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Abstract

The ubiquitin-like modifier ISG15 is one of the most predominant proteins induced by type I interferons (IFN). In this study,
murine embryo fibroblast (MEFs) and mice lacking the gene were used to demonstrate a novel role of ISG15 as a host
defense molecule against vaccinia virus (VACV) infection. In MEFs, the growth of replication competent Western Reserve
(WR) VACV strain was affected by the absence of ISG15, but in addition, virus lacking E3 protein (VVDE3L) that is unable to
grow in ISG15+/+ cells replicated in ISG15-deficient cells. Inhibiting ISG15 with siRNA or promoting its expression in ISG152/
2 cells with a lentivirus vector showed that VACV replication was controlled by ISG15. Immunoprecipitation analysis
revealed that E3 binds ISG15 through its C-terminal domain. The VACV antiviral action of ISG15 and its interaction with E3
are events independent of PKR (double-stranded RNA-dependent protein kinase). In mice lacking ISG15, infection with
VVDE3L caused significant disease and mortality, an effect not observed in VVDE3L-infected ISG15+/+ mice. Pathogenesis in
ISG15-deficient mice infected with VVDE3L or with an E3L deletion mutant virus lacking the C-terminal domain triggered an
enhanced inflammatory response in the lungs compared with ISG15+/+-infected mice. These findings showed an anti-VACV
function of ISG15, with the virus E3 protein suppressing the action of the ISG15 antiviral factor.
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Introduction

Type I interferons (IFN-a and -b) serve a critical role in antiviral

innate immunity and in modulating the adaptive immune response

to infection and tumor development [1]. In response to infection or

Toll-like receptor agonists, IFN is produced and consequently leads

to the up-regulation of hundreds of IFN-stimulated genes (ISG) [2,3].

One of the most highly induced genes is ISG15 that encodes a small

UBL protein of 17 kDa that forms covalent conjugates with cellular

proteins [4]. ISG15 is composed of two domains, each of which

carries high sequence and structural similarity to UB (33 and 32%

for the N- and C-terminal domains, respectively) [5,6].

ISG15 conjugation (ISGylation) to substrate proteins occurs in a

manner similar to UB conjugation by utilizing activating,

conjugating and ligating enzymes to facilitate the addition of

ISG15 to specific lysine residues [7]. The ISG15 activating

enzyme is ubiquitin E1 like protein (UBE1L), and the E2 enzyme

for UB conjugation, UbcH8, also recognizes ISG15 [8,9,10].

ISG15 is removed from conjugated proteins by an ISG15-specific

protease, UBP43 (USP18 (UB-specific protease 18)) [11,12,13].

UB as a central cellular regulator and UB-mediated proteolysis

also plays a regulatory role in the immune system [14,15]. While

the degradation by the proteosome generally depends on poly-UB

conjugation, protein modification by ISG15 does not typically

cause substrate degradation [16]. Instead it may alter the

subcellular localization, structure, stability or activity of targeted

proteins [17]. A large number of cellular proteins that are

associated with cellular cytoskeleton, stress response and chroma-

tin remodelling were identified as ISG15 targets. ISG15 also

targets proteins that play a role in the innate antiviral response,

including: PKR, MXA, STAT1, JAK1 and RIG-I [18]. ISGyla-

tion of these antiviral molecules may regulate their activity during

viral infection.

ISG15 expression is almost undetectable under normal conditions

but is strongly up-regulated during viral infections such as human

cytomegalovirus (HCMV), herpes simplex virus (HSV), Sindbis virus

(SV) and hepatitis C virus (HCV) [19,20,21,22,23,24]. It has been

speculated that the ISG15 up-regulation following viral infection is

involved in different strategies of the antiviral response [25,26].

Some viruses have developed specific strategies to counteract the

activity of the IFN-stimulated genes (ISGs). The influenza B virus

protein NS1B binds ISG15 and blocks protein ISGylation [27].

Furthermore, constitutive expression of ISG15 in type I IFN

receptor knockout (KO) mice confers potent antiviral activity against

SV. This evidence suggests that ISGylation is important for

protecting cells from viral infection [21].

Previously, using cDNA microarrays we described up-regulation

of ISG15 after infection of HeLa cells with the attenuated VACV

strains MVA and NYVAC, an effect not observed after infection

with the virulent strain WR [28,29,30]. Furthermore, the attenuated

mutant VVDE3L that lacks the viral early protein E3 also produces

an increase in the ISG15 mRNA levels [31]. VVDE3L is a virus that

only replicates in IFN-incompetent systems exerting IFN antagonist

activity [32], is nonpathogenic in the mouse model, and provides

protection against a wild-type virus challenge [33,34]. The E3

protein represses the host cell antiviral response by multiple
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mechanisms, including inhibition of both PKR and RNase L, two

enzymes induced by IFN and whose activation triggers a global

inhibition of protein synthesis and virus replication [35,36,37]

through the phosphorylation of eIF-2a (for PKR) and breakdown of

RNA (for RNase L). Significantly, once activated both PKR and

RNase L produced upregulation of ISG15 messenger levels [38,39].

E3 also blocks induction of IFN-a/b through inhibition of

phosphorylation of the transcription factors IRF3 and IRF7

[40,41] and prevention of NF-kB activation [42].

The biological significance of ISG15 mRNA induction in

cultured cells after infection with the VACV mutants and its

repression by the virulent WR is not known. Here we have

investigated the role of ISG15 as an anti-VACV immunity factor

using in vitro and in vivo systems based on MEFs and mice lacking

ISG15. While in MEFs the yields of WR were slightly different

between ISG15+/+ and ISG152/2 infected cells, the non-

replicating VVDE3L in ISG15+/+ cells grew more than one log

better in ISG152/2 cells. Biochemical analyses showed that the

E3 protein interacts with ISG15 through its carboxyl terminal

domain. Repression of ISG15 with siRNAs or expression of ISG15

by a lentivirus vector in ISG15 null cells indicate that VACV

replication can be controlled by ISG15 and that E3/ISG15

protein interaction is independent of the presence of PKR. In mice

lacking ISG15, VVDE3L induced stronger pathogenesis than in

ISG15+/+, an effect similarly triggered by a C-terminal deletion

mutant (VVE3LD26C). Our findings reveal a novel VACV

strategy to counteract the IFN antiviral response through

interaction of the virus E3 protein with ISG15.

