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Abstract
Introduction: Connectome‐based predictive modeling (CPM) is a recently developed 
machine‐learning‐based framework to predict individual differences in behavior 
from	functional	brain	connectivity	(FC).	In	these	models,	FC	was	operationalized	as	
Pearson's	correlation	between	brain	regions’	fMRI	time	courses.	However,	Pearson's	
correlation is limited since it only captures linear relationships. We developed a more 
generalized	metric	of	FC	based	on	information	flow.	This	measure	represents	FC	by	
abstracting the brain as a flow network of nodes that send bits of information to 
each	other,	where	bits	are	quantified	through	an	information	theory	statistic	called	
transfer entropy.
Methods: With a sample of individuals performing a sustained attention task and 
resting during functional magnetic resonance imaging (fMRI) (n	 =	 25),	we	 use	 the	
CPM	 framework	 to	build	machine‐learning	models	 that	 predict	 attention	 from	FC	
patterns measured with information flow. Models trained on n −	1	participants’	task‐
based patterns were applied to an unseen individual's resting‐state pattern to predict 
task	performance.	For	further	validation,	we	applied	our	model	to	two	independent	
datasets	that	included	resting‐state	fMRI	data	and	a	measure	of	attention	(Attention	
Network Task performance [n = 41] and stop‐signal task performance [n = 72]).
Results: Our model significantly predicted individual differences in attention task 
performance across three different datasets.
Conclusions: Information flow may be a useful complement to Pearson's correlation 
as	 a	measure	of	FC	because	of	 its	 advantages	 for	nonlinear	 analysis	 and	network	
structure	characterization.
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1  | INTRODUC TION

The	brain's	functional	organization	at	rest	and	during	task	engage‐
ment can be studied with functional connectivity analyses of fMRI 
signals.	Functional	connectivity	between	two	regions	of	 the	brain,	
or	the	statistical	association	between	their	activation	over	time,	 is	
frequently	measured	as	Pearson's	correlation	between	their	respec‐
tive	 fMRI	 signals	 (Heuvel	&	Pol,	2010;	Smith	et	al.,	2013).	Whole‐
brain functional connectivity can be represented as a matrix of the 
pairwise	correlations	across	every	 region	 (Smith	et	al.,	2013).	This	
matrix,	 or	 “functional	 connectome,”	 is	 often	 interpreted	 as	 a	 fully	
connected network in which the nodes are brain regions and edges 
between	 them	 have	 a	 weight	 equal	 to	 the	 respective	 correlation	
(Smith	et	al.,	2013).

Although	functional	connectivity	measured	with	Pearson's	cor‐
relation has provided valuable insights into features of large‐scale 
brain	 organization	 common	 to	 the	 healthy	 population	 (van	 Dijk,	
Sabuncu,	 &	 Buckner,	 2012;	 Fox	 et	 al.,	 2005;	 Power	 et	 al.,	 2011;	
Yeo	 et	 al.,	 2011)	 and	 unique	 across	 individuals	 (Finn	 et	 al.,	 2015;	
Rosenberg,	 Finn,	 et	 al.,	 2016a),	 two	 theoretical	 disadvantages	 of	
Pearson's correlation may limit its utility as a measure of functional 
brain	organization.	First,	Pearson's	correlation	does	not	account	for	
the possibility of nonlinear relationships between two regions’ sig‐
nals. Previous research has shown that nonlinear analysis of fMRI 
signals	 can	 reveal	 results	 that	 linear	analysis	 cannot.	For	example,	
Su,	Wang,	 Shen,	 Feng,	 and	 Hu	 (2013)	 found	 that	 functional	 con‐
nectivity	 calculated	 from	 nonlinear	 analysis	 differentiated	 schizo‐
phrenic patients from healthy patients with higher accuracy than 
linear functional connectivity. They also found that the strength of 
certain nonlinear functional connections increased in patients with 
schizophrenia,	 whereas	 their	 linear	 counterparts	 did	 not.	 Second,	
Pearson's functional connectome only contains pairwise interac‐
tions	in	the	brain,	but	does	not	contain	explicit	information	on	how	
these	connections	are	organized.	Investigating	the	topological	struc‐
ture of these connections can give some insight into how these con‐
nections	are	organized	as	a	part	of	a	more	complex	network	(Bassett	
&	Bullmore,	2006;	Heuvel	&	Pol,	2010;	Smith	et	al.,	2013).

In	 this	 paper,	we	 propose	 a	 new	measure	 of	 functional	 con‐
nectivity that addresses these two disadvantages by unifying 
both nonlinear analysis of pairwise fMRI signals and large‐scale 
network analysis. The goal of this study was to validate this new 
measure of functional connectivity—information flow measured 
as the maximum flow between nodes whose capacities are de‐
fined with transfer entropy—by demonstrating that it predicts in‐
dividual	differences	 in	behavior.	To	do	this,	utilizing	an	approach	
similar	to	an	approach	by	Yoo	et	al.	(2018),	we	test	whether	mod‐
els	based	on	 information	 flow,	 in	comparison	with	models	based	
on	 the	 Pearson	 correlations,	 can	 generalize	 to	 predict	 attention	
performance across three completely independent datasets 
(Jangraw	et	al.,	2018;	Rosenberg,	Finn,	et	al.,	2016a;	Rosenberg,	
Hsu,	 Scheinost,	 Constable,	 &	 Chun,	 2018;	 Rosenberg,	 Zhang,	
et	al.,	2016b;	Rosenberg	et	al.,	2018;	Yoo	et	al.,	2018).	Datasets	
include fMRI data collected from healthy adult participants 

who	 performed	 a	 gradual‐onset	 continuous	 performance	 task,	
Attention	Network	 Task	 (ANT),	 or	 stop‐signal	 task	 during	 fMRI.	
Although	there	has	been	research	in	investigating	functional	con‐
nectivity	 in	 the	 brain	 using	 information	 theory	 (Dimitrov,	 Lazar,	
&	 Victor,	 2011;	 Garofalo,	 Nieus,	Massobrio,	 &	Martinoia,	 2009;	
Mäki‐Marttunen,	Diez,	Cortes,	Chialvo,	&	Villarreal,	2013;	Vergara,	
Miller,	&	Calhoun,	2017;	Vicente,	Wibral,	 Lindner,	&	Pipa,	 2010;	
Viol,	 Palhano‐Fontes,	 Onias,	 Araujo,	 &	 Viswanathan,	 2017),	 this	
is	 the	 first	 research	 that,	 to	our	knowledge,	unifies	 information‐
theoretic analysis with graph theory to predict human behavior 
from	fMRI	data.	Significant	predictions	would	show	that	informa‐
tion flow may be a useful alternative to Pearson's correlation as a 
measure of functional connectivity to predict behavior due to its 
theoretical advantages in addressing both nonlinear analysis and 
characterizing	network	structure	as	well	as	success	 in	predicting	
individual differences in behavior.

