÞÞ r5 < 0:5

(
ð2Þ

where XtandXtþ1 are the search agent vector of tandt þ 1 respec-
tively, Xrabbit;t is location of target preyrabbit, r1, r2, r3, r4, and r5
are all interval of random values (0,1), lbandub the lower and the
upper limits of choice X variables, Xrand;t represents the selected

arm hawk’s random position, and Xm;t is the mean swarm state
the t iteration and mean hawk condition is determined as

Xm;t ¼ 1
N

PN
i¼1Xi;t . The rabbit’s energy is utilised to make the transfor-

mation as ER ¼ 2E0 1� t
T

� �
, where ER symbolizes the rabbit’s escape

energy, E0 is the initial state of its strength and T is the maximum
number of iterations utilized for the traditional HHO stop criteria,
which as transition phase.

The exploitation phase is composed of soft besiege with pro-
gressive rapid dives. It is supposed that hawks may evaluate their
next step with the following formula, to conduct a soft besiege:

Y ¼ Xrabbit;t � ER JXrabbit;t � Xt

�� �� ð3Þ

Z ¼ Y þ R� LFðDÞ ð4Þ
where D shows the problem dimension, and R represents a random
1� D size vector and LF is the random vector distributed by levy-
flight and can be determined as follows:

LFðyÞ ¼ u1 � r
u2j j1a

;r ¼ Cð1þ aÞ � sinðpa2 Þ
Cð1þa2 Þ � a� 2ða�1

2 ÞÞ

 !1
a

ð5Þ

where u1, u2 means random interval values (0,1), a is fixed as 1.5 as
constant. Hard besiege with PRD and this strategy models the
mechanism utilized as follows:

Xtþ1 ¼ Y ifFðYÞ < FðXtÞ
Z ifFðZÞ < FðXtÞ

�
ð6Þ

where YandZ vectors can be identified by Eqs. 2 and 3.

3. Proposed EBSO

In this study, the two core operators from harris hawks opti-
mization to further enhance and improve the search ability of
the original BSO, EBSO is designed. To the best of our knowledge,
this is the first time the BSO has been effectively integrated with
several efficient operators from harris hawks optimization. The
designed algorithm EBSO can be divided into two parts. The first
part is to execute each step of the original BSO; the second is to
complete the execution of the introduced operators derived from
harris hawks optimization. The detailed pseudo-code of the pre-
sented EBSO can refer to Algorithm2.
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Algorithm2: The pseudocode of designed EBSO

F
n

r

4. Proposed EBSO-SVM model

In this study, an evolutionary support vector machine-driven
enhanced brain storm optimization algorithm for analysis of
COVID-19 from the perspective of coagulation index is designed
(EBSO-SVM). The framework of the EBSO-SVM is exhibited in
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ig. 1. From this Figure, we see that the Cross-validation mecha-
ism is utilized as the internal 5- and external 10-fold process,
espectively, which means the K1 ¼ 5 and K2 ¼ 10 in this paper.
The detailed data segmentation diagram is shown in Fig. 2. It
shows us that it is divided into 10 equal parts, the blue part indi-
cates that the test sample is one-tenth of all data sets, the 9/10 data
set is called a special set whose colors are red and light blue. It is
worth noting that the red part of the special data set is one-fifth
of the special data set, which is used as training data. In addition,
the encoding of the enhanced BSO can be seen as Fig. 3, and encod-
ing is divided into two parts, the first part is used as the key param-
eter of the support vector machine, and the remaining part is used
as the attribute of the tested data.

SVM is regarded as the core zone of the proposed model; in
terms of the input domain, the radial basis function (RBF) kernel
has been utilized to map the aggregate info into a kind of hidden
layer domain. The procedure of the method deals with the main
factors C and width c, and n features subset, the first C represents
the harmony among fitting error minimization and complexity of
the model, the second kernel bandwidth c denotes the non-linear
mapping action from the input domain to higher-dimensional
spaces. Also, the EBSO technique considers these main parameters
and the optimal feature subset at the same time. If we report more
details, the continuous space has been converted using the sigmoid
function into a binary domain. To this aim, the feature is selected if
it be less than 0.5; otherwise, the details or gens can be deleted as
exposed in Fig. 3. Finally, the optimized SVM by EBSO can give us
an accurate early diagnosis of COVID-19 from the perspective of
the coagulation index. In addition, the classification accuracy is
set as the fitness function as Eq. 7, where average ACC refers to
average test classification accuracy ratio using the SVM and the
internal 5-fold CV and K is the number of folds.