Results

Expression of ISG15 is upregulated during infection of
human HeLa and murine embryonic fibroblast cells with
attenuated VACV strains

We and others have previously described upregulation of ISG15

transcript from gene expression profiles of HeLa cells infected with

the attenuated VACV strains, VVDE3L [31], MVA [28] and

NYVAC [30]. This up-regulation was not observed in HeLa cells

infected with the virulent WR [29]. Here, we have validated the

transcriptional changes in ISG15 mRNA levels after VACV

infection by real-time RT-PCR. As shown in Table S1, ISG15

mRNA levels at different times postinfection (p.i.) were enhanced

in HeLa cells infected with the mutant viruses compared to the

virulent WR, in agreement with the microarray data (not shown).

To correlate changes in ISG15 protein levels, we analyzed by

immunoblot the levels of ISG15 in WR- or MVA- or NYVAC- or

-VVDE3L or uninfected MEFs. In agreement with the results of

real time RT-PCR obtained in Hela cells, a clear increase in

ISG15 protein levels was also observed in VVDE3L- or MVA-

infected MEFs cells at 6 and 16 hpi (Fig. 1A). The increase was less

apparent after NYVAC infection probably because overall protein

synthesis is more severely inhibited by NYVAC than MVA [30].

Moreover, the increase of ISG15 protein levels after VVDE3L or

MVA infection required de novo protein synthesis as its

accumulation was prevented by cycloheximide treatment discard-

ing the possibility that infection might increase ISG15 protein

levels by enhancing protein stability (not shown). It should be

noted that there is an increase in the conjugation of ISG15 to its

target proteins after VVDE3L, but reduced in levels after MVA

infection (Fig. 1A). The findings of Fig. 1 establish a clear up-

regulation of ISG15 by the attenuated VACV mutants.

ISG15 has an anti-VACV role and modulates VVDE3L
replication in cultured cells

Since the increase in ISG15 in Hela cells correlated with the

attenuated phenotype of several VACV strains, we next examined

the role of ISG15 in VACV replication using primary MEFs derived

from ISG15+/+ and ISG152/2 mice. While the cytopathic effect

(CPE) observed in ISG152/2 after WR infection (0.1 PFU/cell,

24 h) was similar to ISG15+/+ cells (Fig. 2A, upper panels), the CPE

in ISG152/2 cells after VVDE3L infection was markedly

increased with respect to that observed in ISG15+/+ cells (Fig. 2A,

lower panels). The virus titers for WR were slightly increased in

ISG152/2 compared to ISG15+/+ cells (Fig. 2B), while the yields

of VVDE3L were increased in the ISG152/2 compared to

ISG15+/+ cells (about 25-fold higher). The increase in virus titers

correlated with increase in cellular mortality, as shown in Fig. 2A.

The findings of Fig. 2 suggest that E3 expression might be

suppressing ISG15 function. To define the breath of the E3 anti-

ISG15 activity we analyzed the role of another antiviral factor, PKR,

using MEFs derived from PKR2/2 mice. Both the difference in

CPE and virus yields between VVDE3L infected ISG152/2 and

PKR2/2 cells were clearly distinct (Fig. 1A), indicating that the in

vitro replication of VVDE3L in ISG152/2 is a process independent

of PKR. With PKR+/+ cells the CPE and virus yields were similar as

for ISG15+/+ cells (not shown).

To provide further evidence for a VACV antiviral role of

ISG15, we used siRNA to specifically block ISG15 mRNA

production. Using siPORT Amine as a transfection reagent, MEFs

were transfected with two specific ISG15 siRNAs (siRNA1 or

siRNA2), or with a specific GAPDH siRNA (positive control) or

with a scrambled siRNA (negative control). Twenty four hours

after transfection cells were infected with WR or VVDE3L

(0.1 PFU/cell), and ISG15 expression, CPE and virus titers were

evaluated during the course of infection. As shown in Fig. 3A, the

two ISG15 siRNAs decreased the expression of ISG15 by over

80% after 24 h of transfection (Fig. 3A). The decrease in ISG15

protein levels was accompanied by an enhanced CPE in VVDE3L

infected ISG15+/+ cells (Fig. 3B); the difference in CPE was less

clear in WR-infected cells. In addition, viral titers were enhanced

in silenced ISG15+/+ cells infected with WR or VVDE3L

(Fig. 3C). We also performed ISG15 mRNA inhibition with

ISG15 siRNAs in PKR2/2 cells and found no changes in CPE

and virus yields for WR and VVDE3L infected cells in comparison

to the results obtained in PKR+/+ cells (not shown), indicating

that the function of E3 protein is independent of PKR activity.

Author Summary

Modification of proteins by ubiquitin (UB) and ubiquitin-
like proteins (UBL) represents a key regulatory process of
innate and adaptive immune responses. Interferon-stimu-
lated gene product 15 (ISG15) is a member of UBL
molecules that can reversibly be conjugated to proteins
mediating considerable antiviral response. In turn, many
viruses, including poxviruses, have evolved strategies to
block the antiviral and inflammatory effects of innate
immune responses to keep cells alive until virus replication
is completed. Here, a novel viral immune evasion
mechanism that inhibits ISG15-dependent antiviral path-
way is described. Vaccinia virus (VACV) pathogenesis in
ISG15+/+ versus ISG152/2 mice is linked to the virus E3
protein, blocking the activity of ISG15 through its C-
terminal domain. This effect was independent of PKR
activation. ISG15 controls the inflammatory response
regulating cytokine levels. Our findings support a new
strategy for poxviruses to evade the host antiviral response
through interaction of the virus E3 protein with ISG15.

Antiviral Innate Response, Vaccinia Virus
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Transfection of GAPDH siRNA or a scrambled siRNA followed

by infection with WR or VVDE3L had no significant effect in

either ISG15 protein level, CPE or virus production, indicating the

specificity of ISG15 function. We checked that GAPDH protein

levels were decreased only in the siRNA-GAPDH transfected cells,

as measured by Western blot analysis (not shown). The results of

Fig. 3 revealed that suppression of ISG15 protein levels leads to

enhanced replication of WR and of VVDE3L, further supporting

an anti VACV role of ISG15.

