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Interaction network of immune-associated genes
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Abstract. Glioblastoma multiforme (GBM) is a common
malignant tumor type of the nervous system. The purpose
of the present study was to establish a regulatory network of
immune-associated genes affecting the prognosis of patients
with GBM. The GSE4290, GSE50161 and GSE2223 datasets
from the Gene Expression Omnibus database were screened
to identify common differentially expressed genes (co-DEGs).
A functional enrichment analysis indicated that the co-DEGs
were mainly enriched in cell communication, regulation of
enzyme activity, immune response, nervous system, cytokine
signaling in immune system and the AKT signaling pathway.
The co-DEGs accumulated in immune response were then
further investigated. For this, the intersection of those
co-DEGs and currently known immune-regulatory genes
was obtained and a differential expression analysis of these
overlapping immune-associated genes was performed. A risk
model was established using immune-regulatory genes that
affect the prognosis of patients with GBM. The risk score was
significantly associated with the prognosis of patients with
GBM and had a significant independent predictive value. The
risk model had high accuracy in predicting the prognosis of
patients with GBM [area under the receiver operating charac-
teristic curve (AUC)=0.764], which was higher than that of a
previously reported model of prognosis-associated biomarkers
(AUC=0.667). Furthermore, an interaction network was
constructed by using immune-regulatory genes and transcrip-
tion factors affecting the prognosis of patients with GBM and
the University of California Santa Cruz database was used to
perform a preliminary analysis of the transcription factors
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and immune genes of interest. The interaction network of
immune-regulatory genes constructed in the present study
enhances the current understanding of mechanisms associated
with poor prognosis of patients with GBM. The risk score
model established in the present study may be used to evaluate
the prognosis of patients with GBM.

Introduction

Glioblastoma multiforme (GBM) is one of the most malig-
nant tumor types of the central nervous system, with short
median survival and poor prognosis. The major treatment is
combined therapy, including surgery, radiotherapy and chemo-
therapy (1-3). In spite of these combinations, the efficacy of
GBM treatments remains unsatisfactory, placing a serious
burden on society and affected families (4).

In recent years, the significant role of the immune micro-
environment in tumors has been increasingly elucidated.
The immune microenvironment has an important role in the
prognosis of patients with GBM (5-7). In the immune micro-
environment of tumors, immune cells and stromal cells have
an important role and affect the prognosis of patients (8-13).
An algorithm called ESTIMATE was designed to predict
immune infiltration by estimating immune cells and stromal
cells with specific expression values (14). In addition, tran-
scription factors are able to bind to specific sequences on the
5' end of the gene, thereby regulating gene expression (15,16).
Transcription factors have a key role in the development of
GBM (5,17-19).

The era of excessive data has provided a convenient plat-
form to explore the molecular mechanisms of various diseases.
Microarray analysis is of great research and application value
and has an important role in the discovery of molecular
markers for diagnosis and prognosis, as well as novel drug
targets (20). In the present study, to further investigate the
association between transcription factors and immune-regu-
latory genes, data from the Assay for Transposase-Accessible
Chromatin (ATAC) database from patients with GBM were
analyzed and peak coverage on chromosomes was determined.
Finally, an interaction network of the prognosis-associated
immune-regulatory genes and transcription factors was estab-
lished, providing a possible immune gene regulatory network
for genes associated with poor prognosis in GBM.
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Materials and methods

Data sources. Gene Expression Omnibus (GEO) is a public
functional genomic database of integrated gene expres-
sion data, gene chips and microarrays. The gene expression
datasets used in the present study were downloaded from the
GEO online platform (https://www.ncbi.nlm.nih.gov/geo/) (21).
The selected datasets were GSE2223, including 4 normal
glioma samples and 27 GBM samples, GSE50161, including
13 normal samples and 34 GBM samples, and GSE4290,
including 23 normal glioma samples and 81 GBM samples.
To further verify the association between immune-regulatory
genes and GBM, the level-3 gene expression profile and clinical
data of patients with GBM were downloaded from The Cancer
Genome Atlas (TCGA) database (Data release/version 17.0;
https://portal.gdc.cancer.gov/). The immune score and stromal
score were determined from data obtained from the database
using the ESTIMATE algorithm (14). From the TCGA data-
base, a small number of non-cancerous control tissues from
subjects without GBM were available. The most common sites
of GBM are the frontal lobe, temporal lobe and parietal lobe.
In order to reduce bias, the corresponding 102 normal samples
were downloaded from the University of California Santa
Cruz (UCSC) database (https://xena.ucsc.edu/) and the data
were then corrected using the ‘removevBatchEffect’ func-
tion of the limma package (22). ATAC with high-throughput
sequencing (ATAC-seq) data for patients with GBM were
downloaded from the ATAC database (https:/gdc.cancer.
gov/about-data/publications/ATACseq-AWG).