fitness ¼ averageACC ¼

Xk
i¼1

testACCi

k
ð7Þ
5. Experimental designs

There are two components to the experimental phase of this
analysis. The first phase will be the efficacy investigation of the
proposed EBSO, and the second will use the proposed EBSO-SVM
algorithm to diagnose the COVID-19 from the perspective of the
coagulation index. First of all, the efficiency of the proposed EBSO
is extensively verified and carried out in comparison with other
algorithms on 23 benchmarks (Ballester et al., 2005), which is com-
posed of 7 unimodal benchmark functions as shown Table 3, 6
multimodal benchmark functions as shown in Table 4, and 10
fixed-dimension multimodal benchmark functions as shown in
Table 5 and also strictly perforce the balance and diversity analyzes
of the improved EBSO and its original BSO. Several other algo-
rithms, including BSO, DE (Price, 2013), PSO (Marini and
Walczak, 2015), GSA (Rashedi et al., 2009), and MFO (Mirjalili,
2015), were involved as competitors on the common benchmark.
The parameters of these peers are tested based on the original
papers.

The experimental results EBSO-SVM, employed for a diagnosis
of coagulation indices in COVID-19 in the field of data collection,
was extensively reviewed by the proposed EBSO method for opti-
mizing the combination of the best parameter and SVM sub-
subset function. Several typical learning procedures, including
original SVM, GWO-SVM, MFO-SVM, PSO-SVM, ELM, and KNN,
were also compared in the case of EBSO-SVM. The two main
parameters of ½�2^6;2^6� and ½�2^6;2^6�, respectively, have been
specified in the original SVM. In order to avoid the uncertainty in



Fig. 1. The Flowchart of the proposed EBSO-SVM.

Fig. 2. Data segmentation diagram.

Fig. 3. Encoding form.

Table 3
Unimodal benchmark functions.

Function Dim Range fmin

f 1ðxÞ ¼
P

i¼1nx2
i

50 [�100, 100] 0

f 2ðxÞ ¼
P

i¼1n jxi j þ
Qn

i¼1jxij 50 [�10, 10] 0

f 3ðxÞ ¼
P

i¼1nð
P

j�1i
xjÞ

2 50 [�100, 100] 0

f 4ðxÞ ¼ maxifjxij;1 6 i 6 ng 50 [�100, 100] 0

f 5ðxÞ ¼
P

i¼1n�1 ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2� 50 [�30, 30] 0

f 6ðxÞ ¼
P

i¼1nð½xiþ0:5�Þ2 50 [�100, 100] 0

f 7ðxÞ ¼
P

i¼1nix4i
þ random½0;1Þ 50 [�1.28, 1.28] 0
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tests due to the large datasets, all info has been scaled into the
interval of [-1, 1].

The MATLAB tests has been performed with the Xeon CPU E5-
2660 v3 (2.60 GHz) and 16 GB of RAM on a Windows Server
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2018 R2 operating machine. A Cross-Validation 10-fold (CV) is
used to assess classifying findings in an unbiased and objective
manner. In addition, the EBSO-SVM performance assessment was
carried out using four normal parameters comprising specificity,
sensitivity, classification accuracy (ACC), and a Matthews (MCC).
The detailed definition of the formula can refer to Wang and
Chen (2020).
6. Experimental and analytical results

6.1. Results of benchmark functions

In this part, the 23 benchmarks have been utilized to evaluate
EBSO’s efficiency, and these cases have always been applied in
multiple projects using fair comparison rules (Wang et al., 2020;
Weng et al., 2021; Qiang et al., 2020; Yang et al., 2018; Zhao
et al., 2020; Zou et al., 2019). Furthermore, 30 experiments were
performed independently to limit the impact of random variables.
The EBSO is compared to the BSO, DE, PSO, GSA und MFO algo-
rithms in this investigation. Thirty individual executions carried
out all of these ways to these benchmark standards.