Absence of ISG15 expression is required for efficient
VVDE3L infection in murine cultured cells

To further extend the role of ISG15 expression in VACV

replication, we tested whether ectopic ISG15 expression in

ISG152/2 cells leads to inhibition of WR or VVDE3L viral

growth. Using pRVISG15-ires-GFP, an optimized retroviral vector

that expresses efficiently ISG15 in transduced cells, we evaluated the

CPE (see Fig. S1) and viral growth of WR or VVDE3L. Viral

titrations showed that retroviral transduction of the ISG15 gene in

ISG152/2 cells result in inefficient VVDE3L viral production,

whereas non-transduced ISG152/2 cells infected with VVDE3L

were able to produce infectious viral particles (Fig. 4C, left panel).

Furthermore, yields of VACV infectious virus decreased in the

ISG15-transduced cells in comparison to those that do not express

ISG15 (Fig. 4C, right panel). These findings demonstrate that the

absence of ISG15 is essential for the productive infection of VVDE3L

and the increase in VACV production in murine cultured cells.

To characterize the effect of ISG15 over-expression in WR or

VVDE3L replication in cells with endogenous ISG15, a similar

NYVAC MVAWR

ISG15

74-nitcA

- 15

MW (Kda)VV∆∆E3LA
2 6 162 6 16 2 6 16 2 6 16M

1

1.5

2

2.5

3

NYVACWR VV∆E3L
2 6 162 6 16 2 6 16 6 16M

MVA
2

B

ISG15
Conjugates

MEFs

Figure 1. ISG15 protein levels are upregulated during infection of MEFs with the attenuated mutants of vaccinia virus. A. ISG15
protein levels after WR or VVDE3L or MVA or NYVAC infection. MEFs were mock infected (M) or infected at 5 PFU/cell with WR or MVA or NYVAC or
VVDE3L and at the indicated times p.i, cell extracts were analyzed by Western blotting. Equal amounts of proteins were fractionated by SDS-PAGE,
transferred to nitrocellulose paper, and reacted with an antibody that recognizes murine ISG15 protein. On the right, the molecular weight of the
proteins in kilodaltons is indicated. Actin levels showed that the same amount of protein was loaded on the gel. Uninfected cells (M) served as
control. B. Densitometric quantification of ISG15 protein in arbitrary units is indicated. The graphic represents these measurements in three
independent experiments.
doi:10.1371/journal.ppat.1000096.g001
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approach was carried out as before but with retroviral transduc-

tion of ISG15+/+ cells, followed by measurements of WR or

VVDE3L viral growth. As shown in Fig. 4, panels C–D, both

viruses showed a decrease in infectious virus production in

correlation with higher ISG15 expression levels. This experiment

supports that ISG15 is a negative regulator of VACV replication.

E3 interacts with ISG15 through its carboxy-terminal
domain

It has been described that the influenza B virus protein NS1B

inhibits ISGylation after binding through its amino terminal

domain to ISG15 [27,43]. To test whether E3 protein, that

contains a similar domain to NS1, is able to bind to ISG15

protein, we performed immunoprecipitation (IP) assays in PKR+/

+ cells using the following different viruses: WR, MVA, VVDE3L

lacking the entire E3L gene, and two deletion mutants

VVE3LD83N and VVE3LD26C with truncated versions of E3L

gene at the N and C-terminus [44]. After ISG15 IP, the entire E3

protein binds efficiently to ISG15 and the N-terminal mutant

D83N, that lacks 83 aminoacids and the PKR binding domain,

binds efficiently to ISG15 (Fig. 5A). In contrast, the C-terminal

mutant D26C, that lacks 26 aminoacids and the ability to bind

dsRNA, does not bind ISG15 (Fig. 5B). We also performed the

reverse IP using an anti-E3 antibody and only the E3 protein that

lacks the C- terminus fails to be immunoprecipitated (Fig. 5B, left

panel). When IP was performed without antibody or using a pre-

immune serum as a control, no interaction was observed (Fig. 5B,

central panels). To analyze if RNA was involved in E3/ISG15

interaction, we treated the IP complex with RNase just before its

loading in the SDS-PAGE, and found that the complex was

destroyed, as no interaction was observed with any of the E3

proteins from the different viruses (Fig. 5B, left panel). This result

indicate that RNA, and probably dsRNA, has a role as a linking

component in the interaction between E3 and ISG15 proteins as

its degradation abolishes the binding of both proteins. ISG15/E3

protein interaction was confirmed by confocal microscopy, as WR-,

or MVA- or VVE3LD83N-infected MEFs showed co-localiza-

tion between ISG15 and E3, while VVDE3L- or VVE3LD26C-
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Figure 2. Effect of ISG15 on cytotoxicity and virus growth after infection of MEFs with virulent and E3L deletion VACV mutant
viruses. A. ISG152/2, PKR2/2 or wild type cells were mock-infected or infected at 0.1 PFU/cell with WR or VVDE3L. At different times p.i, the CPE in
the cells was examined by phase-contrast microscopy. B. Virus growth of WR and VVDE3L infected (0.1 PFU/cell) ISG15+/+, or ISG15 2/2, or PKR2/2
cells. At different times cells were harvested and virus yields were determined by plaque assay for WR or by immunostaining for VVDE3L.
doi:10.1371/journal.ppat.1000096.g002
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doi:10.1371/journal.ppat.1000096.g003

Antiviral Innate Response, Vaccinia Virus

PLoS Pathogens | www.plospathogens.org 5 July 2008 | Volume 4 | Issue 7 | e1000096



A

ISG15
Conjugates

MW (Kda)

WR VV∆∆E3L

control ISG15/transduction control ISG15/transduction
0 7 24 48 CM0 7 24 48M0 7 24 48M0 7 24 48M