Differentially expressed genes (DEGs). R software
(version 3.5.1) was used to analyze the three datasets GSE2223,
GSES50161 and GSE4290, as well as the TCGA and GTEX
data. Screening criteria were set to P<0.05 and loglfold change
(FC)I >1, and finally, the common DEGs (co-DEGs) of the
datasets were obtained.

Retrieval of immune gene and transcription factor data.
The enrichment analysis of co-DEGS from the three
GEO datasets focused on results associated with immuniza-
tion. For further study, tumor-associated immune genes and
transcription factors were downloaded from the IMMPORT
database (https:/www.immport.org/) and the Cistrome data-
base (http://cistrome.org/). The DEGs among the downloaded
immune genes and transcription factors were obtained using
the screening conditions of P<0.05 and loglFCl >0.58 (since
there were fewer eligible results when setting loglFC| >1 in the
present study, loglFCl >0.58 was used).

Enrichment analysis of co-DEGs. The co-DEGs from the
GEO datasets were uploaded to the Funrich software (23) for
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes
enrichment analysis and the corresponding functional terms
and pathways were obtained. P<0.05 was considered to indi-
cate statistical significance.

Immune gene and transcription factor analysis. The intersec-
tion of the co-DEGs from GEO, the DEGs from TCGA and the
immune-associated genes was used to perform a subsequent
differential expression analysis. Pearson correlation analysis

between the differentially expressed immune genes and tran-
scription factors with the prognosis of GBM was then performed
with a correlation coefficient of the absolute value >0.4 and
P<0.05 considered to indicate statistical significance.

Construction of Cox risk model. First, the association of immune
genes with the prognosis of patients GBM was determined using
univariate Cox regression analysis and a total of 17 prognostic
genes were obtained. Subsequently, multivariate Cox regression
analysis was used to construct a best-fitting prognostic model
and a risk score formula was then established by including each
of these selected genes [in total, seven key genes were selected
according to the minimum criteria, these genes were calcium
binding protein al0 (S100A10), mitogen-activated protein
kinase 3 (MAPK3), serpin family A member 3 (SERPINA3),
Fc fragment of IgG receptor IIb (FCGR2B), endothelin receptor
type A (EDNRA) and p21 activated kinase 1 (PAKI1) and the
patients were divided into high/low risk score groups]. Patients
were classified into high- or low risk-groups with the median
risk score as the cutoff.

Multivariate analysis. To determine whether the immune risk
score independently affects the survival of patients with GBM,
univariate and multivariate Cox proportional hazards model
analyses of the influence of risk scores and clinical features of
patients with GBM on survival were performed.

Interaction network. In the present study, the ‘corrplot’
package of R software was used for interaction network
correlation analysis and a correlation coefficient >0.4 and
P<0.001 were considered to indicate a significant correlation.
Subsequently, Cytoscape software (24) was used to construct
an interaction network for the immune genes associated with
the prognosis of patients with GBM, differentially expressed
transcription factors and immune cells from the TIMER data-
base (https://cistrome.shinyapps.io/timer/).

ATAC-seq data analysis. ATAC standardized matrix data were
downloaded from the ATAC database and through ‘TxDb.
Hsapiens’, ‘UCSC.hg38.knownGene, org.Hs.eg.db’, ‘cluster-
Profiler’, ‘karyoploteR’ and ‘ChIPseeker’ package analyses,
the distribution of ATAC-seq peaks on chromosomes was
determined. To further assess whether Snail family transcrip-
tional repressor 2 (SNAI2)/MYC and C-X-C motif chemokine
receptor 4 (CXCR4)/Serpin family A member 3 (SERPINA3)
may have binding sites, they were analyzed through the UCSC
Genome Browser tool (minimum score=400).