In the Table 6, detailed experimental results are demonstrated
by the average and standard deviationSTDvalues. It can be seen
that the EBSO have the best property of not only average values
but also STD, though it may perform not well on some cases More-
over, the EBSO is substantially higher than the other couples in the
most relevant test criteria in the Wilcoxon test. Table 7 presents
Friedman0s EBSO test results against all other rivals. The EBSO
shows the first best results of these benchmarks, with the poorest
findings being BSO, MFO, GSA, PSO, and DE, in line with the average
ranking of the algorithms in question. One cause for this may be
the major aspects of the existing movement strategies abstracted
from optimizing harris hawks. In this analysis, the original BSO
can be enhanced between exploration and mining.

Fig. 4 shows the convergence curves of these algorithms for sev-
eral selected benchmarks to verify the performance of the designed
EBSO. From this viewpoint, the planned EBSO indicates the quick
capacity of the conference and the apparent superiority to all other
competitors in this benchmark. Furthermore, the developed EBSO
contains rapid convergence searches, such F7, F21, and F23, which
ensure it achieves an optimal theoretical value in no time. In



Table 4
Multimodal benchmark functions.

Function Dim Range fmin

f 8ðxÞ ¼
P

i¼1n�xi sinð
ffiffiffiffiffi
jxi j

p
Þ 50 [�500,500] �2094.9145

f 9ðxÞ ¼
P

i¼1n ½x2
i
�10cosð2pxiÞþ10� 50 [�5.12, 5.12] 0

f 10ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
i¼1n x2i

q� �
� exp 1

n

P
i¼1n cos 2pxið Þ� �þ 20þ e 50 [�32,32] 0
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i¼1nx2

i
�
Qn
i¼1

cos
xiffi
i

p
� � þ 1 50 [�600,600] 0

f 12ðxÞ ¼ p
n 10 sin py1ð Þf þPn�1

i¼1 ðyi � 1Þ2 1þ 10 sin2 pyiþ1
� �h i

þ ðyn � 1Þ2 þPn
i¼1u xi;10;100;4ð Þ

yi ¼ 1þ xiþ1
4 u xi; a; k;mð Þ

k xi � að Þxi > a
0� a < xi < a
k xi � að Þxi < �a

8<
:

50 [�50,50] 0

f 13ðxÞ ¼ 0:1 sin2 3px1ð Þ
n

þPi¼1nðxi�1�Þ2 1þ sin2 3pxi þ 1ð Þ
h i

þ
xn � 1ð Þ2 1þ sin2 2pxnð Þ

h io
þPi¼1nuðxi ;5;100;4Þ

50 [�50,50] 0

Table 5
Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin

f 14ðxÞ ¼ 1
500 þ

P25
j¼1

1

jþ
P2
i¼1

xi�aijð Þ6

0
B@

1
CA

�1 2 [�65,65] 1

f 15ðxÞ ¼
P2

i¼111 ai�
x1 b2

i
þbi x2ð Þ

b2
i
þbi x3þx4

	 
 4 [�5, 5] 0.0003

f 16ðxÞ ¼ 4x21 � 2:1x41 þ 1
3 x

6
1 þ x1x2 � 4x22 þ 4x42 2 [�5,5] �1.0316

f 17ðxÞ ¼ x2 � 5:1
4p2 x21 þ 5

p x1 � 6
� �2 þ 10 1� 1

8p
� �

cos x1 þ 10
2 [�5,5] 0.398

f 18ðxÞ ¼ 1þ x1 þ x2 þ 1ð Þ2 19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22
� �h i

2 [�2,2] 3

f 19ðxÞ ¼ �P4
i¼1

ci exp �P3
j¼1

aij xj � pij
� �2 !

3 [1,3] �3.86

f 20ðxÞ ¼ �P4
i¼1

ci exp �P6
j¼1

aij xj � pij
� �2 !

6 [0,1] �3.32

f 21ðxÞ ¼ �P5
i¼1

X � aið Þ X � aið ÞT þ ci
h i�1 4 [0,10] �10.1532

f 22ðxÞ ¼ �P7
i¼1

X � aið Þ X � aið ÞT þ ci
h i�1 4 [0,10] �10.4028

f 23ðxÞ ¼ �P10
i¼1

X � aið Þ X � aið ÞT þ ci
h i�1 4 [0,10] �10.5363
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addition, the same convergence tendency is found as regards other
benchmarks. In short, it can be concluded that the property of the
original BSO can be significantly enhanced.
6.2. Application in the diagnosis of COVID-19 from the perspective of
coagulation index