ISG15

E3

eIF2α

15

47

20

ISG15-/-

B

hrs post-infection

WR

V
iru

s t
ite

rs
(p

fu
/m

l) 
/x

 1
0-5

1
2
3
4
5
6
7

7 24 48

Non-transduced
ISG15-transduced

V
iru

s t
ite

rs
(p

fu
/m

l) 
/x

 1
0-4

VV∆E3L

5
10
15
20
25
30
35

7 24 48
hrs post-infection

ISG15-/-

C WR

MW (Kda)24 48M 0 7 24 48 0M 7

control ISG15/transduction

C

ISG15/transduction

VV∆E3L

M 0 247 48 0 7 24 48M

control

15

47

20

ISG15+/+

D

V
iru

s t
ite

rs
(p

fu
/m

l) 
/x

 1
0-4 VV∆E3L

5
10
15
20
25
30
35

7 24 48

Non-tranduced
ISG15-transduced

hrs post-infection

V
iru

s t
ite

rs
(p

fu
/m

l) 
/x

 1
0-5

5
10

15
20
25

7 24 48

WR

hrs post-infection

ISG15+/+

ISG15
Conjugates

ISG15

E3

eIF2α

Antiviral Innate Response, Vaccinia Virus

PLoS Pathogens | www.plospathogens.org 6 July 2008 | Volume 4 | Issue 7 | e1000096



infected MEFs did not (Fig. 5C). In addition, we also studied if

the presence of PKR was relevant for this interaction by performing

both IP and confocal experiments in PKR2/2 cells. Both

approaches indicate that the interaction between ISG15 and E3 is

independent of PKR, as in its absence the entire E3 and the protein

that lacks the amino terminus are able to interact with ISG15

(Fig. 5D). The findings of Fig. 5 reveal that ISG15 binds the E3

protein in a PKR-independent manner and that binding requires the

C-terminal domain of E3 spanning the RNA-binding site, which

suggests that dsRNA acts as a linker.
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processed for immunofluorescence analysis by confocal microscopy using antibodies directed against ISG15 (red), E3 (green), and TOPRO for staining
nuclei (blue). Merged images are presented in the lower panels. Cells were visualized by confocal immunofluorescence microscopy. D.
Immunoprecipitation and immunoflurescence of PKR2/2 MEFs was performed as in A or in C.
doi:10.1371/journal.ppat.1000096.g005

Figure 4. Effect of ISG15 overexpresion on virus growth after infection of MEFs with virulent and E3L deletion VACV mutant
viruses. A–B. ISG152/2 MEFs were transduced with high-titer viral supernatants corresponding to the pISG15-ires-GFP retroviral vector. Levels of
ISG15 were measured by Western blot using a specific murine anti-ISG15 antibody. Viral protein E3 levels were measured as control of infection and
levels of eIF2a were used as a loading control. Virus growth of WR and VVDE3L were determined by plaque assay or by immunostaining. C–D.
ISG15+/+ MEFs were transduced as above. Levels of ISG15 were measured by Western blot using a specific murine anti-ISG15 antibody. Viral protein
E3 levels were measured as control of infection and levels of eIF2a were used as a loading control. Virus growth of WR and VVDE3L were determined
by plaque assay or by immunostaining. Control indicates the non-transduced MEFs.
doi:10.1371/journal.ppat.1000096.g004
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Enhanced susceptibility of ISG15 KO mice to VVDE3L
infection

To further show that ISG15 is a biological relevant antiviral

molecule against VACV infection, we next evaluated the

susceptibility of ISG152/2 mice to the virus. Thus, we infected

by the intraperitoneal (i.p) route ISG152/2 or ISG15+/+ mice

with WR at 26107 or with the attenuated VVDE3L at 108 PFU/

mouse and scored for prominent indicators of viral pathogenesis

(weight loss and mortality). While there was reduced weight loss in

ISG152/2 mice, survival was similar between both groups (Fig. 6,

panel A and B). However, after VVDE3L infection the ISG152/

2 mice displayed signs of disease within 2 days, characterized by

ruffled fur and lack of activity, and 25% of the animals died within

1 to 2 days. Half of the mice infected with VVDE3L appeared sick

at 4 days p.i., and 75% recovered after 7 to 8 days p.i. (Fig. 6C–D).

We did not observe virus yields for ISG152/2 or ISG15+/+ mice

infected with VVDE3L in liver or spleen, while virus titers were

easily obtained in WR infected mice (not shown).

Since the inflammatory response might explain the rapid signs

of illness in VVDE3L infected ISG15 KO mice, we measured

serum cytokine levels (IL-6, TNF-a, IL-10, MCP-1, IFN-c, and

IL-12 p 70) at early times post infection. In ISG15+/+ mice, IL-6

levels were similar in serum from WR- or VVDE3L- or mock-

infected mice (Fig. 6E). In contrast, ISG152/2 mice infected with

VVDE3L had an 8-fold increase in serum levels of IL-6 compared

with those infected with WR (P,0.01; Fig. 6E). There were no

changes in levels of other cytokines analyzed between the groups

(not shown).

We also examined the extent of protection conferred in animals

pre-immunized with WR or VVDE3L by i.p route. Thus, pre-

immunized mice (as in Fig. 6) were challenged by i.n route with

WR at 26107 PFU/mouse. In the case of ISG15+/+ and

ISG152/2 mice pre-immunized mice with WR, the challenge

had little effect on weight loss and signs of illness, clear signs of

protection (Fig. 7A–B). However after WR challenge, VVDE3L

pre-immunized ISG152/2 mice developed weight loss and signs

of sickness which was not observed in ISG15+/+ mice (Fig. 7C–

D). These findings revealed a reduced protection to challenge with

WR conferred by VVDE3L pre-immunized KO mice, indicating

limited adaptive immune response triggered by VVDE3L infection

of ISG15 2/2 mice.

The antiviral effect of ISG15 correlates with control of the
inflammatory response after VACV infection

