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Abstract. Glioblastoma multiforme (GBM) is a common 
malignant tumor type of the nervous system. The purpose 
of the present study was to establish a regulatory network of 
immune‑associated genes affecting the prognosis of patients 
with GBM. The GSE4290, GSE50161 and GSE2223 datasets 
from the Gene Expression Omnibus database were screened 
to identify common differentially expressed genes (co‑DEGs). 
A functional enrichment analysis indicated that the co‑DEGs 
were mainly enriched in cell communication, regulation of 
enzyme activity, immune response, nervous system, cytokine 
signaling in immune system and the AKT signaling pathway. 
The co‑DEGs accumulated in immune response were then 
further investigated. For this, the intersection of those 
co‑DEGs and currently known immune‑regulatory genes 
was obtained and a differential expression analysis of these 
overlapping immune‑associated genes was performed. A risk 
model was established using immune‑regulatory genes that 
affect the prognosis of patients with GBM. The risk score was 
significantly associated with the prognosis of patients with 
GBM and had a significant independent predictive value. The 
risk model had high accuracy in predicting the prognosis of 
patients with GBM [area under the receiver operating charac‑
teristic curve (AUC)=0.764], which was higher than that of a 
previously reported model of prognosis‑associated biomarkers 
(AUC=0.667). Furthermore, an interaction network was 
constructed by using immune‑regulatory genes and transcrip‑
tion factors affecting the prognosis of patients with GBM and 
the University of California Santa Cruz database was used to 
perform a preliminary analysis of the transcription factors 

and immune genes of interest. The interaction network of 
immune‑regulatory genes constructed in the present study 
enhances the current understanding of mechanisms associated 
with poor prognosis of patients with GBM. The risk score 
model established in the present study may be used to evaluate 
the prognosis of patients with GBM.

Introduction

Glioblastoma multiforme (GBM) is one of the most malig‑
nant tumor types of the central nervous system, with short 
median survival and poor prognosis. The major treatment is 
combined therapy, including surgery, radiotherapy and chemo‑
therapy (1‑3). In spite of these combinations, the efficacy of 
GBM treatments remains unsatisfactory, placing a serious 
burden on society and affected families (4).

In recent years, the significant role of the immune micro‑
environment in tumors has been increasingly elucidated. 
The immune microenvironment has an important role in the 
prognosis of patients with GBM (5‑7). In the immune micro‑
environment of tumors, immune cells and stromal cells have 
an important role and affect the prognosis of patients (8‑13). 
An algorithm called ESTIMATE was designed to predict 
immune infiltration by estimating immune cells and stromal 
cells with specific expression values (14). In addition, tran‑
scription factors are able to bind to specific sequences on the 
5' end of the gene, thereby regulating gene expression (15,16). 
Transcription factors have a key role in the development of 
GBM (5,17‑19).

The era of excessive data has provided a convenient plat‑
form to explore the molecular mechanisms of various diseases. 
Microarray analysis is of great research and application value 
and has an important role in the discovery of molecular 
markers for diagnosis and prognosis, as well as novel drug 
targets (20). In the present study, to further investigate the 
association between transcription factors and immune‑regu‑
latory genes, data from the Assay for Transposase‑Accessible 
Chromatin (ATAC) database from patients with GBM were 
analyzed and peak coverage on chromosomes was determined. 
Finally, an interaction network of the prognosis‑associated 
immune‑regulatory genes and transcription factors was estab‑
lished, providing a possible immune gene regulatory network 
for genes associated with poor prognosis in GBM.
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Materials and methods