Correlation analysis between risk score and immune cells. The
TCGA expression data of immune cells of patients with GBM
were downloaded from the TIMER database. The ‘corrplot’
package of R software was used to perform a Pearson correlation
analysis of risk scores with the immune cells infiltration level.

Statistical analysis. All statistical analyses were performed
using R software (v. 3.5.1). An independent-samples t-test was
used for comparison between groups. The Cox proportional
hazards regression model was used for logistic regression.
Missing values from downloaded datasets were filled using
multiple imputation methods (25).



EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 61, 2021 3

A B C
GSE50161 — DEGS(GEO)
Py N g .
y N / N

4

Volcano

55

1662

—log10(fdr)
45

35

X S 159 GSE4209 S Immune genes

25

1878

GSE2223 DEGS(TCGA)

D E

pvalue Hazard ratio l

CXCL10  0.020 1.069(1.011-1.130) A

S100A10 0.001 1.159(1.058-1.269) - -

Volcano TLR2 0.035 1.112(1.008-1.227) L._.

TNFAIP3  0.041 1.126(1.005-1.263) [ W—

LYz 0.043 1.064(1.002-1.131) (=]

MAPK3 0.023

TRIM22 0.009 |l---l
SERPINA3 0.009 1.086(1.021-1.156) [

|l--l

1
1
1
1
1
0.616(0.406-0.935) ]
1
1
CXCR4  0.005 1.143(1.041-1.254)
1
1
1
o
1
1
1
1

.123(1.030—-1.225)

—log10(fdr)
40 45 50 55 60

RNASE2 0.004 1.135(1.040—-1.237) = =
FCGR2B <0.001 1.144(1.069-1.225) l [ ]

TNC 0.024 1.095(1.012-1.185) ..-..

-1.0 -05 0.0 05 1.0 EDNRA 0.030 0.893(0.806—-0.989) .--‘
ADM <0.001 1.122(1.053-1.197) o
logFC TNFRSF12A 0.002 1.197(1.066-1.345) | [E—

ITGB2 0.024 1.111(1.014-1.218) ....'

PAK1 0.029 1.294(1.027-1.630) lﬁ

T T 1 1
0.0 0.5 1.0 1.5
Hazard ratio
F G H

Risk = High risk = Low risk

Low risk subgroup  High risk subgroup
I

100 ROC curve (AUC = 0.764)
z 12 1
= 0.75 L
i . £ 2
l g s = g -
/g—;;s_, i o Dead E < Alive E . 4 é ; 7
277 - o 2 0% E:
E . © hd ! - - 2 - = T
E - o:. - - .: - oo o o
S ee > . 1 ® 02 ©° cogme oo S | T T T T T
g . e 2 - % & .
T~ o e’ s 2 3 28 000 00 02 04 06 08 1.0
3 " 01 2 3 4 5 6 7 8 9 10
.: - 3 : = Time(years) False positive rate
v T !
= 1
o - 1
2w
22 ' —— Ghighrisk{207 97 24 8 2 1 1 0 0 0 0
R s LT - o Lowrisk{207 123 58 32 21 13 11 8 3 2 1
. f" ! 01 2 3 4 5 6 7 8 9 10
T

T T T T Time(years)
o 100 200 300 400

Patients (increasing risk socre)