Since VVDE3L pre-immunized ISG15 KO mice developed

disease transiently after i.n WR challenge and the upper

respiratory tract is a natural route for variola virus infection, we

next evaluated disease progression in ISG15+/+ and ISG152/2

mice after i.n inoculation with WR and several E3L deletion

mutants (VVDE3L; VVE3LD83N and VVE3LD26C). The highly
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Figure 6. Virulence of WR or VVDE3L after infection of ISG15+/+ and ISG152/2 mice. A–B. Mice were inoculated i.p with purified VACV
(26107 PFU/mouse) or VVDE3L (108 PFU/mouse). Mice were individually weighed daily, and mean percentage weight loss of each group (n = 12) was
compared with the weight immediately prior to infection. C–D. Survival rate after i.p inoculation with both viruses. Dead animals were scored daily
and represented as the percentage of surviving animals. P#0.01 in all experiments. E. IL-6 measured by ELISA from serum collected at 3 hpi. Results
represent the mean6SD of pooled samples from 6 mice.
doi:10.1371/journal.ppat.1000096.g006
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attenuated MVA strain was included as control. Infected mice

were scored for prominent indicators of viral pathogenesis (weight

loss, signs of illness and mortality). After WR or VVE3LD83N

infection, no significant differences in weigh loss and signs of illness

were observed between ISG152/2 and ISG15+/+ mice, although

slight differences in weight loss were observed between both groups

of mice when inoculated with a lower dose of WR (Fig. 8A, upper

panel). Mortality was higher in mice infected with WR, as all mice

died within 7 days in the case of WR, while infection with

VVE3LD83N caused 25% mortality (Fig.8A–B). However, clear

differences were observed after i.n. inoculation of VVDE3L or

VVE3LD26C. While ISG15+/+ mice did not show signs of illness at

any times p.i, ISG152/2 mice infected with VVDE3L or

VVE3LD26C showed disease as revealed by clear signs of illness

as soon as 2 days and 25% of the animals died. About half of the

mice infected with VVDE3L or VVE3LD26C appeared sick at 4

days p.i, but 75% of them recovered after 7 to 8 days p.i, (Fig. 8C).

To analyze the status of ISGylation in the infected mice, lungs

were homogenized and conjugation of ISG15 to its target proteins

was determined by Western blot. While, ISG152/2 mice do not

express ISG15 (Fig. 7A) and lungs homogenates from ISG15+/+
mice had similar amounts of the ISG15 protein, conjugation of

ISG15 to its targets proteins is enhanced in lung extracts from

mice infected with VVDE3L or VVE3LD26C (Fig. 9A). Similar

result was also observed in MEFs infected in vitro with VVDE3L

where high levels of ISG15 conjugates were clearly observed

(Fig. 1A). These findings suggest that E3 blocks conjugation of

ISG15 to its target proteins by its carboxy-terminal domain.

The presence of VACV proteins, as determined by Western

blot, was more evident in lungs of ISG152/2 in comparison to

ISG15+/+ mice infected with WR or the deletion mutant viruses

(Fig. 9B). As expected, appearance of virus in lungs correlated with

the presence of viral proteins in these tissue extracts (Fig. 9B–C).

These results indicate that although the absence of ISG15 has no

effect in the mortality of the mice at a high dose of WR inoculation

(56106 PFU/mice; Fig. 8A, middle and lower panel), it has an

effect in the replication of the WR and E3L mutant viruses, as seen

by the different amount of viral protein and virus titers in lung

tissues of ISG152/2 versus ISG15+/+ mice (Fig. 9B–C).

Histological examination of lung tissue showed that ISG15+/+
animals infected with the different mutant viruses had no

inflammatory cells infiltrating the lung parenchyma. In contrast,

lung sections obtained from ISG152/2 mice infected with

VVDE3L or VVE3LD26C presented severe inflammation with

alveolar wall thickening and infiltration of inflammatory cells (see

enlarged sections in Fig. 10). This phenotype was not observed in

WR- or VVE3LD83N- infected ISG152/2 mice (Fig. 10). This

result indicates that in ISG152/2 mice, pathogenesis and

development of an inflammatory response is mediated by the

absence of E3 virus expression. This phenotype was maintained

after VVDE3L and VVE3LD26C pointing to E3 as a major

VACV molecule involved in virus evasion of the IFN-defense

ISG15 antiviral protein.

Discussion

Pro-inflammatory and IFN-stimulated genes (ISGs) represent

essential components of the innate immune response to viral

infection (40). Upon viral entry into cells, ISG induction occurs in

two waves: acute, IFN-independent induction of a subset of ISGs
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Figure 7. Evaluation of extent of protection of WR or VVDE3L pre-immunized ISG15+/+ and ISG152/2 mice after challenge with
WR. Four mice per group were first i.p, immunized with purified WR (26107 PFU/mouse) or VVDE3L (108 PFU/mouse), and 30 days later animals were
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doi:10.1371/journal.ppat.1000096.g007
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and delayed, IFN-dependent induction via the production of IFN-

a/b during the initial phase. In many viral infections, IFN-

independent ISG induction is mediated by the IRF-3 phosphor-

ylation, homodimerization, and nuclear translocation. Activated

IRF3, in turn, induces the expression of type I IFN genes, whose

products trigger strong induction of a subsets of ISGs, including

IFN-b which after its release and ligand-binding to its receptor

then initiates IFN-dependent ISG induction via the IFN receptor

and JAK/STAT signaling pathways. IFN-inducible enzymes, like

the 2.5 OAS/RNAse L system, PKR, and M6, are the best

characterized proteins that mediate antiviral action of IFN.

Another protein, ISG15, was first identified as an IFN-stimulated

gene whose expression is induced strongly by IFN-a/b treatment

and can be detected at low constitutive levels in cells [45]. ISG15
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modifies several important molecules and affects type I IFN signal

transduction; ISG15 expression is markedly increased following

viral infection (14, 30, 49), and many viruses encode inhibitors of

the IFN-transduction pathway or specific inhibitors of ISG to

avoid deleterious effects triggered by these cytokines.

Among animal viruses, the poxvirus family contains a large

array of genes which are used by the virus to evade host immune

responses. VACV encodes multiple proteins that interfere with

complement regulatory proteins, with many cytokines and

chemokines, with TLRs (Toll like receptors) and signal transduc-

tion pathways, with apoptosis, and others [46]. One of the VACV

proteins with strong inhibitory activity of IFN-induced pathways is

E3 [47]. E3 represses the host cell antiviral response inhibiting

both PKR and RNaseL, which trigger global inhibition of protein

synthesis and virus replication [35,36,37]. In addition, E3 blocks

the activation of IRF3 [40,41], and effectively prevents the first

wave of type I IFN synthesis. E3 has two domains, an N-terminal

involved in the direct inhibition of PKR, its nuclear localization,

and Z-DNA binding [34,48,49,50], and the C-terminal that

contains the dsRNA-binding domain required for IFN-resistance

and for the broad host range phenotype of the virus [44,51]. It has

been described that VACV lacking E3 (VVDE3L) replicates in

PKR or RNaseL deficient cells [40].