2  | METHODS

2.1 | Information flow as a measure of functional 
connectivity

2.1.1 | Background

Here,	 we	 motivate	 our	 new	 measure	 of	 functional	 connectivity	
through an abstraction that involves using information theory to 
represent the brain as a flow network of information bits. It may be 
particularly useful to explore functional brain connectivity through in‐
formation theory because the brain is an information processing sys‐
tem	(Reinagel,	2000).	Transfer	entropy	(TE)	is	an	information‐theoretic	
metric that can measure both linear and nonlinear information transfer 
between	two	systems	(Schreiber,	2000).	The	TE	from	signal	A to signal 
B	answers	the	question,	“How	much	information	does	the	past	state	
of A contain about the future state of B,	given	that	we	know	the	past	
state of B?”	(Wibral,	Vicente,	&	Lindner,	2014).	Unlike	Pearson's	cor‐
relation,	TE	is	a	directed	metric,	meaning	that	the	TE	from	A to B is 
different from the TE to B to A.	For	example,	Schreiber	(2000)	used	TE	
on heart and breath rate data and found that the TE from heart rate 
to breath rate was greater than the TE from breath rate to heart rate.

Instead of coding the functional connectivity between two re‐
gions	as	the	correlation	of	their	respective	time	series,	we	can	use	
TE to code their relationship as the number of bits transferred from 
one to the other. Transfer entropy has previously been used in a va‐
riety of neuroimaging studies for functional connectivity analysis 
(Wibral	et	al.,	2014).	For	example,	Mäki‐Marttunen	and	colleagues	
used	TE	to	analyze	resting‐state	functional	connectivity	in	comatose	
patients	as	compared	to	control	subjects,	and	found	that	the	TE	cal‐
culated from left intrahemispheric ROIs could be a potential marker 
for large‐scale disturbance of brain function in these patients (Mäki‐
Marttunen	et	al.,	2013).	Although	other	measures	can	characterize	
nonlinear	 interactions	between	 signals,	 here	we	 focus	on	 a	metric	
from information theory given that we were motivated by abstract‐
ing the brain as a flow network of information bits. We chose TE 
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rather than alternative information theory metrics such as mutual 
information because it is a directed measure (whereas mutual infor‐
mation is an undirected measure) and flow networks are most fre‐
quently	analyzed	as	directed	graphs	(Ahuja,	Magnanti,	&	Orlin,	2014).

It	is	important	to	emphasize	that	TE	is	predictive information trans‐
fer,	which	 is	distinct	 from	causal	 interaction	 (Lizier	&	Prokopenko,	
2010).	To	determine	causal	interaction,	intervention	in	the	system	is	
necessary.	An	information‐theoretic	approach	to	information	trans‐
fer like TE is more concerned with how knowing one process affects 
one's ability to predict the other and relies on studying systems in 
the	absence	of	intervention.	For	our	purposes,	we	are	interested	in	
information	transfer	in	a	purely	computational	sense,	and	do	not	use	
this measure to infer causal relationships between activity in distinct 
brain	regions.	Furthermore,	predictive	information	transfer	is	a	sta‐
tistical	measure	that	does	not	characterize	physical	pathways.	Thus,	
we	refer	to	information	transfer	as	representing	abstract,	functional	
pathways rather than physical brain connections.

The TE from region A to region C measures the information 
transfer from A to B given their respective time series. To fully char‐
acterize	the	functional	relationship	between	A and C,	however,	we	
may wish to consider other nodes’ time series that can make indirect 
functional	connections,	or	alternate	paths,	between	them.	Previous	
research	 has	 shown	 that,	 although	 direct	 structural	 connections	
alone	do	not	predict	functional	connectivity	well,	incorporating	indi‐
rect structural paths can improve predictions of functional connec‐
tivity	 (Deligianni	et	al.,	2011;	Røge	et	al.,	2017).	 It	 is	possible	that,	
analogously,	predictions	of	behavior	can	be	improved	by	taking	into	
account nodes on indirect functional paths along with direct func‐
tional	paths.	In	graph	theory,	two	nodes	can	be	connected	both	by	
a	direct	connection,	or	edge,	and	indirect	pathways	that	go	through	
alternate	nodes.	For	example,	let	us	say	node	A passes information 
to node C through node B,	but	node	B might modify that informa‐
tion. Taking into account node A’s interaction with node B,	 node	

B’s interaction with node C,	along	with	node	A’s direct interaction 
with node C,	would	give	us	stronger	evidence	that	node	A is sending 
node C a message. This is different from the standard approach of 
partial	correlation,	where	we	take	into	account	node	C’s activity in 
order to isolate the relationship between nodes A and B. With our 
approach,	we	are	not	trying	to	use	other	nodes’	activity	to	isolate	the	
relationship	between	two	nodes,	but	trying	to	build	a	feature	of	the	
interaction of those two nodes that takes into account the under‐
lying	network	structure.	In	general,	taking	into	account	the	activity	
of intermediate nodes on these alternative pathways between two 
nodes will allow us to incorporate both information about informa‐
tion transfer measured between the two nodes’ time series and how 
those two nodes are connected in the context of the larger network 
structure.

To add consideration of nodes on indirect functional paths be‐
tween	pairs	of	brain	regions,	we	use	the	concept	of	maximum	flow	
(Ahuja	 et	 al.,	 2014),	 a	well‐known	problem	 in	optimization	 theory.	
Maximum	 flow	 problems	 start	 with	 directed	 weighted	 graphs,	
where each edge's weight represents the largest number of units 
one can transport through that particular edge (also known as ca‐
pacity). The maximum flow from a source node to a sink node is the 
maximum	amount	one	can	“flow”	from	the	source	to	the	sink	given	
these capacities on transportation. The amount one can flow does 
not	only	depend	on	the	weight	(capacity),	but	also	the	specific	un‐
derlying structure of the edges in the graph. In the example shown 
in	Figure	1,	even	though	the	capacity	of	the	edge	between	A and C is 
2,	the	maximum	flow	between	A and C	is	5,	because	there	is	an	alter‐
nate path that goes from A to B to C. Maximum flow provides a good 
way	to	characterize	how	two	nodes	are	connected	with	each	other	
using both their direct edge (A‐>C) and indirect pathways (A‐>B‐>C).

Maximum	flow	has	previously	been	used	to	characterize	alterna‐
tive structural	connectivity.	Yoo	et	al.	 (2015)	characterize	structural	
connectivity between regions as the maximum flow between the re‐
gions’ corresponding nodes on a network calculated from MRI data. 
Here,	we	employ	maximum	flow	to	characterize	 functional connec‐
tivity.	We	quantify	 functional	 connectivity	between	 regions	 as	 the	
greatest	number	of	bits	one	region	can	flow	to	another	region,	where	
direct	connections	between	regions	have	a	capacity	equal	to	their	TE.	
Since	we	represent	the	capacities	as	transfer	entropies,	each	capacity	
represents the greatest number of bits that can transfer within that 
edge. We are using maximum flow as a way to abstract the brain as 
a	flow	network	of	nodes	that	send	bits	of	information	to	each	other,	
where	the	bits	through	specific	edges	are	quantified	through	TE.	The	
addition of maximum flow gives our measure graph‐theoretic proper‐
ties.	That	is,	by	defining	functional	connectivity	with	maximum	flow,	
we are taking into account how those nodes are connected within the 
context of the larger underlying network of the brain.

2.1.2 | Proposed connectivity measure

Overview of connectivity matrix construction

Figure	2	shows	the	overall	steps	we	use	to	construct	the	information	
flow connectivity matrices and describe in the following sections.