Data sources. Gene Expression Omnibus (GEO) is a public 
functional genomic database of integrated gene expres‑
sion data, gene chips and microarrays. The gene expression 
datasets used in the present study were downloaded from the 
GEO online platform (https://www.ncbi.nlm.nih.gov/geo/) (21). 
The selected datasets were GSE2223, including 4 normal 
glioma samples and 27 GBM samples, GSE50161, including 
13 normal samples and 34 GBM samples, and GSE4290, 
including 23 normal glioma samples and 81 GBM samples. 
To further verify the association between immune‑regulatory 
genes and GBM, the level‑3 gene expression profile and clinical 
data of patients with GBM were downloaded from The Cancer 
Genome Atlas (TCGA) database (Data release/version 17.0; 
https://portal.gdc.cancer.gov/). The immune score and stromal 
score were determined from data obtained from the database 
using the ESTIMATE algorithm (14). From the TCGA data‑
base, a small number of non‑cancerous control tissues from 
subjects without GBM were available. The most common sites 
of GBM are the frontal lobe, temporal lobe and parietal lobe. 
In order to reduce bias, the corresponding 102 normal samples 
were downloaded from the University of California Santa 
Cruz (UCSC) database (https://xena.ucsc.edu/) and the data 
were then corrected using the ‘removevBatchEffect’ func‑
tion of the limma package (22). ATAC with high‑throughput 
sequencing (ATAC‑seq) data for patients with GBM were 
downloaded from the ATAC database (https://gdc.cancer.
gov/about‑data/publications/ATACseq‑AWG).

Dif ferentially expressed genes (DEGs). R software 
(version 3.5.1) was used to analyze the three datasets GSE2223, 
GSE50161 and GSE4290, as well as the TCGA and GTEX 
data. Screening criteria were set to P<0.05 and log|fold change 
(FC)| >1, and finally, the common DEGs (co‑DEGs) of the 
datasets were obtained.

Retrieval of immune gene and transcription factor data. 
The enrichment analysis of co‑DEGS from the three 
GEO datasets focused on results associated with immuniza‑
tion. For further study, tumor‑associated immune genes and 
transcription factors were downloaded from the IMMPORT 
database (https://www.immport.org/) and the Cistrome data‑
base (http://cistrome.org/). The DEGs among the downloaded 
immune genes and transcription factors were obtained using 
the screening conditions of P<0.05 and log|FC| >0.58 (since 
there were fewer eligible results when setting log|FC| >1 in the 
present study, log|FC| >0.58 was used).

Enrichment analysis of co‑DEGs. The co‑DEGs from the 
GEO datasets were uploaded to the Funrich software (23) for 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
enrichment analysis and the corresponding functional terms 
and pathways were obtained. P<0.05 was considered to indi‑
cate statistical significance.

Immune gene and transcription factor analysis. The intersec‑
tion of the co‑DEGs from GEO, the DEGs from TCGA and the 
immune‑associated genes was used to perform a subsequent 
differential expression analysis. Pearson correlation analysis 

between the differentially expressed immune genes and tran‑
scription factors with the prognosis of GBM was then performed 
with a correlation coefficient of the absolute value >0.4 and 
P<0.05 considered to indicate statistical significance.

Construction of Cox risk model. First, the association of immune 
genes with the prognosis of patients GBM was determined using 
univariate Cox regression analysis and a total of 17 prognostic 
genes were obtained. Subsequently, multivariate Cox regression 
analysis was used to construct a best‑fitting prognostic model 
and a risk score formula was then established by including each 
of these selected genes [in total, seven key genes were selected 
according to the minimum criteria, these genes were calcium 
binding protein a10 (S100A10), mitogen‑activated protein 
kinase 3 (MAPK3), serpin family A member 3 (SERPINA3), 
Fc fragment of IgG receptor IIb (FCGR2B), endothelin receptor 
type A (EDNRA) and p21 activated kinase 1 (PAK1) and the 
patients were divided into high/low risk score groups]. Patients 
were classified into high‑ or low risk‑groups with the median 
risk score as the cutoff.

Multivariate analysis. To determine whether the immune risk 
score independently affects the survival of patients with GBM, 
univariate and multivariate Cox proportional hazards model 
analyses of the influence of risk scores and clinical features of 
patients with GBM on survival were performed.