In this part, the proposed algorithm EBSO-SVM for diagnosis of
COVID-19 from the perspective of coagulation index is evaluated
deeply. Table 8 records the detailed statistical results of the col-
lected COVID-19 coagulation index data set. The 91.9195% classifi-
cation accuracy of the ESMA-SVM can be seen from this Table 8,
90.529% of Matthew correlation coefficient, 90.9912% of sensitiv-
ity, 88.5705% of specificity, and their variance is 0.049967,
0.039574, 0.050529 and 0.060838 respectively. In addition, the
suggested EBSO-SVM can acquire the optimum SVM model config-
uration automatically, largely due to the upgraded EBSO, which
can effectively detect optimum parameters settings and feature
subset.

Furthermore, the EBSO-SVM approach is comparable with the
original SVM and other evolutionary SVM computational methods
(including BSO-SVM, Original SVM, GWO-SVM, MFO-SVM, PSO-
SVM, and two popular ELM and KNN algorithms). A complete sta-
tistical experiment in Table 9 shows comparisons of the accuracy,
Matthew’s correlation coefficients, susceptibility, specificity, and
4880
standard deviation. The result can be overlooked that in quatre
assessment methodologies such as ACC, MCC, sensibility, and
specificity, the EBSO-SVM algorithm is higher than other competi-
tion and its related standard difference between all models is also
less relevant. The EBSO-SVM is more efficient and stable compared
to the traditional CBSO-based SVM. It should be noted that the
original SVM, original ELM, and KNN all demonstrate their worst
diagnosis performance of COVID-19 from the coagulation index
perspective, which can preliminarily be shown to improve the
SVM model selection ability and the ability to solve the precise
diagnosis of COVID-19 from the capacity perspective from the
algorithm suggested in this article. We can observe in this experi-
ment that EBSO SVM can automatically obtain the best property
among all these competing designs, mainly thanks to the upgraded
EBSO, which automatically identifies the best SVM parameters and
the perfect sub-features.

In addition, the developed EBSO will be used to simultaneously
optimize parameters and choose functions for SVM to diagnose
COVID-19 from the coagulation index perspective. The 10-fold CV
approach during function selection is used in this work. Table 10
shows the detailed number of features, and statistical values
picked for each 10-fold cycle. Regarding statistics, AGE, INR, PTA,
and D-D features were selected respectively by the EBSO-SVMwith
values 9, 8, 9, and 9 while comparing the other features with the
features with fewer ones. The EBSO-SVM is superior to other



Table 6
The statistical experiment results and the comparison algorithms on the test benchmarks.

Algorithms F1 F2 F3 F4 F5
mean STD mean STD mean STD mean STD mean STD

EBSO 4.0409869 4.565512 0.848937 0.32468 5308.9514 1916.3288 7.577523 2.163198 909.548 672.3266
BSO 14216.69366 1936.4153 73.042895 5.8637549 70294.044 10991.059 70.005317 4.7751876 14888839 5430531.7
DE 286.5318805 80.04938 6.7574347 0.6717474 85066.864 8903.3004 59.555309 3.056055 72392.185 18945.928
PSO 331.5727461 37.50266 1661020.4 4334397.6 4836.1655 1315.6191 10.840428 1.829634 681313.26 166072.15
GSA 40.21357786 12.449257 30.790421 7.9833557 3082.485 1262.17 18.862995 2.798129 53327.901 28552.84
MFO 14353.41746 8511.954 63.966444 19.574595 62399.277 13471.362 82.965428 4.3295102 24824531 25784078

Algorithms F6 F7 F8 F9 F10
mean STD mean STD mean STD mean STD mean STD

EBSO 2.4478589 0.942465 0.229856 0.10233 �11173.4 718.747 172.6646 17.44842 1.989142 0.515402
BSO 14572.66347 2369.2804 9.0611144 2.8662241 �8879.693 666.81149 266.02169 15.214212 16.952533 0.508035
DE 273.4697128 64.452586 0.4612938 0.1143467 �8907.786 363.95443 231.08217 11.055591 5.5215554 0.4519889
PSO 339.425991 36.361857 254.76347 37.413359 �7155.622 1294.4444 566.25084 34.593948 10.276171 0.3276113
GSA 32.75943606 5.2913592 110.65906 16.96339 �3077.189 664.71759 335.0435 13.968292 4.9673752 0.3732885
MFO 11176.15861 4626.9133 15.377483 14.019924 �10395.76 1185.279 289.99885 44.965597 19.565532 0.3733107