F I G U R E  1  Simple	example	of	the	maximum	flow	problem:	a	
directed graph where each edge's weight represents the edge's 
capacity,	which	is	the	greatest	amount	of	flow	that	can	go	through	
that	edge.	Although	one	can	only	flow	two	units	directly	from	A	to	
C,	one	can	also	flow	three	units	using	the	alternative	path	from	A	to	
B	and	then	from	B	to	C,	which	means	the	maximum	flow	from	A	to	
C	is	equal	to	5
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Step 1: parcellation

Preprocessed data were used to calculate a task‐based and a rest‐
ing‐state functional connectivity matrix for each participant in 
the	 gradCPT	 dataset,	 and	 a	 resting‐state	 functional	 connectivity	
matrix for each participant in the external datasets. We defined 
nodes	were	using	the	Shen	268‐node	functional	brain	atlas,	which	
includes	the	cortex,	subcortex,	and	the	cerebellum	(Shen,	Tokoglu,	
Papademetris,	&	Constable,	2013).	The	Shen	atlas	was	warped	from	
MNI (Montreal Neurological Institute)  space into single‐subject 
space using linear and nonlinear registrations between the func‐
tional	images,	anatomical	scans,	and	MNI	brain.	For	every	node,	a	
mean task‐based time course was calculated by averaging the time 
courses	of	all	of	its	constituent	voxels	during	task	performance,	and	
a mean resting‐state time course was calculated by averaging these 
time	courses	during	rest.	Although	here	we	used	the	parcellation	
from	Shen	et	al.	(2013),	our	measure	can	be	applied	with	any	other	
type of parcellation.

Step 2: measuring functional connectivity with TE

Transfer entropy serves as the initial connectivity metric to cal‐
culate higher‐order connectivity features. Transfer entropy is an 
information‐theoretic metric that measures information transfer 
between	 two	 systems	 (Schreiber,	 2000).	 The	 transfer	 entropy	
from process A to C tells how much information does the past 
state of A (An) contain about the future state of C (Cn + 1) given 
that we know the past state of C (Cn).	This	 idea	 is	quantified	as	
follows:

Briefly,	this	equation	uses	the	concept	of	entropy	and	conditional	
probability	 distributions	 to	 quantify	 the	 “incorrectness”	 of	 the	

Markov property: p
(
Cn+1|C

(k)
n ,A

(l)
n

)
=p(Cn+1|C

(k)
n ). If this property 

holds,	our	ability	to	predict	the	next	state	of	C using both the previ‐
ous states of A and C is the same as our ability to predict the next 
state of C using just the previous state of C. This property would 
mean that there is no information transfer from A to C	 (Schreiber,	
2000).

Multiple algorithms have been developed and used to estimate 
TE	for	continuous	data.	Here,	we	use	the	Kraskov,	Stogbauer,	and	
Grassberger	 (KSG)	 (2018)	 technique	which	estimates	 a	probability	
density	function	for	a	time	series	using	Kernel	estimation	and	alters	
the kernel width to adjust to the data using a nearest neighbor calcu‐
lation	(Lizier,	2014).	The	KSG	approach	is	often	used	as	the	“best	of	
breed	solution”	for	TE	estimation	(Lizier,	2014).	We	used	the	open‐
source Java Information Dynamics Toolkit to calculate the transfer 
entropies	(Lizier,	2014).

We	calculated	a	full	268	x	268	“TE	Matrix”	(Figure	2b)	for	each	
individual,	where	each	cell	Mij contains the estimated TE from node 
i to node j.	In	a	graph	theory	context,	each	TE	matrix	represents	an	
adjacency	matrix	of	individual	brain	networks.	Since	TE	is	a	directed	
metric,	this	graph	is	a	directed	graph	(the	edge	from	node	A to C is 
different from the edge from node C to A).	Since	the	TE	matrix	is	a	
full	matrix,	this	would	also	be	a	complete	graph	(there	exist	a	forward	
edge and a back edge for every two nodes).

Because	the	KSG	algorithm	is	an	estimator	with	a	variance	asso‐
ciated	with	it	(Lizier,	2014),	the	estimated	TE	can	be	negative	if	the	
true TE between the processes is (or very close to) 0. Transfer en‐
tropy	cannot	be	theoretically	negative	(Schreiber,	2000),	so	a	mea‐
sured	negative	TE	would	be	a	measurement	error.	Therefore,	after	
calculating	the	full	TE	matrix,	we	find	the	sparse	268	×	268	TE	Matrix	
(Figure	2c)	by	 removing	 transfer	entropies	 that	were	measured	as	
negative (setting them to 0).

Step 3: computing higher-order connectivity features with maximum 

flow

The next step in calculating our measure is to add information about 
the underlying network topology to the estimation of functional 
connectivity between nodes A and C.	To	do	this,	we	used	maximum	

TEA→C=
∑

p
(
Cn+1,C

(k)
n ,A

(l)
n

)
log

p
(
Cn+1|C

(k)
n ,A

(l)
n

)

p
(
Cn+1|C

(k)
n

)

F I G U R E  2  Steps	used	to	construct	an	individual's	information	flow	connectivity	matrix.	(a)	Each	individual's	fMRI	data	are	parcellated	
into n	ROI	time	series,	depending	on	the	parcellation	used	(see	Step 1: parcellation).	(b)	A	full	transfer	entropy	matrix	(TEfull) is populated 
with all pairwise transfer entropies among the ROI time series. (c) Negative transfer entropy values are set to 0 to create TEsparse (see Step 2: 
measuring functional connectivity with transfer entropy). (d) Cells in the TEsparse matrix are used to construct graphs in which edges are defined 
as the maximum flow between each pair of nodes. (e) These graphs are represented as a new maximum flow matrix (see Step 3: computing 
higher‐order connectivity features with maximum flow). (f) The maximum flow matrix is then reduced over the anatomical lobe groups (see Step 
3: computing higher‐order connectivity features with maximum flow)

268 ROI time series TEfull TEsparse IFfull IF Connectome

TE
Remove 
<0

Flow w/ 
grouping

Sum over 
lobes
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flow to construct higher‐order connectivity features that include 
nodes on alternative paths of information flow.

The	maximum	flow	problem	is	as	follows:	Given	a	network,	what	
is the greatest amount of units one can flow from a source node to a 
sink node using the network's edges if each edge's weight represents 
the capacity of how many units can flow through that edge. By de‐
fining	connectivity	with	maximum	flow,	calculation	of	connectivity	
between two nodes also takes into account how those nodes are 
connected	 to	 other	 nodes.	 For	 all	maximum	 flow	 calculations,	we	
used	the	implementation	in	Python's	NetworkX	Package	(Hagberg,	
Daniel,	&	Pieter,	2008).

After	 calculating	 the	 sparse	 TE	 matrix	 for	 each	 individual	
(see	 previous	 section),	 we	 then	 construct	 the	 full	 268	 ×	 268	
Information	 Flow	 (IFfull)	 Matrix	 (Figure	 2e)	 using	 the	 sparse	 TE	
matrix,	where	IFfull

ij contains the maximum information flow from 
node i to node j which was calculated using a network defined by 
the	sparse	TE	matrix	 (Figure	2d).	Specifically,	we	use	the	sparse	
TE matrix as the adjacency matrix for the directed graph used for 
maximum flow.