Figure 1. Screening of prognosis-related immune genes and differentially expressed transcription factors and construction of risk model. (A) Venn diagram
of common DEGs among the GSE4290, GSE50161 and GSE2223 gene expression datasets. (B) Venn diagram of the intersection of DEGs and known
immune-associated genes. (C) Volcano plots displaying differential expression analysis of immune-associated genes and (D) transcription factors. Red indi-
cates high expression and blue indicates low expression. Screening conditions were set to P<0.05 and loglFCl >0.58. (E) Univariate Cox regression analysis
identified 17 immune-associated genes affecting the prognosis of patients with GBM and the HR of most genes was >1. (F) Risk scoring model for immune
gene construction. Red indicates death and blue denotes survival. (G) Impact of high and low risk scores on the prognosis of patients with GBM. A higher risk
score indicates a worse prognosis. (H) Receiver operating characteristic curve of the risk scoring model (area under the curve=0.764). DEG, differentially
expressed gene; GEO, gene expression omnibus; GBM, glioblastoma multiforme; TCGA, The Cancer Genome Atlas; FC, fold change; FDR, false discovery
rate; HR, hazard ratio; ROC, receiver operating characteristic; AUC, area under the ROC curve; CXCL10, C-X-C Motif Chemokine 10; SI00A10, S100 Calcium
Binding Protein A10; TLR2, Toll like receptor 2; TNFAIP3, TNF Alpha Induced Protein 3; LYZ, Lysozyme; MAPK3, Mitogen-Activated Protein Kinase 3;
TRIM?22, Tripartite Motif Containing 22; SERPINA3, Serpin family A member 3; CXCR4, C-X-C motif chemokine receptor 4; RNASE2, Ribonuclease A
Family Member 2; FCGR2B, Fc fragment of IgG receptor IIb; TNC, Tenascin C; EDNRA, Endothelin Receptor Type A; ADM, Adrenomedullin; TNFRSF12A,
TNF Receptor Superfamily Member 12A; ITGB2, Integrin Subunit Beta 2; PAK1, P21 (RACI) Activated Kinase 1.

Results R software. The screening conditions were set to loglFCI>1

and P<0.05, and 1,420 co-DEGs were obtained (Fig. 1A).
Identification of DEGs. The datasets from the GSE2223, Furthermore, 48 immune-associated genes were obtained
GSE50161 and GSE4290 gene chips were processed using  after the DEGs and the immune-associated genes were taken
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Figure 2. Enrichment analysis of co-DEGs in the Gene Expression Omnibus datasets. Gene Ontology terms in the categories (A) CC, (B) MF and (C) BP.
(D) Kyoto Encyclopedia of Genes and Genomes pathways. The results indicated that the co-DEGs were accumulated in the immune microenvironment
and the AKT signaling pathway. co-DEG, common differentially expressed gene; CC, cellular component; MF, molecular function; BP, biological process;
MHC, major histocompatibility complex; MAPKAP, MAP kinase-activated protein kinase.

together (Fig. 1B). The differentially expressed immune-asso-
ciated genes and transcription factors (27 differentially
expressed transcription factors) are presented in Fig. 1C and D.

Enrichment analysis. Enrichment analysis of co-DEGs
indicated that the major functional terms and pathways
were cell communication, regulation of enzyme activity,
immune response, nervous system, p38 signaling mediated
by mitogen-activated protein kinase-activated protein kinase
(MAPKAP) kinases, cytokine signaling in immune system
and PI3K signaling events mediated by AKT (Fig. 2). Gene
set variation (GSVA) enrichment analysis of CXCR4 and
SERPINA3 indicated a significant positive correlation with
AKT signaling pathways, which were mutually verified in the
TCGA and Chinese Glioma Genome Atlas (CGGA) databases
(http://www.cgga.org.cn/; Fig. S1).

Evaluation of risk models. In total, 14 immune genes asso-
ciated with GBM prognosis were obtained by univariate
COX regression analysis (Fig. 1E), A risk-score formula
was created based on the expression values of these six key
genes (Fig. 1F), as follows: Risk score = (0.08 x expression
value of SI00A10) + (-0.466 x expression value of MAPK3)
+ (0.095 x expression value of SERPINA3) + (0.071 x expres-
sion value of FCGR2B) + (-0.154 x expression value of
EDNRA) + (0.253 x expression value of PAK1). Finally, the
patients were divided into high/low risk groups. The prognosis
of the two groups was significantly different, where the high
risk group was worse than the low risk group (Fig. 1G). The risk

model constructed from prognosis-associated immune-regula-
tory genes had high accuracy in predicting the prognosis of
patients with GBM (AUC=0.764) (Fig. 1H), which was higher
than that of a previously reported model constructed from
prognosis-associated biomarkers (AUC=0.667; Fig. S2) (10).