Through the use of microarrays we identified the gene ISG15 as

being induced in the course of infection of human cells with different

strains of VACV [28,29,30]. The attenuated mutant VVDE3L also

produces an increase in ISG15 messenger levels [31]. The reason for

the induction of ISG15 mRNA levels by attenuated viruses (Fig. 1) is

probably due to the activation of several cellular signal transduction

cascades and of host transcription factors [28,30,31]. Since MVA

and NYVAC strains contain the E3L gene, this upregulation may be

independent of E3 expression with induction being likely due to the

increase in IFN-b levels.

In this study we showed that a VACV mutant lacking E3, which

cannot grow in ISG15 WT cells, is able to replicate both in MEFs

cells derived from ISG15 KO mice or in ISG15 silenced cells. In

addition viral titers also increase in the absence of ISG15

indicating that ISG15 has an essential role against infection of

VACV. During infection of MEFs from ISG15 KO or ISG15

depleted cells, the presence of E3 enhances viral production since

the WR titers are greater than those after infection with the

VVDE3L mutant virus. One explanation of this phenotype is that

the mutant virus lacking E3 triggers apoptosis through PKR

activation which, in turn, reduces virus production as previously

described [52]. The role of ISG15 in VACV replication was also

supported by the more abundant VACV infectious virus and viral

Figure 10. Histopathology of lungs from ISG15+/+ and ISG152/2 mice intranasally infected with VACV mutant viruses. Lungs from
ISG15+/+ and ISG152/2 mice i.n inoculated with, WR (56106 PFU/mouse) or MVA (56107 PFU/mouse) or VVDE3L (56107 PFU/mouse) or
VVE3LD83N (56107 PFU/mouse) or VVE3LD26C (56107 PFU/mouse) were resected, sectioned and stained with hematoxilin and eosin. For each
group of animals representative fields are shown at a magnification of 406 (left panels) and 1006 (right panels). B. Bronchio, BC. Bronchiole, A.
Alveolar sac, V. Vein.
doi:10.1371/journal.ppat.1000096.g010
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proteins produced in lungs of ISG152/2 mice compared with

lungs of ISG15+/+ mice after infection with WR or with the E3L

deletion mutant viruses (Fig. 9B–C).

While the depletion of ISG15 has an effect on VVDE3L mutant

phenotype and restores virus growth, over-expression of ISG15 in

ISG152/2 murine cells using a retroviral transduction system

revert the restricted VVDE3L viral growth. Over-expression of

ISG15 also reduces markedly WR titers reinforcing the idea that

ISG15 plays a role in the control of VACV replication.

Inhibition of ISG15 function by VACV is likely due to its

interaction with VACV E3, as shown by IP and confocal analyses.

This interaction with ISG15 occurs independently of PKR,

through the C-terminal region of E3 and requires RNA. We

have shown that ISG15 controls the in vitro replication of VACV in

a PKR-independent manner, as WR and VVDE3L titers do not

increase in murine PKR2/2 cells in comparison to those

observed in PKR+/+. While in murine cells VVDE3L is able to

replicate in a PKR-independent manner, as also described in

MEFs lacking RNase L [53], in human HeLa cells with PKR

expression suppressed by siRNA, the mutant virus is able to grow

[40]. The differences in cell origin might explain the distinct effect

of the IFN system in the control of VACV replication.

The mutant VVDE3L virus that was able to replicate in

ISG152/2 MEFs (Fig. 2) did not replicate in ISG15 KO mice

(Fig. 7), but surprisingly infection with VVDE3L provokes sickness

and mortality only in ISG152/2 mice. This was probably related

to the strong inflammatory response triggered by the mutant in

ISG15 KO mice, as observed by the increased levels of IL-6 in

serum (Fig. 4E). Although the biological relevance of this

observation remains to be established, it can be suggested, in

view of the functions assigned to ISG15 in the innate immune

response [54], that this molecule plays a role as regulator of IFN-

triggered innate responses during VACV infection. It will be of

interest to know the type of innate response triggered in ISG15

KO mice infected with VVDE3L.

The inability of VVDE3L to cause significant disease in WT

mice is presumably due, at least in part, to induction of type I IFN

that, in turn, leads to up-regulation of antiviral proteins, such as

PKR and 2–5 OAS/RNaseL system. The mutant virus that lacks

the C terminus of E3L gene involved in the dsRNA sequestration

(VVE3LD26C) is completely attenuated in WT mice; however

deletion of the N terminus (VVE3LD83N) reduces pathogenesis

500- to 5,000-fold [33,48]. We extended these in vivo studies using

the i.n route and compared WR and E3L mutant viruses in WT

and ISG15 KO mice. We observed that only after VVDE3L or

VVE3LD26C inoculation (i.n), the mortality of mice was increased

by the absence of ISG15 (Fig. 6). In the case of WR or

VVE3LD83N, there were no differences in mortality of both

viruses in ISG15 KO in comparison to WT mice although viral

replication was enhanced in the lungs of ISG152/2 in

comparison to ISG15+/+ mice. One explanation is that ISG15

is made non functional after infection with these viruses, because

the carboxy-terminal domain of E3 binds to ISG15 and blocks its

activity. These observations are in correlation with the reduced

presence of conjugates in lungs of WT mice infected with WR or

VVE3LD83N, compared with infection by VVDE3L or

VVE3LD26C. Although lung homogenates presented similar

amounts of ISG15 protein, the conjugation of ISG15 to its targets

proteins, was greatly enhanced after infection with VVDE3L or

VVE3LD26C (Fig. 7). This evidence suggests that inhibition of

conjugation of ISG15 is mediated by E3 and this inhibition

requires the presence of the dsRNA binding domain. Similar result

was also observed in MEFs infected in vitro with VVDE3L where

high levels of ISG15 conjugates were clearly observed (Fig. 1A).

The cause of mortality of ISG15 KO mice after infection with

VVDE3L or VVE3LD26C was a massive inflammation of lungs

with alveolar wall thickening and infiltration of cells (Fig. 8). These

results indicate a role of ISG15 in the control of an inflammatory

response by regulating cytokine levels.

Cytokine and chemokine release occurs rapidly in response to

virus infection, with the aim of recruiting inflammatory leukocytes

in order to limit virus replication and spread, and to induce

adaptive immunity. However, prolonged expression of chemokines

in the context of viral infections may be detrimental to the host.