We calculated three different versions of the information flow 
matrices:	 full	 information	 flow	matrix	with	no	restriction,	 full	 in‐
formation	 flow	 matrix	 with	 anatomical	 restriction,	 and	 reduced	
information flow matrix. The full information flow matrix was cal‐
culated by using the entire sparse TE matrix to calculate maximum 
flow for each pair of nodes. The other two matrices are calculated 
using	a	similar	process,	but	with	the	introduction	of	an	anatomical	
restriction.

The full information flow matrix with anatomical restriction 
calculates information flow among nodes of the same macroscale 
brain	region.	To	do	this,	we	impose	a	restriction	on	the	edges	we	
consider when calculating maximum flow. Nodes were grouped in 
the	10	brain	 lobes	 in	each	hemisphere:	prefrontal,	motor,	 insula,	
parietal,	 temporal,	 occipital,	 limbic,	 cerebellum,	 subcortical,	 and	
brainstem.	This	 is	 the	same	 lobe	scheme	described	 in	Finn	et	al.	
(2015).

Let	us	say	lobe(A) represents the anatomical lobe that node A re‐
sides	in,	lobe(C) represents the anatomical lobe that node C resides 
in,	and	Maxflow(A,	C,	E) represents the maximum flow from node A 
to node C on a network with the set of edges E. TEsparse represents 
the sparse TE matrix.

Note that if nodes A and C	reside	in	the	same	lobe,	then	the	edge	
set	will	be	all	edges	that	reside	inside	that	lobe.	Also,	note	that	the	
number of edges in the set EAC can vary since they come from the 
sparse	TE	matrix,	which	does	not	necessarily	have	an	edge	for	every	
two nodes.

The	 reduced	 form	 information	 flow	 matrix	 (IF;	 Figure	 2f)	 is	 a	
20	×	20	matrix	where	IFxy is the total information flow going from 
lobe x to lobe y	 in	 bits,	where	paths	of	 information	 are	 restricted	

using the procedure described in the previous paragraph. This is cal‐
culating	by	summing	individual	flows	in	IFfull:

If x and y	 are	 distinct	 lobes,	 then	 the	 cell	 IFxy measures the 
summed information flow from lobe x to lobe y. Note that this is a 
directed measure (flow from x to y is different than flow from y to x),	
since	the	maximum	flow	of	a	graph	is	a	directed	quantity.	If	x and y 
are	the	same	lobe,	then	the	cell	IFxy will contain the summed infor‐
mation flow within that lobe. This step is used to reduce the amount 
of	total	features	for	each	individual	from	71,824	in	the	full	matrix	to	
400 in the reduced matrix. This reduction in the dimensionality of 
the feature space helps avoid overfitting predictive models.

2.2 | Using information flow to predict individual 
differences in behavior

2.2.1 | Data description

Internal validation: gradCPT dataset

Predictive models were defined and internally validated with 
leave‐one‐subject‐out cross‐validation using a dataset described 
in	 detail	 in	 previous	work	 (Rosenberg,	 Finn,	 et	 al.,	 2016a).	 Briefly,	
this sample included 25 healthy adult participants performing the 
gradual‐onset	 continuous	 performance	 task	 (gradCPT;	 (Esterman,	
Noonan,	Rosenberg,	&	Degutis,	2012;	Rosenberg,	Noonan,	Degutis,	
&	Esterman,	2013)),	a	 test	of	sustained	attention,	and	resting	dur‐
ing	functional	magnetic	resonance	imaging	(fMRI).	GradCPT	perfor‐
mance was assessed with sensitivity (d′). This measure was used to 
assess sustained attention during the gradCPT task in previous work 
(Rosenberg,	Finn,	et	al.,	2016a;	Yoo	et	al.,	2018)	and	was	found	to	
have	very	high	reliability	(Rosenberg,	Finn,	et	al.,	2016a).	This	meas‐
ure was also confirmed to not be related to head motion in this sam‐
ple	(Rosenberg,	Finn,	et	al.,	2016a).

Scan	 sessions	 included	 a	 high‐resolution	 anatomical	 scan	
(MPRAGE),	a	2D	T1‐weighted	image	with	the	same	slice	prescription	
as	the	functional	images	for	registration	purposes,	a	6‐min	resting‐
state	run,	three	13:44‐min	gradCPT	runs,	and	a	second	6‐min	rest	
run.	Each	gradCPT	run	included	8	s	of	fixation	(excluded	from	analy‐
sis) followed by three 4‐min blocks of the task interleaved with 32‐s 
breaks. Volumes collected during break periods were also excluded 
from analysis.

Functional	 runs	 included	824	 (task)	or	363	 (rest)	whole‐brain	
volumes	 acquired	 using	 a	 multiband	 echo‐planar	 imaging	 (EPI)	
sequence.	 Parameters	 were	 as	 follows:	 repetition	 time	 (TR)	 =	
1,000	ms,	 echo	 time	 (TE)	 =	 30	ms,	 flip	 angle	 =	 62°,	 acquisition	
matrix	=	84	×	84,	in‐plane	resolution	=	2.5	mm2,	51	axial‐oblique	
slices	parallel	to	the	ac‐pc	line,	slice	thickness	=	2.5,	multiband	3,	

IF
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EAC={(i,j)∈TE
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and	acceleration	factor	=	2.	MPRAGE	parameters	were	as	follows:	
TR	=	2,530	ms,	TE	=	3.32,	flip	angle	=	7°,	acquisition	matrix	=	256	
×	256,	in‐plane	resolution	=	1.0	mm2,	slice	thickness	=	1.0	mm,	and	
176	 sagittal	 slices.	A	2D	T1‐weighted	 image	with	 the	 same	 slice	
prescription as the functional images was also collected to aid with 
registration.

Image	 preprocessing	 was	 performed	 using	 BioImage	 Suite	
(Joshi	 et	 al.,	 2011)	 and	 custom	 MATLAB	 scripts.	 SPM8	 (http://
www.fil.ion.ucl.ac.uk/spm/softw	are/spm8/)	 was	 used	 to	 perform	
motion correction. The following were regressed from the data: 
mean	signal	from	cerebrospinal	fluid,	white	matter,	linear	and	qua‐
dratic	drift,	and	gray	matter	and	a	24‐parameter	motion	model	(six	
motion	 parameters,	 six	 temporal	 derivatives,	 and	 their	 squares).	
Finally,	data	were	temporally	smoothed	with	a	zero	mean	unit	vari‐
ance	Gaussian	filter.

Due	to	excessive	head	motion	(>2	mm	translation,	>3°	rotation,	
or	 0.15	 mm	 mean	 frame‐to‐frame	 displacement),	 one	 resting	 run	
from two participants and one task run from five participants were 
excluded	 from	 analysis.	 Head	 motion,	 calculated	 as	 mean	 frame‐
to‐frame	displacement,	did	not	correlate	with	d′	in	any	of	the	three	
task	runs.	Additional	details	are	provided	in	Rosenberg,	Finn,	et	al.,	
2016a.

External validation 1: ANT dataset

The predictive model defined in the gradCPT dataset was applied 
unchanged to three completely independent samples to assess gen‐
eralizability.	The	first	external	validation	sample	included	fMRI	data	
collected	 as	44	participants	performed	 the	ANT	 (Fan,	Mccandliss,	
Fossellia,	Flombaum,	&	Posner,	2005)	and	rested	(Rosenberg	et	al.,	
2018).	Three	participants	were	excluded	prior	 to	analysis	because	
they	had	previously	participated	in	the	gradCPT	study.	ANT	perfor‐
mance was measured using variability of correct‐trial response times 
(i.e.,	RT	standard	deviation	divided	by	mean),	a	more	sensitive	meas‐
ure	of	overall	attention	to	the	task	than	accuracy	(Rosenberg	et	al.,	
2018).