Interaction network. In the present study, the ‘corrplot’ 
package of R software was used for interaction network 
correlation analysis and a correlation coefficient >0.4 and 
P<0.001 were considered to indicate a significant correlation. 
Subsequently, Cytoscape software (24) was used to construct 
an interaction network for the immune genes associated with 
the prognosis of patients with GBM, differentially expressed 
transcription factors and immune cells from the TIMER data‑
base (https://cistrome.shinyapps.io/timer/).

ATAC‑seq data analysis. ATAC standardized matrix data were 
downloaded from the ATAC database and through ‘TxDb.
Hsapiens’, ‘UCSC.hg38.knownGene, org.Hs.eg.db’, ‘cluster‑
Profiler’, ‘karyoploteR’ and ‘ChIPseeker’ package analyses, 
the distribution of ATAC‑seq peaks on chromosomes was 
determined. To further assess whether Snail family transcrip‑
tional repressor 2 (SNAI2)/MYC and C‑X‑C motif chemokine 
receptor 4 (CXCR4)/Serpin family A member 3 (SERPINA3) 
may have binding sites, they were analyzed through the UCSC 
Genome Browser tool (minimum score=400).

Correlation analysis between risk score and immune cells. The 
TCGA expression data of immune cells of patients with GBM 
were downloaded from the TIMER database. The ‘corrplot’ 
package of R software was used to perform a Pearson correlation 
analysis of risk scores with the immune cells infiltration level.

Statistical analysis. All statistical analyses were performed 
using R software (v. 3.5.1). An independent‑samples t‑test was 
used for comparison between groups. The Cox proportional 
hazards regression model was used for logistic regression. 
Missing values from downloaded datasets were filled using 
multiple imputation methods (25).
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Results

Identification of DEGs. The datasets from the GSE2223, 
GSE50161 and GSE4290 gene chips were processed using 

R software. The screening conditions were set to log|FC|>1 
and P<0.05, and 1,420 co‑DEGs were obtained (Fig. 1A). 
Furthermore, 48 immune‑associated genes were obtained 
after the DEGs and the immune‑associated genes were taken 

Figure 1. Screening of prognosis‑related immune genes and differentially expressed transcription factors and construction of risk model. (A) Venn diagram 
of common DEGs among the GSE4290, GSE50161 and GSE2223 gene expression datasets. (B) Venn diagram of the intersection of DEGs and known 
immune‑associated genes. (C) Volcano plots displaying differential expression analysis of immune‑associated genes and (D) transcription factors. Red indi‑
cates high expression and blue indicates low expression. Screening conditions were set to P<0.05 and log|FC| >0.58. (E) Univariate Cox regression analysis 
identified 17 immune‑associated genes affecting the prognosis of patients with GBM and the HR of most genes was >1. (F) Risk scoring model for immune 
gene construction. Red indicates death and blue denotes survival. (G) Impact of high and low risk scores on the prognosis of patients with GBM. A higher risk 
score indicates a worse prognosis. (H) Receiver operating characteristic curve of the risk scoring model (area under the curve=0.764). DEG, differentially 
expressed gene; GEO, gene expression omnibus; GBM, glioblastoma multiforme; TCGA, The Cancer Genome Atlas; FC, fold change; FDR, false discovery 
rate; HR, hazard ratio; ROC, receiver operating characteristic; AUC, area under the ROC curve; CXCL10, C‑X‑C Motif Chemokine 10; S100A10, S100 Calcium 
Binding Protein A10; TLR2, Toll like receptor 2; TNFAIP3, TNF Alpha Induced Protein 3; LYZ, Lysozyme; MAPK3, Mitogen‑Activated Protein Kinase 3; 
TRIM22, Tripartite Motif Containing 22; SERPINA3, Serpin family A member 3; CXCR4, C‑X‑C motif chemokine receptor 4; RNASE2, Ribonuclease A 
Family Member 2; FCGR2B, Fc fragment of IgG receptor IIb; TNC, Tenascin C; EDNRA, Endothelin Receptor Type A; ADM, Adrenomedullin; TNFRSF12A, 
TNF Receptor Superfamily Member 12A; ITGB2, Integrin Subunit Beta 2; PAK1, P21 (RAC1) Activated Kinase 1.
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together (Fig. 1B). The differentially expressed immune‑asso‑
ciated genes and transcription factors (27 differentially 
expressed transcription factors) are presented in Fig. 1C and D.