Interaction network. In the present study, Cytoscape soft-
ware was used to construct an interaction network for the
immune-regulatory genes (associated with the prognosis of
GBM), transcription factors and immune cells (Fig. 3A). The
circles indicate the immune-regulatory genes, the diamonds
indicate the transcription factors and the squares indicate the
immune cells. Red nodes indicate high expression and blue
indicates low expression. Red lines indicate positive regula-
tion and blue lines indicate negative regulation. There were
41 nodes in the network, where CXCR4 and SERPINA3 were
found to be the key core node genes. Survival analysis identi-
fied four transcription factors linked to immune-regulatory
genes that affected the prognosis of GBM, namely BRFI,
MYC, SNAI2 and SOX4 (Fig. 3B-E, respectively).

Clinical data of patients with GBM. From the GBM patient
data that were downloaded (Table I), patients with no survival
information were removed and the 417 remaining patients were
analyzed. The cohort comprised 248 male and 169 female
patients with an age range of 10-89 years, an immune score
of -1,448 to 3,210 and a stromal score of -3,055 to 2,016.
The classification was divided into four subtypes as follows:
Classical (30.7%), mesenchymal (29.3%), neural (15.3%)
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Figure 3. Search for transcription factors related to immune genes and prognosis, and construction of interaction network. (A) Interaction network of prog-
nosis-associated immune genes, transcription factors and immune cells. The circles indicate the immune genes, the diamonds indicate transcription factors,
red nodes indicate high expression and blue nodes indicate low expression, red lines indicate positive regulation, blue lines indicate negative regulation and
gray indicates no obvious correlation; red/blue dashed lines indicate possible positive/negative effects. (B-E) Survival analysis identified four transcription
factors linked to immune genes affecting the prognosis of glioblastoma multiforme. (B) There were BRF1, (C) MYC, (D) SNAI2 and (E) SOX4. BRF1, BRF1
RNA polymerase III transcription initiation factor subunit; MYC, MYC proto-oncogene, BHLH transcription factor; SNAI2, Snail family transcriptional

repressor 2, SOX4, SRY-Box Transcription Factor 4.

and proneural (24.7%). Among the patients, 272 received
chemotherapy and 140 did not; furthermore, 365 received
radiotherapy and 52 did not. The median follow-up duration
was 12.8 months (range, 0-129.4 months).

Analysis of the association between risk score and character-
istics of patients with GBM. The association between the risk
score and the characteristics of patients with GBM is presented
in Fig. 4A-F. The risk score was significantly associated with
the prognosis, stromal score and immune score of patients

with GBM. Multivariate analysis indicated that the risk score
was an independent predictive factor of poor prognosis in
patients with GBM (Fig. 4B). High risk scores predicted
adverse outcomes in patients with GBM. The immune score
and stromal score were significantly associated with the prog-
nosis of patients with GBM (Fig. 4E and F).

ATAC data analysis and search for upstream transcription
factors of SERPINA3 and CXCR4. Analysis of the ATAC data
indicated that, in addition to the Y chromosome, there was a
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Table I. The Cancer Genome Atlas Glioblastoma patient char-
acteristics.

Clinical characteristics Total (n=417) %
Age (10-89 years)

<75 years 366 87.8

=75 years 51 12.2
Sex

Male 248 59.5

Female 169 40.5
Immune score

-1,448-3,210 417 100
Stromal score

-3,055-2,016 417 100
Radiotherapy

Yes 365 87.5

No 52 12.5
Chemotherapy

Yes 272 66

Yes 140 34
Subtype

Classical 128 30.7

Mesenchymal 122 293

Neural 64 153

Proneural 103 24.7

large number of peaks in other chromosomes. Further analysis
suggested that the most binding sites were situated near the
promoter (<1 kb), and in the heatmap, a large number of peaks
were enriched near the transcription start site (TSS), while the
peak enrichment gradually decreased with the distance from
the TSS. At the same time, most peaks existed in multiple
regions, consistent with previous studies (Fig. 4G-I). In a
further search for possible upstream transcription factors of
SERPINA3 and CXCR4, possible transcription factors were
predicted using the UCSC database, and MYC and SNAI2
were identified, which were also associated with the prognosis
of patients with GBM. Further analysis indicated that the
promoter regions of SERPINA3 had prospective binding peak
sites for MYC and CXCR4 had prospective binding peak sites
for SNAI2 (Fig. 5).