Functional	and	structural	MRI	scans	were	acquired	as	was	done	
with the gradCPT dataset. Experimental sessions began with a high‐
resolution	anatomical	scan,	followed	by	two	6‐min	resting	scans	and	
six 7:05‐min task runs. Resting‐state runs included 360 whole‐brain 
volumes,	and	task	runs	included	425	volumes.	fMRI	data	were	pre‐
processed with the same steps as in the gradCPT dataset. Excluded 
from	the	analysis	were	runs	with	excessive	head	motion,	defined	a	
priori	as	>2‐mm	translation,	>3°	rotation,	or	0.15‐mm	mean	frame‐
to‐frame	displacement	 (Rosenberg,	Finn,	 et	 al.,	 2016a;	Rosenberg,	
Zhang,	et	al.,	2016b).	For	excessive	motion,	two	task	runs	were	ex‐
cluded from one participant and one task run was excluded from 
three	participants,	and.	Additional	details	are	provided	in	Rosenberg	
et	al.,	2018.

Because of moderate correlations between head motion and RT 
variability,	we	also	excluded	edges	that	were	correlated	with	head	
motion	(maximum	displacement,	maximum	rotation,	or	mean	frame‐
to‐frame displacement) at the p < 0.05 significance level (Rosenberg 
et	al.,	2018).

External validation 2: stop-signal task dataset

The	data	described	 in	Rosenberg,	Zhang,	et	al.	 (2016b)	were	used	
for the second external validation dataset. This sample contained 72 
healthy adults that performed a stop‐signal task (four 9:50‐min runs) 
and	rested	(one	9:50‐min	run)	during	fMRI	scanning.	Approximately	
40	min	before	scanning,	24	of	these	participants	were	given	a	single	
dose	of	methylphenidate	(MPH),	a	common	treatment	for	attention	
deficit	hyperactivity	disorder	(ADHD).	Resting‐state	data	were	avail‐
able for 16 participants in the methylphenidate group and 56 partici‐
pants	in	the	control	group.	For	this	paper,	we	only	used	resting‐state	
fMRI data on the external datasets. This dataset was originally de‐
scribed	 in	Farr	et	al.	 (2014a,	2014b),	and	the	criteria	 for	excluding	
subjects	are	detailed	in	Rosenberg,	Zhang,	et	al.	(2016b).	We	refer	to	
this dataset as the MPH dataset.

The preprocessing steps were identical to those described 
above.	 Runs	were	 excluded	 for	 excessive	 head	motion,	 defined	 a	
priori	as	>2‐mm	translation,>3°	rotation,	or	>0.15‐mm	mean	frame‐
to‐frame	displacement	 (Rosenberg,	Zhang,	et	al.,	2016b).	We	used	
go	 response	 rate	 to	 measure	 attention,	 since	 it	 was	 found	 to	 be	
the response variable most closely related to sustained attention 
(Rosenberg,	Zhang,	et	al.,	2016b).

2.2.2 | Connectome‐based predictive modeling

Recent work has demonstrated that individual differences in func‐
tional	 brain	 organization	 are	 related	 to	 individual	 differences	 in	
traits	 and	 behavior.	 Thus,	 if	 information	 flow	 (i.e.,	 the	 maximum	
flow between two nodes whose capacities are defined with TE) ac‐
curately	captures	the	functional	architecture	of	the	brain,	it	should	
be able to significantly predict an individual's cognitive tenden‐
cies and behavioral performance. Connectome‐based predictive 
modeling	 (CPM),	 a	 recently	 developed	 machine‐learning‐based	
framework	 for	predicting	 individual	differences	 in	behavior	 (Shen	
et	al.,	2017),	has	been	used,	 for	example,	 to	show	that	 functional	
connectivity observed during task engagement and rest predicts 
individual	differences	in	attention	(Rosenberg,	Finn,	et	al.,	2016a),	
and	 fluid	 intelligence	 (Finn	 et	 al.,	 2015;	 Shen	 et	 al.,	 2017).	 It	 has	
also been used to measure various measures of attention such as 
ADHD	symptom	severity	(Rosenberg,	Finn,	et	al.,	2016a),	stop‐sig‐
nal	 task	performance	 (Rosenberg,	Zhang,	 et	 al.,	 2016b),	 and	ANT	
performance	 (Rosenberg	et	 al.,	 2018).	We	used	CPM	to	generate	
models	 of	 attention	 using	 the	 20	×	 20	 information	 flow	matrices	
from the 25 participants in our training (internal validation) set. The 
final trained model is a regression model that can be used to pre‐
dict behavior from resting‐state functional connectivity measured 
with	information	flow.	Figure	3	shows	an	overview	of	our	predictive	
modeling pipeline.

First,	flows	(individual	cells	in	the	information	flow,	or	IF,	matri‐
ces) that are relevant to behavior are identified by calculating the 
Spearman	 rank	 correlation	 between	 each	 flow	 in	 the	 task	 infor‐
mation flow matrix across subjects in the training set and the cor‐
responding	 behavioral	 scores.	Any	 flows	 that	 are	 not	 significantly	
correlated (p > 0.05) are taken out of consideration.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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The next step is feature aggregation through principal compo‐
nents	analysis	(PCA)	on	the	selected	flows.	PCA	makes	components,	
linear	 combinations	of	 the	 features	 that	maximize	variance.	When	
performing	PCA,	one	needs	to	decide	the	number	of	components	to	
use. The number of components is selected with a leave‐one‐sub‐
ject‐out	 cross‐validation	 (LOOCV)	 loop	within	 the	 training	 set.	All	
possible	 components	numbers,	 from	1	 to	 the	number	of	 subjects,	
are	tested	within	the	LOOCV	loop,	and	the	number	of	components	
that	gives	the	highest	prediction	performance	is	selected.	Then,	the	
final	PCA	transformation	 is	applied	on	the	selected	flows,	and	the	
resulting features are incorporated into a linear regression where the 
dependent variable is the behavior score.