Algorithms F11 F12 F13 F14 F15
mean STD mean STD mean STD mean STD mean STD

EBSO 0.9543863 0.121121 7.0724065 3.7750497 26.51097 11.10599 0.998004 1.96E-16 0.0043187 0.0084562
BSO 133.7178699 14.668046 13245314 6397676.3 41034266 19312164 0.9980038 1.877E-11 0.0015329 0.0009859
DE 3.975427709 1.0276143 28.112923 13.85836 6299.2424 9589.2105 1.5904907 1.5560234 0.001011 0.000272
PSO 1.15537423 0.0262132 12.926533 2.8005088 6343.4568 8514.9991 4.2516365 2.5355863 0.0016576 0.0007102
GSA 2.694441032 1.1526546 6.366073 2.89656 2004.7167 3433.8448 1.6061734 0.6890466 0.0052248 0.0027588
MFO 105.8181227 61.608213 19925243 13625159 125560603 172385521 6.090624 4.2799447 0.0024782 0.0031255

Algorithms F16 F17 F18 F19 F20
mean STD mean STD mean STD mean STD mean STD

EBSO �1.03162845 9.735E-16 0.397887 0 3 1.39E-15 �3.86278 6.94E-16 -3.286327 0.0574308
BSO �1.0316284 3.13E-07 0.3978874 5.085E-10 3 2.94E-09 �3.86278 1.56E-08 -3.301074 0.0356608
DE �1.03162845 1.958E-16 0.3978874 0 3 1.92E-15 �3.86278 7.83E-16 �3.32183 0.000367
PSO �1.02490226 0.0053364 0.4117694 0.0142042 3.6032981 0.8927914 -3.808387 0.0557767 -2.643092 0.1640719
GSA �0.99227955 0.0216461 0.408267 0.0101211 3.3711742 0.3749822 -3.838708 0.0146349 -2.802657 0.2136215
MFO �1.03162845 1.282E-16 0.3978874 0 3 2.5E-15 �3.86278 8.24E-16 -3.237214 0.0770919

Algorithms F21 F22 F23
mean STD mean STD mean STD

EBSO �8.6538929 3.16084 �8.443763 3.2038506 �10.5364 3.14E-12
BSO �7.99693838 2.7755981 �8.72163 1.61663 �8.203202 2.4544712
DE �8.3009019 2.0025497 �10.16796 0.5866285 �9.74481 2.1880623
PSO �2.58648777 1.2965977 �2.450181 1.0838472 �3.096436 1.4694115
GSA �2.61413202 0.5856597 �2.532658 1.0300769 �2.80029 0.7462128
MFO �5.39182791 3.4275629 �7.147333 3.520498 �7.47797 3.9669906

Table 7
The results of Friedman’s test.

EBSO BSO DE PSO GSA MFO

mean level 1.4236 5.4251 3.3625 3.5489 4.3549 4.5219
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competitors. But other opponents did not fulfill these characteris-
tics. It can thus be concluded that those characteristics that typi-
cally seem present can recognize COVID-19 early and
discriminate against other low-frequency characteristics. In
practice, more consideration for these features AGE, INR, PTA,
and D-D should therefore be given in relation to the underlying
information in these frequency characteristics.

In addition, the comparison results among these methods
regarding CPU time consuming via 10-fold CV is shown in Fig. 5.
It can be observed that the original ELM has the least CPU time
whose speed is the fastest among these algorithms, the original
SVM has the second least time. An explicit argument is that a lot
of execution time will be saved without the aid of search algo-
rithms compared to models. However, the unintended outcome
is a considerably decreased algorithm classification performance.
It can also be observed that the presented EBSO-SVM performs
only the fourth-least time consuming, which has more time than
the original BSO-SVM, and it illustrates that the add operator
increases the algorithm’s execution time. The time-consuming of
KNN and GWO-SVM is very similar and, the PSO-SVM has the most
4881
time-consuming. Finally, although the proposed EBSO-SVM has
good classification performance, its performance increase is at
the cost of time consumption, and this also directs us towards
the future path of study using acceptable parallel programming
to reduce the duration for ECPA-KELM CPU use.
7. Discussion

Early recognition and discrimination of COVID-19 severity from
a coagulation index standpoint were studied using EBSO to opti-
mize the parameter and select SVM features simultaneously.
Important aspects such as Age, INR, PTA, and D-D have been found.
Through the coagulation index, an EBSO-SVM model was subse-
quently designed to diagnose COVID-19 accurately. We believe
that the EBSO-SVM model could contribute to informing the clini-
cal decision-making process.