Correlation analysis between risk score and immune cells.
The ‘corrplot’ package of R software was used to determine
the correlation of the risk scores with immune cells. The
results indicated that the risk score was positively correlated
with CD4 T cells, dendritic cells, neutrophil cells and macro-
phages and negatively correlated with CD8 T cells, but the
correlation with B-cells did not reach statistical significance
(Fig. 6).

Discussion

In the present study, data of patients with GBM were down-
loaded from the GEO, TCGA, TIMER, IMMPORT and

CISTROME databases. Co-DEGs were mainly enriched
in cell communication, regulation of enzyme activity,
immune response, nervous system, p38 signaling mediated
by MAPKAP kinases, cytokine signaling in the immune
system and PI3K signaling events mediated by AKT. The
further GSVA enrichment analysis of CXCR4 and SERPINA3
indicated a positive association with macrophage activation,
differentiation and regulation of the AKT signaling pathway.
The present study focused on the tumor immune microen-
vironment. In the immune microenvironment, immune cells
and stromal cells have a key role and affect the prognosis of
patients with cancer (14). In the present study, the risk scores
were different between subgroups of patients with high and
low immune scores and stromal scores, and the risk score
was able to be used as an independent risk factor for the prog-
nosis of patients with GBM with statistical significance, and
immune scores and stromal scores also affected the prognosis
of GBM, which was consistent with previous studies (8,9).
In the present study, a total of 48 immune-associated genes
were used to perform a prognostic analysis of differentially
expressed immune-regulatory genes, yielding 17 genes
significantly associated with the prognosis of patients with
GBM. The risk model constructed from prognosis-associated
immune-regulatory genes had high accuracy in predicting
the prognosis of patients with GBM (AUC=0.764), which was
higher than that of a previously reported model constructed
from prognosis-associated biomarkers (AUC=0.667) (10).
This result suggested that the immune genes screened in
the present study were able to better reflect the prognosis of
patients with GBM and patients with a high-risk score had a
worse prognosis than those with a lower risk score. For further
investigation, an interaction network was constructed from
prognosis-associated immune genes, differentially expressed
transcription factors and immune cells. At the same time,
differentially expressed transcription factors were used to
predict the prognosis of patients with GBM, indicating that
BRFI1, MYC, SNAI2 and SOX4 affected the survival of
patients with GBM. Combined with the results of the analysis
of the UCSC database, SNAI2 and MYC appeared promising,
and it was predicted that SNAI2 is able to positively regulate
the immune genes CXCR4, and that MYC is able to positively
regulate the immune genes SERPINA3. CXCR4 is a CXC
chemokine receptor specific for stromal cell-derived factor-1;
the protein has 7 transmembrane regions and is located on the
cell surface (26). SNAI2 encodes a member of the Snail family
of C2H2-type zinc finger transcription factors (27). Previous
studies indicated that CXCR4 affects the proliferation, inva-
sion and angiogenesis of glioma cells by regulating the AKT
signaling pathway (28-30), which was consistent with the results
of the present enrichment analysis. SNAI2 may be used as a
GBM marker, which participates in the epithelial-to-mesen-
chymal transition and thus affects drug resistance (31,32); it
may also enhance the development of tumors by affecting the
AKT signaling pathway (32-34). However, whether SNAI?2 is
able to regulate CXCR4 expression, affect the ATK signaling
pathway and thus affect the phenotype of glioma remains to
be elucidated. The protein encoded by SERPINA3 is a plasma
protease inhibitor and member of the serine protease inhibitor
class. Serine protease has an important role in the development
of glioma, which may promote the migration and invasion of
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Figure 4. Analysis of clinical characteristics and transcription factor binding sites of GBM. (A) Univariate and (B) multivariate Cox regression analysis of
risk scores. The results suggested that the risk score was of independent prognostic value for patients with GBM. (C) High immune and (D) high stromal
scores were associated with a higher risk for patients with GBM. The immune score, stromal score and age were stratified into high and low groups using the
median value as a cutoff. (E and F) Survival analysis of patients with GBM stratified by (E) the immune score and (F) stromal score. (G) Analysis of data from
the Assay for Transposase-Accessible Chromatin database indicated that, in addition to the Y chromosome, there were a large number of peak sites in other
chromosomes. (H) Further analysis indicated that the most binding sites were situated near the promoter (I) between 0-1 kbp, a large number of peaks were
enriched near the TSS, with gradually less enrichment of peaks further away from the TSS. P<0.05 was considered to indicate statistical significance. TSS,
transcription start site; GBM, glioblastoma multiforme; UTR, untranslated region; Chr, chromosome.