2.2.3 | Model validation

Model validation: internal dataset

The	gradCPT	dataset	was	used	for	 internal	validation	(Rosenberg,	
Finn,	et	al.,	2016a;	Rosenberg,	Zhang,	et	al.,	2016b).	Two	informa‐
tion flow matrices are calculated for each subject: one on task and 
one	on	 resting‐state	data.	Then,	 LOOCV	 is	 employed	 to	evaluate	
the	model	 performance.	 In	 each	 iteration,	 the	 subjects	 are	 sepa‐
rated into a training set (n = 24) and a testing set (n = 1). Within the 
training	 set,	 task	 flows	 (cells	 on	 the	 task	 IF)	 relevant	 to	 behavior	
are	 isolated	 by	 performing	 Spearman's	 (rank)	 correlation	 on	 each	
flow	with	 the	 behavior	 score,	 d′.	 Flows	 that	 are	 not	 significantly	
correlated with behavior at a threshold of p = 0.05 are left out of 
consideration.	Then,	a	PCA	transformation	is	fitted	on	the	remain‐
ing	flows.	As	described	in	the	previous	section	“Connectome‐based	
Predictive	Modeling,”	the	number	of	PCA	components	 is	selected	
based	 on	 a	 nested	 LOOCV	 loop	 inside	 the	 24‐participant	 train‐
ing	 set.	 In	 other	words,	 the	 number	 of	 components	 is	 set	 to	 the	
number	 that	gives	 the	best	performance	 in	a	LOOCV	 loop	within	
the	training	set.	In	internal	validation,	this	nested	LOO	loop	is	run	
within	the	current	training	set	for	each	iteration	of	the	original	LOO	
loop.	The	calculated	PCA	transformation	fitted	on	the	training	set	is	
then	applied	on	the	training	set.	Then,	the	same	edges	selected	on	
the	training	set	are	selected	on	the	left‐out	subject,	and	the	same	
PCA	 transformation	 calculated	 on	 the	 training	 set	 is	 applied	 on	
the left‐out subject. The resulting features on the training set are 

incorporated into a linear regression to predict the left‐out subject's 
behavior score.

In	order	to	facilitate	interpretability,	we	then	converted	each	left‐
out	subjects’	predicted	behavior	scores	into	a	standardized	z‐score. 
The mean and standard deviation used for this z‐score is derived 
from the population of predicted behavior scores predicted from 
the	nested	LOOCV	left‐out	participants’	resting‐state	fMRI	that	we	
predicted in the previous step. The final score of the novel subject is 
a z‐score that represents how the novel subject's behavior deviates 
from	 the	 predicted	 behavior	 of	 the	 individuals	 in	 the	 training	 set,	
where each individual prediction in the training set was calculated 
using	a	nested	LOOCV	loop.

After	 each	 participant	 has	 been	 left	 out	 once,	 predictions	 are	
evaluated	 through	 Spearman's	 rank	 correlation	 with	 the	 actual	
scores.	 Although	 we	 normalized	 predicted	 but	 not	 observed	 be‐
havioral	scores,	 this	does	not	affect	the	results	since	we	are	using	
Spearman's	 rank	 correlation,	 which	 only	 considers	 the	 relative	
ordering of behavior and predicted behavior across individuals. 
Although	 there	 exist	 alternative	model	 evaluation	metrics	 such	 as	
mean	 squared	 error,	 correlation	 is	well	 suited	 for	 evaluating	CPM	
models whose predictions should be considered relative rather than 
absolute	(Rosenberg,	Finn,	et	al.,	2016a;	Shen	et	al.,	2017).

Model validation: external datasets

For	external	validation,	the	gradCPT	dataset	was	used	as	the	train‐
ing	 data	 and	 the	ANT	 and	 stop‐signal	 task	 dataset	were	 used	 for	
external validations. The model is built with the gradCPT dataset in 
the same fashion the model was built in the training set of a single 
LOOCV	iteration	in	internal	validation.	The	same	task‐relevant	edges	
selected	within	the	training	set	(gradCPT)	are	used	in	the	testing	set,	
and	 the	 same	PCA	 transformation	 calculated	 in	 the	 training	 set	 is	
applied	on	the	testing	set.	In	other	words,	the	same	trained	model	
used	in	internal	validation	is	used	on	the	external	datasets,	and	the	
external	 datasets	 are	 completely	 independent.	Again,	 the	 number	
of	PCA	components	is	determined	using	a	LOOCV	loop	within	the	
training set (gradCPT).

Just	as	in	internal	validation,	we	convert	each	predicted	behavior	
score	 to	a	 standardized	z‐score. The mean and standard deviation 
used for this z‐score is derived from the population of predicted 

F I G U R E  3   Overview of our predictive 
modeling pipeline. Task‐based information 
flow matrices are used to train a linear 
model that can predict a subject's 
behavior score using his/her resting‐state 
information flow connectome
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behavior scores predicted from the training set (gradCPT) partici‐
pants’ resting‐state fMRI that we predicted in the previous step with 
a	LOOCV	loop.	The	final	score	of	each	subject	in	the	testing	set	is	a	
z‐score that represents how that testing set subject's behavior de‐
viates from the predicted behavior of the individuals in the training 
set,	where	each	individual	prediction	in	the	training	set	was	calcu‐
lated	using	a	LOOCV	loop.

3  | RESULTS

3.1 | Information flow connectivity matrices

Figure	4	 shows	group	averaged	 resting‐state	 full	 information	 flow	
matrices	 across	 the	 three	 datasets.	 In	 each	 of	 the	 three	 datasets,	
the five highest average flows were within the left prefrontal cor‐
tex,	 from	 the	 left	 prefrontal	 cortex	 to	 the	 right	 prefrontal	 cortex,	
from	the	right	prefrontal	cortex	to	the	 left	prefrontal	cortex,	from	
the	right	temporal	 lobe	to	the	 left	prefrontal	cortex,	and	from	the	
left prefrontal cortex to the right temporal lobe. We performed fol‐
low‐up analyses to determine if information flow is correlated with 
Signal‐to‐Noise	ratio	(SNR)	(see	Figure	S2	and	S3	for	further	details).	
We concluded that information flow is not significantly correlated 
with	SNR.	

3.2 | Internal validation results

Model	performance	was	evaluated	using	Spearman's	 rank	corre‐
lation on predicted scores (each calculated as a left‐out subject 
within	 the	 LOOCV	 loop)	 and	 actual	 behavior	 scores.	 Statistical	
significance	was	 evaluated	 through	 a	 10,000‐iteration	 permuta‐
tion test.

We evaluated three different versions of the information flow 
matrices: information flow matrix with no macroscale group restric‐
tion,	full	information	flow	matrix	with	macroscale	group	restriction	
(see	Figure	2),	and	reduced	information	flow	matrices	(see	Figure	2).	
Figure	5	displays	these	results.	Introducing	anatomical	restriction	via	
macroscale grouping when calculating the maximum flow improves 
the predictive power of information flow‐based predictive mod‐
els.	Furthermore,	the	model	with	the	reduced	dimensionality	(from	

268	×	268	node	×	node	to	20	×	20	lobe	×	lobe)	was	the	most	signifi‐
cant at predicting behavior.

Figure	 6	 displays	 the	 results	 for	 the	 reduced	 information	 flow	
matrices	 (the	 rightmost	 model	 in	 Figure	 5).	 The	 model's	 predic‐
tions strongly and significantly correlated with observed behavioral 
scores (ρ	=	0.663,	p =	0.0002).	The	number	of	PCA	components	was	
determined	 through	a	nested	LOOCV	 loop	within	 the	 training	 set	
(see	section	“Model	validation:	Internal	dataset”).	The	selected	num‐
ber	of	PCA	components	used	differs	in	each	iteration	in	the	LOOCV	
loop since the training set of each iteration slightly differs. Out of 
each	of	 the	25	 iterations,	 the	median	 selected	number	of	 compo‐
nents	was	12,	with	a	standard	deviation	of	4.14.