We find that in the absence of ISG15, infection with VVDE3L

produces an increase of IL-6 that correlates with short-term

morbidity and complications that include pulmonary function

abnormalities. Although the mechanisms of this up-regulation

remains to be established, it can be speculated in view of the

functions assigned to ISG15 that it might be involved in the

regulation of cytokine signal transduction, through the stabiliza-

tion of specific signalling components that facilitate the develop-

ment of a correct innate immune response. In this sense a family of

intracellular proteins called suppressors of cytokine signalling

(SOCS) are essential for the regulation of cytokine expression

having a critical role in the regulation of the innate response.

Considering that SOCS-1 and SOCS-3 negatively regulate the

IFN-induced signal cascade, and VACV E3 protein inhibits the

type I IFN response, it is possible that E3 or other viral proteins

may regulate the IFN response by affecting SOCS protein

expression regulating the ISG15 activity by an unknown

mechanism. We have previously demonstrated that although

WR provokes a general downregulation of cellular mRNAs, there

are a discrete number of human genes that are induced selectively

during the course of VACV infection. A variety of these

upregulated genes encode different members of the SOCS family

[29] indicating that probably VACV may modify SOCS protein

expression to manipulate the cytokine pathway and the antiviral

host response. This strategy may be used to reduce the efficacy of

innate and acquired immune responses to infection. However,

WR modification of cytokine or chemokine responses may also be

a mechanism to recruit new targets for infection, or provide new

niches for infection. It has been described that over-expression of

HCV core protein inhibits IFN signalling and induces SOCS-3

expression. SOCS-1 and SOCS-3 proteins have been reported to

inhibit IFN-induced activation of the JAK-STAT pathway and

expression of antiviral proteins, such as M6A [55].

There are similarities between the functions of VACV E3 and

the NS1 dsRNA-binding protein of influenza virus. NS1 blocks

IRF3 phosphorylation and IFNb mRNA induction [56]. In

addition, NS1 is an inhibitor of PKR, suggesting that dsRNA

sequestration is a strategy used by both RNA and DNA viruses to

evade the IFN induction and action [57]. Furthermore NS1B

binds and blocks ISG15 protein inhibiting the ISGylation. The

region of the NS1B protein that is required for this inhibition

includes the domain that binds dsRNA. VACV may have a similar

mechanism of influenza NS1 to evade ISG15 action as well.

We conclude that the cellular ISG15 protein has an essential

role in VACV replication, acting as a negative feedback regulator

of the cytokine signalling pathway and regulating in this way the

innate response. VACV has therefore developed a mechanism to

counteract this antiviral host response through E3. Because

VVDE3L is not lethal to ISG15+/+ mice lacking PKR, RNase

L, and M61 [40], there must be an additional IFN-induced

antiviral pathway(s) effective against viruses, in which ISG15

should play an essential role. Understanding the host responses

triggered by ISG15 and virus mechanisms of escape is necessary

for development of therapies against important human pathogens.
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Materials and Methods

Cells, viruses and infection conditions
HeLa cells (ATCC) were cultured in Dulbecco’s medium

(DMEM) supplemented with 10% newborn bovine serum (NCS)

and antibiotics (Gibco, http://www.invitrogen.com). ISG152/2

cells and their wild type counterpart were generated by Osiak et al

[58] and cultured in DMEM with 10% fetal calf serum (FCS).

PKR2/2 and their wild type counterpart [59] were cultured in

Dulbecco’s modified Eagle’s medium with 10% FCS. VACV wild-

type Western Reserve strain (WR) was grown on monkey BSC-40

cells (African green monkey kidney cells), purified by sucrose

gradient banding as described (24) and titrated in BSC-40 cells.

MVA and NYVAC, as well as VACV mutant of E3L were grown in

Baby hamster kidney cells (BHK-21), sucrose purified and titrated in

BHK-21 cells by immunostaining as previously described [60].

VACV constructs deleted of E3L (VVDE3L), of the first 83 N-

terminal amino acids of E3L (VVE3LD83N), or of the last 26 C-

terminal amino acids of E3L (VVE3LD26C) were kindly provided

by B. L. Jacobs (University of Arizona, USA) [44,61].

Quantitative Real-Time RT-PCR
RNA (1 mg) was reverse-transcribed using the Superscript first-

strand synthesis system for reverse transcription-PCR (RT-PCR)

(http://www.invitrogen.com). A 1:40 dilution of the RT reaction

mixture was used for quantitative PCR. Primers and probe sets

used to amplify ISG15 was purchased from (http://www.

appliedbiosystems.com). RT-PCR reactions were performed

according to Assay-on-Demand, optimized to work with TaqMan

Universal PCR MasterMix, No AmpErase UNG, as described

[28]. All samples were assayed in duplicate. Threshold cycle (Ct)

values were used to plot a standard curve in which Ct decreased in

linear proportion to the log of the template copy number. The

correlation values of standard curves were always .99%.

Cellular viability assay
Cells were grown in 96-well plates to confluency and infected

with different VACV or VVDE3L viruses at the indicated

multiplicity of infection (MOI) from 0.01 to 10 PFU/cell. At 24

hours post-infection (hpi), the medium was removed and cytolysis

was determined by crystal violet staining as described previously

[62]. The percentage of viable cells was calculated assuming the

survival rate of uninfected cells to be 100%.

Immunoblotting
Murine embryonic fibroblasts (MEFs) were infected in 6-well

plates with WR, or MVA, or NYVAC, or VVDE3L and collected

at indicated hpi in lysis buffer (50 mM Tris-HCl pH 8.0, 0.5 M

NaCl, 10% NP40, 1% SDS). Equal amounts of protein lysates

(100 mg) were separated by 14% or 8% SDS-polyacrylamide gel

electrophoresis (SDS-PAGE), transferred to nitrocellulose mem-

branes and incubated with antibodies, anti-ISG15 [58], -actin

(http://www.sigmaaldrich.com), -E3 (kindly provided by B.L.