Several studies have shown that age plays a key role in develop-
ing Severe Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS). Meanwhile, researchers confirm



Fig. 4. Convergence curves of selected benchmark functions.

Table 8
The results of EBSO-SVM on collected data.

Fold ACC MCC Sensitivity Specificity

#1 0.88759 0.85847 0.95214 0.80251
#2 0.88952 0.89568 0.89687 0.87548
#3 0.97521 0.96324 0.96252 0.87549
#4 0.97635 0.84356 0.88573 0.85321
#5 0.98521 0.88821 0.96595 0.97584
#6 0.88521 0.95321 0.89654 0.93251
#7 0.88597 0.89524 0.90251 0.96524
#8 0.96874 0.88754 0.80521 0.81258
#9 0.87584 0.93254 0.95624 0.84265
#10 0.86231 0.93521 0.87541 0.92154
Mean 0.919195 0.90529 0.909912 0.885705
STD 0.049967 0.039574 0.050529 0.060838
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Table 9
The statistical experiment results of comparison in terms of the four metrics.

Algorithms ACC MCC Sensitivity Specificity

EBSO-SVM 0.91919 ± 0.04996 0.90529 ± 0.03957 0.90991 ± 0.05052 0.88570 ± 0.06083
BSO-SVM 0.88574 ± 0.07541 0.86354 ± 0.06584 0.88579 ± 0.07584 0.83595 ± 0.09658
SVM 0.79254 ± 0.08025 0.77854 ± 0.08547 0.79587 ± 0.09521 0.70124 ± 0.16254
GWO-SVM 0.85362 ± 0.06524 0.83569 ± 0.06854 0.87623 ± 0.07215 0.86598 ± 0.14584
MFO-SVM 0.84325 ± 0.06758 0.83758 ± 0.06851 0.88215 ± 0.07219 0.85784 ± 0.09236
PSO-SVM 0.81587 ± 0.06741 0.85812 ± 0.06954 0.87259 ± 0.07359 0.86325 ± 0.10594
ELM 0.80563 ± 0.08652 0.76325 ± 0.08812 0.78851 ± 0.10584 0.71265 ± 0.13625
KNN 0.78954 ± 0.08547 0.80145 ± 0.10258 0.78852 ± 0.11263 0.73541 ± 0.14587

Table 10
The numbers of selected feature.

Index Algorithms

EBSO-SVM BSO-SVM GWO-ELM MFO-ELM PSO-ELM

F1 0 0 0 2 3
F2 9 6 7 7 8
F3 2 2 1 4 3
F4 8 8 7 8 7
F5 9 8 7 7 8
F6 1 3 6 2 4
F7 0 2 2 3 1
F8 1 2 1 1 2
F9 9 8 8 7 9

fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10
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Fig. 5. Comparison results among these methods in terms of CPU time via 10-fold
CV.
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that advanced age was associated as a strong independent risk
predictor of SARS and MERS (Majumder et al., 2015; Choi et al.,
2003). Similarly, investigators have demonstrated that age plays
a critical role in the progression of the COVID-19 disease in this
outbreak. Chen and colleagues revealed that age was positive asso-
ciation with the degree of radiographic severity in patients with
COVID-19 (Chen et al., 2020). Many researchers have found that
older patients are more vulnerable to COVID-19 infections and that
they are more prone to develop severe COVID-19 complications
(Wang et al., 2020). Wang et al. reported that adults are more vul-
nerable and susceptible to COVID-19 than children and the adult’s
condition was severe than that in children (Wang et al., 2020).
Wang et al. also found that these elderly persons, once infected
with SARS-CoV-2, are prone to death (Wang et al., 2020). One of
the possible reasons is that with aging, the cellular and humoral
immune function of the body gradually declines, resulting in an
increased risk of infection (Weiskopf et al., 2009; Opal et al.,
2005). Another possible reason is that elderly patients with numer-
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ous comorbidities, including hypertension, diabetes, chronic lung
diseases, may be more prone to acute respiratory failure and have
a poor prognosis (Liu et al., 2020; Zhou and Liu, 2020). Consistent
with previous studies, we also found the average age of the severe
COVID-19 group was 61.43 ± 17.64 years, and that of the non-
severe COVID-19 group was 42.30 ± 11.53 years, suggesting age
is an important factor affecting rehabilitation. To summarize, age
may be a promising indicator for predicting the prognosis of
patients with COVID-19.