3.3 | External validation results

We applied the model that performed the best in internal valida‐
tion (reduced information flow) to the external validation datasets. 
Just	 as	 in	 internal	 validation,	 model	 performance	 was	 evaluated	

F I G U R E  4  Group	averaged	resting‐state	information	flow	connectivity	matrices	across	datasets.	The	scale	of	the	color	bar	is	in	bits

F I G U R E  5   Results from three different types of flows: full flow 
matrix	with	no	anatomical	restriction	(described	in	Methods),	full	
flow	matrix	with	anatomical	restriction	(described	in	Methods),	and	
the	reduced	flow	matrix	(described	in	Methods).	Here,	we	see	that	
models based on the reduced information flow matrix significantly 
predict individual differences in attentional performance in the 
gradCPT	sample,	whereas	the	models	based	on	the	other	two	flow	
matrices did not yield significant predictions
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using	 Spearman's	 rank	 correlation	 on	 predicted	 and	 actual	 scores	
and	statistical	significance	was	determined	using	a	10,000‐iteration	
permutation	test.	The	number	of	PCA	components	was	determined	
through	a	LOOCV	loop	within	the	training	set	(see	section	“Model	
validation:	External	datasets”).	The	selected	number	of	components	
in	the	external	validation	model	was	12,	which	was	the	same	as	the	
median selected number of components in the internal validation 
model. The results across the three external datasets are shown in 
Figure	7.

The	 ANT	 and	 stop‐signal	 task	 datasets’	 predictions	 were	 sta‐
tistically	 significant	 (ANT:	 ρ	 =	 −0.31,	 p=0.0225; stop‐signal task: 
ρ	=	0.34,	p =	0.0015).	Note	that	the	ANT	correlation	coefficient	 is	
negative,	because	our	CPM	model	was	trained	to	predict	gradCPT	
performance,	so	higher	predicted	scores	correspond	to	better	sus‐
tained attention. RT variability is negatively associated with sus‐
tained	attention,	so	we	expect	model	predictions	 to	be	negatively	
correlated	with	ANT	performance	scores.

3.4 | Distribution of predictive flows

Figure	 8	 shows	 the	 distribution	 of	 flows	 that	 were	 included	 in	
the predictions in external validation colored by their contribu‐
tion to the linear model. The final model used for external valida‐
tion	tuned	the	number	of	principal	components	to	12,	which	was	
found	 by	 optimizing	 the	 LOOCV	 predictions	 within	 the	 training	
set.	 In	Figure	7,	a	flow's	contribution	was	calculated	by	summing	
the absolute value of its weight in a principal component across 
all 12 components. The connections that contributed the most to 
the principal components were between the right temporal lobe 
and	left	prefrontal	cortex,	from	the	right	temporal	lobe	to	the	left	
cerebellum,	and	from	the	left	prefrontal	cortex	to	the	left	occipital	

lobe.	Out	 of	 all	 400	 flows	 in	 the	 information	 flow	matrix,	 20	 of	
those flows (one for each of the 20 regions) measure information 
flow	within	a	certain	region	(“within	flows”).	The	only	within	flow	
that was found to be predictive of behavior was the flow within 
the left occipital lobe.

3.5 | Comparison with previous results

Figure	9	compares	the	current	study's	results	with	previously	pub‐
lished predictions on the same datasets. We compared our model 
with other studies that trained models on task‐based fMRI data and 
applied models to novel participants’ resting‐state fMRI. Results 
demonstrate that predictions based on information flow perform 
comparatively to predictions that were based on more traditional 
measures	of	functional	connectivity.	Although	information	flow	does	
not perform strictly better than measures used in the previous stud‐
ies,	it	is	important	to	highlight	that	information	flow	in	addition	the‐
oretical	 capability	 of	 capturing	 nonlinear	 relationships.	 Therefore,	
due to its theoretical advantages in nonlinear analyses and network 
structure	analysis	and	its	success	in	predicting	behavior,	information	
flow may be a potentially useful measure of functional connectivity.

4  | DISCUSSION

In	this	study,	we	proposed	a	new	measure	of	functional	connectivity	
“information	flow”	that	abstracts	the	brain	as	a	flow	network	of	bits	
and	quantifies	functional	connectivity	as	the	amount	of	bits	flowing	
between regions. We validate this proposed measure by using a ma‐
chine‐learning framework to build a model that predicts individual 
differences	in	behavior.	Specifically,	we	utilized	an	approach	similar	

F I G U R E  6   Internal validation results. Predicted and actual d′	results	were	correlated	using	Spearman's	rank	correlation.	Statistical	
significance was determined by randomly permuting subjects’ d′	scores	for	10,000	iterations,	repeating	the	prediction	analysis,	and	
determining the fraction of correlations between predicted and actual scores that were as extreme as the original data. The relationship 
between observed and predicted d′ scores remains significant in permutation testing if the two lowest predicted d′ scores are excluded 
(ρ =	0.568,	p =	0.0048)
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to	that	of	Yoo	et	al.	(2018)	of	building	a	connectome‐based	predictive	
model	(Shen	et	al.,	2017)	to	predict	individual	attention	scores	across	
three independent datasets. Our CPM was able to use information 
flow to predict attention scores of novel individuals in three datasets 
(gradCPT,	ANT,	and	SST)	from	resting‐state	fMRI	data.	These	results	
show a proof of principle that demonstrates that information flow can 
help	characterize	functional	brain	organization	relevant	to	behavior.

Information flow accomplishes nonlinear analysis of signals via 
the use of TE. Previous research has shown that nonlinear analysis 
of	fMRI	signals	can	reveal	results	that	linear	analysis	cannot.	For	ex‐
ample,	Su	et	al.	(2013)	found	that	functional	connectivity	calculated	
from	nonlinear	methods	differentiated	schizophrenic	patients	from	
healthy patients with higher accuracy than that of linear methods. 
They also found that the strength of certain nonlinear functional 
connections	increased	in	patients	with	schizophrenia,	whereas	their	
linear	 counterparts	 did	 not.	 Thus,	 it	 is	 important	 that	 information	
flow	is	able	to	predict	behavior	as	well	as	Pearson's	correlation,	be‐
cause it will have the added theoretical advantage of being able to 
elucidate nonlinear interactions that linear methods would not be 

able	to.	Here,	we	provide	a	proof	of	concept	that	information	flow	
predicts	individual	differences	in	attention.	Future	work	may	explore	
whether nonlinear interactions captured by information flow offer 
benefits for predicting other behaviors and cognitive abilities across 
a variety of contexts.

Information flow abstracts the brain as a flow network of nodes 
that	send	bits	of	information	to	each	other.	To	quantify	how	much	
information	 is	 flowing	 between	 particular	 regions,	 we	 used	maxi‐
mum	flow.	In	internal	validation,	we	tested	three	different	types	of	
information flow: the full (node by node) information flow with no 
anatomical	restriction,	the	full	(node	by	node)	information	flow	with	
anatomical	restriction,	and	reduced	(lobe	by	lobe)	information	flow	
(see	Figure	5).	We	saw	that	reduced	information	flow	was	the	most	
significant at predicting behavior.