Enrichment analysis. Enrichment analysis of co‑DEGs 
indicated that the major functional terms and pathways 
were cell communication, regulation of enzyme activity, 
immune response, nervous system, p38 signaling mediated 
by mitogen‑activated protein kinase‑activated protein kinase 
(MAPKAP) kinases, cytokine signaling in immune system 
and PI3K signaling events mediated by AKT (Fig. 2). Gene 
set variation (GSVA) enrichment analysis of CXCR4 and 
SERPINA3 indicated a significant positive correlation with 
AKT signaling pathways, which were mutually verified in the 
TCGA and Chinese Glioma Genome Atlas (CGGA) databases 
(http://www.cgga.org.cn/; Fig. S1).

Evaluation of risk models. In total, 14 immune genes asso‑
ciated with GBM prognosis were obtained by univariate 
COX regression analysis (Fig. 1E), A risk‑score formula 
was created based on the expression values of these six key 
genes (Fig. 1F), as follows: Risk score = (0.08 x expression 
value of S100A10) + (‑0.466 x expression value of MAPK3) 
+ (0.095 x expression value of SERPINA3) + (0.071 x expres‑
sion value of FCGR2B) + (‑0.154 x expression value of 
EDNRA) + (0.253 x expression value of PAK1). Finally, the 
patients were divided into high/low risk groups. The prognosis 
of the two groups was significantly different, where the high 
risk group was worse than the low risk group (Fig. 1G). The risk 

model constructed from prognosis‑associated immune‑regula‑
tory genes had high accuracy in predicting the prognosis of 
patients with GBM (AUC=0.764) (Fig. 1H), which was higher 
than that of a previously reported model constructed from 
prognosis‑associated biomarkers (AUC=0.667; Fig. S2) (10).

Interaction network. In the present study, Cytoscape soft‑
ware was used to construct an interaction network for the 
immune‑regulatory genes (associated with the prognosis of 
GBM), transcription factors and immune cells (Fig. 3A). The 
circles indicate the immune‑regulatory genes, the diamonds 
indicate the transcription factors and the squares indicate the 
immune cells. Red nodes indicate high expression and blue 
indicates low expression. Red lines indicate positive regula‑
tion and blue lines indicate negative regulation. There were 
41 nodes in the network, where CXCR4 and SERPINA3 were 
found to be the key core node genes. Survival analysis identi‑
fied four transcription factors linked to immune‑regulatory 
genes that affected the prognosis of GBM, namely BRF1, 
MYC, SNAI2 and SOX4 (Fig. 3B‑E, respectively).

Clinical data of patients with GBM. From the GBM patient 
data that were downloaded (Table I), patients with no survival 
information were removed and the 417 remaining patients were 
analyzed. The cohort comprised 248 male and 169 female 
patients with an age range of 10‑89 years, an immune score 
of ‑1,448 to 3,210 and a stromal score of ‑3,055 to 2,016. 
The classification was divided into four subtypes as follows: 
Classical (30.7%), mesenchymal (29.3%), neural (15.3%) 

Figure 2. Enrichment analysis of co‑DEGs in the Gene Expression Omnibus datasets. Gene Ontology terms in the categories (A) CC, (B) MF and (C) BP. 
(D) Kyoto Encyclopedia of Genes and Genomes pathways. The results indicated that the co‑DEGs were accumulated in the immune microenvironment 
and the AKT signaling pathway. co‑DEG, common differentially expressed gene; CC, cellular component; MF, molecular function; BP, biological process; 
MHC, major histocompatibility complex; MAPKAP, MAP kinase‑activated protein kinase.
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and proneural (24.7%). Among the patients, 272 received 
chemotherapy and 140 did not; furthermore, 365 received 
radiotherapy and 52 did not. The median follow‑up duration 
was 12.8 months (range, 0‑129.4 months).