Severe infection and inflammation lead to activation of coagula-
tion. Research findings reveal that coagulation function abnormal-
ities are commonly found in patients with sepsis. Fibrinogen levels
of C-reactive protein were closely correlated to the sepsis, suggest-
ing the level of fibrinogen can reflect the inflammatory state of the
body(Kim et al., 2007). D-dimer is a fibrin degradation product of
the crosslinked fibrin polymer under the fibrinolytic system (Bai
et al., 2017). D-dimer is the smallest fragment of fibrin degradation
products and serves as an important molecular marker for fibri-
nolytic system hyperactivity and hypercoagulable state in vivo
(Baboolall et al., 2019). The level of D-dimer in normal human
serum is less than 280 ng/mL, and the concentration is difficult
to detect in normal situations (Li et al., 2018). D-dimer plays an
important role in inflammation. When the body is infected, a vari-
ety of inflammatory factors may damage vascular endothelial cells,
leading to activation of blood coagulation and consume mass clot-
ting factors inducing hyper coagulability (Duarte et al., 2015).
Guneysel et al. found that plasma D-dimer levels are positively cor-
related with the degree of community-acquired pneumonia (CAP).
Moreover, patients with severe CAP had significantly higher
plasma D-dimer levels than those with a non-severe CAP suggest-
ing D-dimer may be a promising prognostic indicator in CAP
(Guneysel et al., 2004). It has been reported that various vasoactive
substances were increased in patients with CAP or mechanical ven-
tilation occurs more easily when plasma D-dimer levels increase
(Li et al., 2018). Recently, a population-based study of more than
300 CAP patients showed that plasma D-dimer levels are measured
before the use of antibiotics, suggesting plasma D-dimer levels are
positively associated with the acute physiology and chronic health
evaluation II (APACHE II) and pneumonia severity index (PSI) scor-
ing system. Moreover, the D-dimer levels in the non-survival CAP
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patients were significantly higher than in the survival CAP group
(Querol-Ribelles et al., 2004). In line with these findings, Han
et al. found that the levels of plasma D-dimer in patients with sev-
ere COVID-19 were significantly higher than those in the non-
severe COVID-19 group, and monitoring plasma D-dimer levels
are helpful for the early diagnosis, management of severe/critically
ill patients (Han et al., 2020). In addition, among COVID-19
patients, high levels of D-dimer were closely related to the poor
prognosis of patients with COVID-19 (Tang et al., 2020). Similar
to their findings, in this study, we revealed that plasma D-dimer
levels were 4.14-fold higher in the severe COVID-19 group com-
pared with the non-severe COVID-19 group (P = 0.032), suggesting
that plasma D-dimer levels may be regarded as a promising indica-
tor of clinical outcome in COVID-19 patients.

Similar to D-dimer, PT is a sensitive screening test for the
extrinsic coagulation pathway and a vital monitoring indicator in
clinical anticoagulation therapy (Liu et al., 2018). Meanwhile, PT
is also an important prognostic index for patients with severe hep-
atitis. PTA has the same significance as PT. Coagulation function
indicators are believed to be correlated with the clinical course
or prognosis of sepsis. PT, APTT, FIB, and D-dimer are widely used
for detecting sepsis (Hoshino et al., 2017). A previous study has
revealed that PT was prolonged in patients with sepsis, at the same
time, proving PT was positively related to illness severity and poor
prognosis in sepsis patients (Walsh et al., 2010). Vasques and col-
leagues reported that coagulation disorder has a great influence on
sepsis, especially septic shock. The prognosis became worse with
the increase of PT (Macrae et al., 2014). Therefore, PT can be served
as a valuable prognostic indicator in sepsis and septic shock. Addi-
tionally, a population-based study of 113 deceased COVID-19
patients also suggested that all fatal cases had sepsis complica-
tions, suggesting sepsis is the most common and serious complica-
tion of exacerbation of covid-19 (Chen et al., 2020). In terms of PT,
PTA, Liu et al. observed a very significant difference between severe
COVID-19 and non-severe COVID-19 patients (Liu et al., 2020). In
our study, we found that the average PT of the severe COVID-19
group was 14.93 ± 3.05 s, and that of the non-severe COVID-19
group was 13.03 ± 0.78 s, and the average PTA was 88.28 ± 8.40 %
in the severe COVID-19 group and 95.88 ± 7.35 % in the non-
severe COVID-19 group. This finding was similar to the results
from previous studies (Wang et al., 2020; Liu et al., 2020). In short,
a close and important relationship exists between COVID-19, sep-
sis, and coagulation disorder. There are very few reports in the lit-
erature describing coagulation function indexes and clinical
parameters to predict the severity and prognosis of the infectious
disease jointly. As far as we know, this is the first attempt at com-
bining age, PT, PTA, and D-dimer for predicting COVID-19 severity
using the machine learning method.