glioma, but serine protease inhibitor has the opposite role (35).  phosphoprotein that has a role in cell cycle progression, apop-
The present study indicated that circulating SERPINA3 may  tosis and cellular transformation of glioma (38,39). A negative
be a marker in GBM and promote the invasion of glioblastic =~ regulatory association between MYC and SERPINA3 was
stem cells (36,37), and a positive correlation with the AKT  indicated in the regulatory network generated in the present
signaling pathway was identified in the GSVA enrich- study. In GBM, MYC is mainly highly expressed, and it may
ment analysis. However, the specific mechanisms remain  therefore be speculated that high expression of MYC promotes
elusive. MYC is a proto-oncogene and encodes a nuclear the development of GBM through inhibition of SERPINA3,
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Figure 5. Prediction of binding sites of transcription factors and mRNA in UCSC database. (A) Analysis of the University of California Santa Cruz database
revealed SNAI2 peak binding peaks in the promoter regions of the sense sequence in CXCR4 and (B) MYC peak binding peaks in the promoter regions of the
sense sequence in SERPINA3, suggesting binding sites between them. CXCR4, C-X-C motif chemokine receptor 4; SERPINA3, Serpin family A member 3;
SNAI2, Snail family transcriptional repressor 2.
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Figure 6. Correlation analysis between risk score and immune cells. The results suggested that the risk score was positively correlated with (A) B cells,
(B) CD4 T cells, (D) dendritic cells, (E) macrophages and (F) neutrophils, and (C) negatively correlated with CD8 T cells (P<0.05). Cor, correlation coefficient.

which requires further verification. The present study aimed  of patients with GBM, suggesting that there were numerous
to explore whether binding sites exist between SNAI2 and  transcription factor binding sites on the chromosome and
CXCR4, and between MYC and SERPINA3. The results indi-  most binding sites were located near the promoter (<1 kb).
cated that there was a large number of peaks on chromosomes = The UCSC database was used for analysis, suggesting that the
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CXCR4 and SERPINA3 gene sequences had peaks near the
promoter of the transcription factor SNAI2 and MYC, respec-
tively, indicating that there were binding sites between them.

Finally, the association between the risk score and immune
cells was analyzed, revealing that the risk score was linked
to the immune microenvironment and that the risk score was
positively correlated with CD4 T cells and negatively correlated
with CD8 T cells. This suggests that a high-risk score may be
associated with a secondary elevation of CD4 T cells, dendritic
cells and macrophages, as well as a secondary reduction of
CDS8 T cells. Previous studies have indicated that CD8 T cells
and dendritic cells have a positive role in the development of
a normal body (40-44). This may indicate that an increase in
the risk score may cause a secondary decrease in CD8 T cells,
thereby promoting tumor development. It may be hypothesized
that high expression of immune-regulatory genes, including
SERPINA3 and CXCR4, increased the risk score of patients
with GBM, which led to poor prognosis, as well as secondary
changes in immune cells in the immune microenvironment,
including a secondary decline of CD8 T cells. However, this
requires to be confirmed by future studies.

In conclusion, the immune gene interaction network
constructed in the present study helps to understand the
mechanisms associated with poor prognosis of patients with
GBM. A risk scoring system was established in the present
study, and high-risk scores indicated poor prognosis of patients
with GBM and may be used as an independent risk factor for
assessing the prognosis of patients with GBM.
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