Analysis of the association between risk score and character‑
istics of patients with GBM. The association between the risk 
score and the characteristics of patients with GBM is presented 
in Fig. 4A‑F. The risk score was significantly associated with 
the prognosis, stromal score and immune score of patients 

with GBM. Multivariate analysis indicated that the risk score 
was an independent predictive factor of poor prognosis in 
patients with GBM (Fig. 4B). High risk scores predicted 
adverse outcomes in patients with GBM. The immune score 
and stromal score were significantly associated with the prog‑
nosis of patients with GBM (Fig. 4E and F).

ATAC data analysis and search for upstream transcription 
factors of SERPINA3 and CXCR4. Analysis of the ATAC data 
indicated that, in addition to the Y chromosome, there was a 

Figure 3. Search for transcription factors related to immune genes and prognosis, and construction of interaction network. (A) Interaction network of prog‑
nosis‑associated immune genes, transcription factors and immune cells. The circles indicate the immune genes, the diamonds indicate transcription factors, 
red nodes indicate high expression and blue nodes indicate low expression, red lines indicate positive regulation, blue lines indicate negative regulation and 
gray indicates no obvious correlation; red/blue dashed lines indicate possible positive/negative effects. (B‑E) Survival analysis identified four transcription 
factors linked to immune genes affecting the prognosis of glioblastoma multiforme. (B) There were BRF1, (C) MYC, (D) SNAI2 and (E) SOX4. BRF1, BRF1 
RNA polymerase III transcription initiation factor subunit; MYC, MYC proto‑oncogene, BHLH transcription factor; SNAI2, Snail family transcriptional 
repressor 2, SOX4, SRY‑Box Transcription Factor 4.
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large number of peaks in other chromosomes. Further analysis 
suggested that the most binding sites were situated near the 
promoter (≤1 kb), and in the heatmap, a large number of peaks 
were enriched near the transcription start site (TSS), while the 
peak enrichment gradually decreased with the distance from 
the TSS. At the same time, most peaks existed in multiple 
regions, consistent with previous studies (Fig. 4G‑I). In a 
further search for possible upstream transcription factors of 
SERPINA3 and CXCR4, possible transcription factors were 
predicted using the UCSC database, and MYC and SNAI2 
were identified, which were also associated with the prognosis 
of patients with GBM. Further analysis indicated that the 
promoter regions of SERPINA3 had prospective binding peak 
sites for MYC and CXCR4 had prospective binding peak sites 
for SNAI2 (Fig. 5).

Correlation analysis between risk score and immune cells. 
The ‘corrplot’ package of R software was used to determine 
the correlation of the risk scores with immune cells. The 
results indicated that the risk score was positively correlated 
with CD4 T cells, dendritic cells, neutrophil cells and macro‑
phages and negatively correlated with CD8 T cells, but the 
correlation with B‑cells did not reach statistical significance 
(Fig. 6).

Discussion

In the present study, data of patients with GBM were down‑
loaded from the GEO, TCGA, TIMER, IMMPORT and 

CISTROME databases. Co‑DEGs were mainly enriched 
in cell communication, regulation of enzyme activity, 
immune response, nervous system, p38 signaling mediated 
by MAPKAP kinases, cytokine signaling in the immune 
system and PI3K signaling events mediated by AKT. The 
further GSVA enrichment analysis of CXCR4 and SERPINA3 
indicated a positive association with macrophage activation, 
differentiation and regulation of the AKT signaling pathway.