Jacobs) followed by peroxidase-conjugated mouse or rabbit

secondary antibodies. For the in vivo measurement of ISG15,

parental or ISG152/2 mice were infected with WR, VVDE3L,

VVE3LD83N or VVE3LD26C at the multiplicity indicated. Lung

samples were homogenized and mixed with SDS loading buffer

and boiled for 10 min before Western blot analysis. ISG15

expression was detected as previously described with a rabbit

antiserum against ISG15 [58] followed by peroxidase-conjugated

rabbit secondary antibodies. Blots were developed using ECL

(http://www.amersham.com).

Immunoprecipitation analysis
Confluent MEF cells grown in 100 mm plates were treated with

mouse IFN-a (100 units/ml) during 10 hrs and infected at

3 PFU/cell for 16 h with the recombinant viruses indicated and

cells were collected and lysed and clarified supernatant was

incubated with 20 mg of anti-mouse IP beads (http://www.

ebioscience.com) previously incubated with a rabbit antiserum

against ISG15 [58] or against E3 respectively. Immunoprecipitates

were analyzed by SDS-PAGE followed by immunoblot with the

antibody anti-E3 (kindly provided by B.L. Jacobs). The RNase

treatment consisted in an incubation of the IP extracts with 10 mg

of RNAse for 15 min at room temperature.

Viral inoculation of mice and sample collection
The origin of ISG152/2 mice has been described [58].

ISG152/2 and control wild type (WT) C57/BL-6 mice ( 6 to 10

weeks old) were immunized i.n in 25 ml PBS with VACV at 56106

or 105 PFU/mouse or with VVDE3L or VVE3LD83N or

VVE3LD26 at 56108 PFU/mouse. The i.p inoculation was with

VACV at 26107 or VVDE3L at 108 PFU/mouse in 200 ml PBS.

Animals were sacrificed at various times post-inoculation and spleen,

liver, ovaries and lungs were removed, washed with sterile PBS, and

stored at 270uC. Serum was obtained by retro-orbital bleedings 3

hours post-inoculation and was allowed to clot 1 hour at 37uC; after

leaving samples at 4uC overnight, they were spun down in a

microcentrifuge, and serum removed and stored at 220uC.

Cytokine Analysis
Secreted IL-6 from serum of mice infected i.p with WR or

VVDE3L at the indicated days was measured with the quantitative

human IL-6 (BD Biosciences) according to the manufacturer’s

instructions. Captured IL-6 was quantified at 450 nm with a

spectrophotometer. Triplicate samples were measured in two

independent experiments. Alternatively, serum cytokine levels

were analyzed for IL-6, TNF, IL-10, MCP-1, IFN-c, and IL-12

p 70 by using the cytometric bead array mouse inflammation kit as

indicated by the manufacturer (http://www.BDBiosciences.com).

Transfection of ISG15 siRNA
ISG15-synthetic siRNA (s79221 and s79223), scrambled siRNA

(used as a negative control; s4390843) and GAPDH siRNA (used

as a positive control; s4390849) were purchased from Applied

Biosystems and resuspended in RNase-free H2O. Transfection of

siRNAs targeting each mRNA was carried out according to the

manufacturer’s instructions with some modifications. Murine

ISG15+/+, PKR+/+ and PKR2/2 embryonic fibroblasts were

plated in 12-well plates 18 to 24 h before transfection. On the day

of transfection, RNA-lipid complexes were introduced into each

well of cells (20 nM RNA) by using siPORT Amine transfection

reagent (http://www.ambion.com). The effect of specific siRNAs

on target protein abundance was assessed by Western-blot.

Twenty-four hours after transfection, siRNA-treated and non-

treated control cells were mock-infected or infected with different

WR or VVDE3L viruses at 0.1 PFU/cell and CPE were visualized

by phase-contrast microscopy at the indicated times p.i.

Ectopic ISG15 protein expression by retroviral
transduction

ISG15+/+ and ISG152/2 MEFs were transduced with high-

titer viral supernatants corresponding to the pISG15-ires-GFP

retroviral vector obtained as described [63]. Supernatants were

collected at 48 h after transfection, filtered through a 0.45-mm-

pore-size filter, and supplemented with complete DMEM medium
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+10% FCS before addition to growing MEFs. This protocol was

repeated each 12 hours three times in presence of polybrene. The

transduction efficiency was evaluated by Western-blot. Twenty-

four hours after retroviral infection treated and non-treated

control cells were mock-infected or infected with different VACV

or VVDE3L viruses at 0.1 PFU/cell and and CPE were visualized

by phase-contrast microscopy at the indicated times p.i.

Immunofluorescence
PKR+/+ and PKR 2/2 embryonic murine fibroblasts

cultured on coverslips were infected with the viruses indicated.

At 16 hpi cells were washed with phosphate-buffered saline (PBS),

fixed with 4% paraformaldehyde (PFA) and permeabilized

(10 min, room temperature) with 0.1% Triton X-100 in PBS,

washed, and blocked with 20% bovine serum albumin (BSA) in

PBS. Cells were incubated (1 h, 37uC) with anti-ISG15, -E3

(mouse antibody kindly provided by B. Moss); coverslips were

washed extensively with PBS and further incubated (1 h, 37uC)

with ToPro (http://www.molecularprobes.com) and appropriate

fluorescein- or Texas Red-conjugated isotype-specific secondary

antibodies. After washing with PBS, coverslips were mounted on

microscope slides using Mowiol (http://www.calbiochem.com).

Images were obtained using a Bio-Rad Radiance 2100 Confocal

Laser microscope (http://www.biorad.com).

Immunohistochemistry
Formalin-fixed lung from mice mock-infected or infected with

WR, VVDE3L, VVE3LN83N or VVE3LN26 was resected,

sectioned and stained with both hematoxilin and eosin as

previously described [64].

Supporting Information

Figure S1 Effect of ISG15 overexpression on virus citotoxicity

after infection of MEFs with virulent and E3L deletion VACV

mutant viruses. A–B. ISG152/2 or ISG15+/+ MEFs were

transduced with high-titer viral supernatants corresponding to the

pISG15-ires-GFP retroviral vector. CPE was visualized by phase-

contrast microscopy at the indicated times p.i.

Found at: doi:10.1371/journal.ppat.1000096.s001 (0.68 MB PDF)

Table S1 Levels of ISG15 mRNA detected by quantitative real-

time RT-PCR after infection of HeLa cells with several VACV

mutants.

Found at: doi:10.1371/journal.ppat.1000096.s002 (0.02 MB PDF)
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