Based on the finding of this research on the performance of the
proposed hybrid support vector machine, we can propose its appli-
cation to more variety of complex problems, such as active surveil-
lance (Pei et al., 2020), evaluation of human lower limb motions
(Qiu et al., 2016), prediction (Xu et al., 2020), medical diagnosis
(Chen et al., 2020; Fei et al., 2020; Hu et al., 2021; Saber et al.,
2021). Also, it can be utilized to evaluate the service ecosystem
(Xue et al., 2020; Xue et al., 2019), optimal e-healthcare systems
(Zhang et al., 2020), optimal performance design (Meng et al.,
2018), edge computing (Sheng et al., 2021; Zhiang et al., 2020),
drug discovery (Zhuo et al., 2020), optimal control (Luo et al.,
2020; Qian et al., 2021; Ye et al., 2020; Zhao et al., 2021), and
image and video processing (Mai et al., 2018; Zhou et al., 2021).
Another potential is to develop the binary variant of the optimizer
for dealing with wrapper-based feature selection (Fan and Zhang,
2021; Zhang et al., 2020; Zhang et al., 2015).

However, the present study has some limitations. Currently, our
data set came from a retrospective design and single-center data,
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and the sample size is not big enough. Larger study samples and
prospective studies are needed in order to further improve and
optimize our model. Second, independent/ external datasets will
still be required to train the EBSO-SVM model in the future so as
to make the model more reliable. Third, we recommend including
more indicators of hematological parameters such as blood rou-
tine, liver function indicators, kidney function indicators, immune
index, inflammatory indicators, and blood gas indexes in future
studies. In addition, the proposed EBSO-SVM may still have some
room to improve. The performance of the algorithm proposed is
obtained at the expense of some computational costs. For this, in
the future, we will consider paralleling (Zhiang et al., 2017) the
implementation of the algorithm to reduce the consumption of
computational time. In addition, the algorithm proposed EBSO-
SVM should seek more medical application scenarios and try to
solve more medical classification problems.

8. Conclusion and future Work

The work uses clinical data of the affiliated Yueqing Hospital of
Wenzhou Medical University to develop an effective EBSO-SVM
approach to identify and discriminate COVID-19 severity early on
(Yueqing, China). The fundamental novelty in the proposed
methodology is the incorporation of the new strategy by the pre-
sent EBSO to improve and restore search capabilities to the original
BSO. The efficiency of EBSO was thoroughly controlled with the 23
benchmark tests compared to many other competitors. The exper-
imental findings showed that the proposed EBSO is significantly
better able than other partners to achieve this feature optimiza-
tion. In addition, the recommended EBSO was utilized to develop
synchronized optimal SVM parameters and features; the resulting
EBSO-SVM was successfully applied to early identification and dis-
cern its severity with the COVID-19. An EBSO-SVM analysis with
other competitive algorithms has also been carried out. Moreover,
the findings demonstrated EBSO-SVM to forecast the more stable
attribute more accurately.

A number of concerns must be examined in more detail for
future study. In order to lessen the computing burden in the appli-
cation phase, more variables and coefficients are introduced, and
the following parallel processing should be highlighted. Readers
can also collect additional data samples to construct a safer and
more effective system. In order to extend the application of this
technique, EBSO-SVM can also be utilized for prejudging other con-
ditions like the clustering and splitting of the picture into CT.
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