The present study focused on the tumor immune microen‑
vironment. In the immune microenvironment, immune cells 
and stromal cells have a key role and affect the prognosis of 
patients with cancer (14). In the present study, the risk scores 
were different between subgroups of patients with high and 
low immune scores and stromal scores, and the risk score 
was able to be used as an independent risk factor for the prog‑
nosis of patients with GBM with statistical significance, and 
immune scores and stromal scores also affected the prognosis 
of GBM, which was consistent with previous studies (8,9). 
In the present study, a total of 48 immune‑associated genes 
were used to perform a prognostic analysis of differentially 
expressed immune‑regulatory genes, yielding 17 genes 
significantly associated with the prognosis of patients with 
GBM. The risk model constructed from prognosis‑associated 
immune‑regulatory genes had high accuracy in predicting 
the prognosis of patients with GBM (AUC=0.764), which was 
higher than that of a previously reported model constructed 
from prognosis‑associated biomarkers (AUC=0.667) (10). 
This result suggested that the immune genes screened in 
the present study were able to better reflect the prognosis of 
patients with GBM and patients with a high‑risk score had a 
worse prognosis than those with a lower risk score. For further 
investigation, an interaction network was constructed from 
prognosis‑associated immune genes, differentially expressed 
transcription factors and immune cells. At the same time, 
differentially expressed transcription factors were used to 
predict the prognosis of patients with GBM, indicating that 
BRF1, MYC, SNAI2 and SOX4 affected the survival of 
patients with GBM. Combined with the results of the analysis 
of the UCSC database, SNAI2 and MYC appeared promising, 
and it was predicted that SNAI2 is able to positively regulate 
the immune genes CXCR4, and that MYC is able to positively 
regulate the immune genes SERPINA3. CXCR4 is a CXC 
chemokine receptor specific for stromal cell‑derived factor‑1; 
the protein has 7 transmembrane regions and is located on the 
cell surface (26). SNAI2 encodes a member of the Snail family 
of C2H2‑type zinc finger transcription factors (27). Previous 
studies indicated that CXCR4 affects the proliferation, inva‑
sion and angiogenesis of glioma cells by regulating the AKT 
signaling pathway (28‑30), which was consistent with the results 
of the present enrichment analysis. SNAI2 may be used as a 
GBM marker, which participates in the epithelial‑to‑mesen‑
chymal transition and thus affects drug resistance (31,32); it 
may also enhance the development of tumors by affecting the 
AKT signaling pathway (32‑34). However, whether SNAI2 is 
able to regulate CXCR4 expression, affect the ATK signaling 
pathway and thus affect the phenotype of glioma remains to 
be elucidated. The protein encoded by SERPINA3 is a plasma 
protease inhibitor and member of the serine protease inhibitor 
class. Serine protease has an important role in the development 
of glioma, which may promote the migration and invasion of 

Table I. The Cancer Genome Atlas Glioblastoma patient char‑
acteristics.

Clinical characteristics Total (n=417) %

Age (10‑89 years)
  <75 years 366 87.8
  ≥75 years   51 12.2
Sex
  Male 248 59.5
  Female 169 40.5
Immune score
  ‑1,448‑3,210  417 100
Stromal score
  ‑3,055‑2,016  417 100
Radiotherapy
  Yes 365 87.5
  No   52 12.5
Chemotherapy
  Yes 272 66
  Yes 140 34
Subtype
  Classical 128 30.7
  Mesenchymal 122 29.3
  Neural   64 15.3
  Proneural 103 24.7
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glioma, but serine protease inhibitor has the opposite role (35). 
The present study indicated that circulating SERPINA3 may 
be a marker in GBM and promote the invasion of glioblastic 
stem cells (36,37), and a positive correlation with the AKT 
signaling pathway was identified in the GSVA enrich‑
ment analysis. However, the specific mechanisms remain 
elusive. MYC is a proto‑oncogene and encodes a nuclear 

phosphoprotein that has a role in cell cycle progression, apop‑
tosis and cellular transformation of glioma (38,39). A negative 
regulatory association between MYC and SERPINA3 was 
indicated in the regulatory network generated in the present 
study. In GBM, MYC is mainly highly expressed, and it may 
therefore be speculated that high expression of MYC promotes 
the development of GBM through inhibition of SERPINA3, 

Figure 4. Analysis of clinical characteristics and transcription factor binding sites of GBM. (A) Univariate and (B) multivariate Cox regression analysis of 
risk scores. The results suggested that the risk score was of independent prognostic value for patients with GBM. (C) High immune and (D) high stromal 
scores were associated with a higher risk for patients with GBM. The immune score, stromal score and age were stratified into high and low groups using the 
median value as a cutoff. (E and F) Survival analysis of patients with GBM stratified by (E) the immune score and (F) stromal score. (G) Analysis of data from 
the Assay for Transposase‑Accessible Chromatin database indicated that, in addition to the Y chromosome, there were a large number of peak sites in other 
chromosomes. (H) Further analysis indicated that the most binding sites were situated near the promoter (I) between 0‑1 kbp, a large number of peaks were 
enriched near the TSS, with gradually less enrichment of peaks further away from the TSS. P<0.05 was considered to indicate statistical significance. TSS, 
transcription start site; GBM, glioblastoma multiforme; UTR, untranslated region; Chr, chromosome.
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which requires further verification. The present study aimed 
to explore whether binding sites exist between SNAI2 and 
CXCR4, and between MYC and SERPINA3. The results indi‑
cated that there was a large number of peaks on chromosomes 

of patients with GBM, suggesting that there were numerous 
transcription factor binding sites on the chromosome and 
most binding sites were located near the promoter (≤1 kb). 
The UCSC database was used for analysis, suggesting that the 

Figure 5. Prediction of binding sites of transcription factors and mRNA in UCSC database. (A) Analysis of the University of California Santa Cruz database 
revealed SNAI2 peak binding peaks in the promoter regions of the sense sequence in CXCR4 and (B) MYC peak binding peaks in the promoter regions of the 
sense sequence in SERPINA3, suggesting binding sites between them. CXCR4, C‑X‑C motif chemokine receptor 4; SERPINA3, Serpin family A member 3; 
SNAI2, Snail family transcriptional repressor 2.

Figure 6. Correlation analysis between risk score and immune cells. The results suggested that the risk score was positively correlated with (A) B cells, 
(B) CD4 T cells, (D) dendritic cells, (E) macrophages and (F) neutrophils, and (C) negatively correlated with CD8 T cells (P<0.05). Cor, correlation coefficient.
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CXCR4 and SERPINA3 gene sequences had peaks near the 
promoter of the transcription factor SNAI2 and MYC, respec‑
tively, indicating that there were binding sites between them.

Finally, the association between the risk score and immune 
cells was analyzed, revealing that the risk score was linked 
to the immune microenvironment and that the risk score was 
positively correlated with CD4 T cells and negatively correlated 
with CD8 T cells. This suggests that a high‑risk score may be 
associated with a secondary elevation of CD4 T cells, dendritic 
cells and macrophages, as well as a secondary reduction of 
CD8 T cells. Previous studies have indicated that CD8 T cells 
and dendritic cells have a positive role in the development of 
a normal body (40‑44). This may indicate that an increase in 
the risk score may cause a secondary decrease in CD8 T cells, 
thereby promoting tumor development. It may be hypothesized 
that high expression of immune‑regulatory genes, including 
SERPINA3 and CXCR4, increased the risk score of patients 
with GBM, which led to poor prognosis, as well as secondary 
changes in immune cells in the immune microenvironment, 
including a secondary decline of CD8 T cells. However, this 
requires to be confirmed by future studies.

In conclusion, the immune gene interaction network 
constructed in the present study helps to understand the 
mechanisms associated with poor prognosis of patients with 
GBM. A risk scoring system was established in the present 
study, and high‑risk scores indicated poor prognosis of patients 
with GBM and may be used as an independent risk factor for 
assessing the prognosis of patients with GBM.
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