In	general,	the	macroscale	grouping	used	for	maximum	flow	plays	
an important role in calculating information flow. We used the lobe 
groupings,	which	capture	the	gross	anatomy	of	the	brain	and	facilitate	
interpretability. We used the lobe grouping rather than a grouping fo‐
cused	on	brain	function,	such	as	the	functional	networks	described	

F I G U R E  7  External	validation	results	for	Attention	Network	Task	(ANT)	and	methylphenidate	(MPH).	Both	ANT	and	MPH	predictions	
were	statistically	significant.	All	relationships	between	observed	and	predicted	behavioral	scores	are	in	the	expected	direction,	as	gradCPT	
d′	and	stop‐signal	go	rate	scores	correspond	to	better	attention	but	higher	ANT	RT	variability	scores	correspond	to	worse	attention
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in	Finn	et	al.	(2015),	because	we	wanted	to	introduce	groupings	that	
would provide an anatomical constraint to the paths of information 
flow. We saw that providing such an anatomical constraint helped 
the	predictive	models’	performance	(Figure	5).	We	also	used	the	lobe	
groupings	to	reduce	the	flow	matrix	(Figure	2f),	because	we	observed	
in internal validation that having a smaller feature space helps pre‐
dictive	models	(Figure	5).	There	are	other	types	of	groupings,	some	

based	on	anatomy	and	some	based	on	function,	that	may	better	cap‐
ture	macroscale	 brain	 organization	 and	 improve	 behavioral	 predic‐
tions. Testing other macroscale groups is a useful future direction. It 
is also possible to calculate information flow without restrictions as 
we	have	done	in	this	study	(see	Figure	5).	However,	the	calculation	of	
information	flow	without	restrictions	(i.e.,	without	applying	a	macro‐
scale	grouping)	is	computationally	intensive	given	that,	for	each	flow	
calculation,	edges	spanning	 the	entire	whole‐brain	graph	are	 taken	
into account. We showed here that one can use macroscale groups to 
reduce	the	computation	time	and,	in	some	cases,	obtain	numerically	
better prediction results. Whether or not to use macroscale groups 
and impose restrictions on the amount of edges used in the calcula‐
tion of each flow in order to reduce the computation time depends on 
the user of the method and their specific data.

We	use	CPM	(Finn	et	al.,	2015;	Rosenberg,	Finn,	et	al.,	2016a;	Shen	
et	al.,	2017)	in	order	to	predict	behavior	from	functional	connectivity	
measured	by	information	flow.	Unlike	other	studies	that	use	CPM,	we	
used	PCA	to	aggregate	features	before	inserting	them	it	into	a	linear	
model	(see	Figure	3),	whereas	other	studies	take	the	sum	of	the	fea‐
tures	(Rosenberg,	Finn,	et	al.,	2016a)	or	use	partial	least	squares	regres‐
sion	(Yoo	et	al.,	2018).	We	used	PCA,	instead	of	the	feature	aggregation	
methods	used	in	previous	studies,	because	we	saw	that	it	had	numeri‐
cally	the	highest	performance	in	internal	validation	(see	Figure	S1).

It is certainly possible to use other flow constructs to abstract 
the	brain	as	a	flow	network	of	bits.	For	example,	the	minimum	cost	
flow problem involves finding the cheapest way of sending a certain 
amount	of	flow	through	a	flow	network	(Ahuja	et	al.,	2014).	Rather	
than	modeling	the	brain	as	a	flow	network	designed	to	maximize	the	

F I G U R E  8   Distribution of flows included in the final predictive 
model in external testing. The connections are colored by their 
relative	contribution	to	the	model.	A	flow's	contribution	was	
calculated by summing the absolute value of its weight in a principal 
component across all components

F I G U R E  9  Comparison	of	our	results	with	those	of	previous	studies.	We	compared	our	model	to	other	models	that,	like	our	model,	
were	trained	on	task‐based	fMRI	and	applied	to	resting‐state	fMRI	data.	Yoo	et	al.	(2018)	compare	different	models,	so	just	as	we	used	the	
model	that	performed	best	in	internal	validation,	and	we	compared	the	model	in	Yoo	et	al.	(2018)	that	performed	best	in	internal	validation	
when	trained	on	task‐based	fMRI	and	applied	to	resting‐state	fMRI.	Note	that	we	previously	evaluated	predictions	based	on	Spearman's	
correlation.	However,	since	previous	publications	were	evaluated	based	on	Pearson's	correlation,	all	the	results	reported	here	are	with	
Pearson's correlation



12 of 13  |     KUMAR et Al.

number	of	bits	transported	across	regions,	it	is	possible	that	we	can	
instead model the brain as a flow network designed to flow a certain 
number of bits as efficiently as possible. Depending on one's specific 
data,	it	may	be	worth	considering	modeling	information	flow	using	
different solutions than used for the maximum flow problem.It is also 
important to reiterate that when we discuss the transfer of bits of in‐
formation	via	TE,	we	refer	to	predictive	information	transfer,	which	
is distinct from causal	 information	 transfer	 (Lizier	 &	 Prokopenko,	 
2010). Predictive information transfer between brain regions is a sta‐
tistical concept that does not imply that a physical connection causes 
measured	information	transfer.	Although	we	cannot	use	TE	to	infer	
causal effects or the existence of physical processes between dif‐
ferent	brain	regions,	predictive	information	transfer	can	be	useful	in	
predicting	behavior.	Lizier	&	Prokopenko	(2010)	describe	predictive	
information transfer and causal information flow (or causal effect) as 
two	useful,	but	distinct,	concepts.	In	a	complex	system,	causal	infor‐
mation flow is a microlevel property that can study causal relation‐
ships within the details of the system and can only be determined 
by	 intervention	 in	 the	 system.	 In	 contrast,	 predictive	 information	
transfer is a macrolevel property that can study the emergent com‐
putation	of	the	system.	In	its	microlevel	viewpoint,	causal	effects	are	
not	effective	in	studying	the	emergent	computation	of	the	system,	
because intervening in a system to study certain variables’ causal 
relationships blocks the influence of other variables that are relevant 
to the emergent computation. When we use information flow in this 
study,	we	 are	 using	 predictive	 information	 transfer	 to	 predict	 the	
emergent	computation	of	the	brain,	which	is	behavior.

We used maximum flow to consider the topological structure 
underlying the nodes when estimating their functional connectiv‐
ity.	However,	using	maximum	flow	has	some	disadvantages.	First,	
the algorithm needs capacities for each edge: the maximum amount 
that can flow directly within that edge. We used pairwise transfer 
entropies	between	nodes	as	those	capacities,	but	we	cannot	infer	
the	true	capacity	of	direct	information	transfer.	Therefore,	each	TE	
value can only serve as a lower bound on the amount of informa‐
tion	transfer	possible	between	those	nodes.	Additionally,	when	we	
use maximum flow from node A to node B,	we	are	only	describing	
the maximal amount of information that could flow from node A to 
node B.	Therefore,	in	a	situation	such	as	that	depicted	in	Figure	1,	
the information flowing from A to B may be independent of the in‐
formation from B to C.	In	other	words,	our	measure	of	information	
flow does not measure the exact amount of information flow be‐
tween	regions,	but	measures	a	lower	bound	on	the	maximal	amount	
of information flow between regions. It is also important to empha‐
size	 that	we	are	not	 claiming	 that	 information	 flow	 is	necessarily	
better than more traditional measures to functional connectivity 
such	as	the	Pearson	correlation.	 Instead,	we	are	presenting	infor‐
mation flow as a new measure that has capabilities of measuring 
nonlinear	 interactions,	 has	 graph‐theoretic	 analysis,	 and	 can	 be	
successful in predicting behavior from brain data. Despite the lim‐
itations,	the	current	results	demonstrate	that	comparing	the	lower	
bound of the maximal amount of information flow across people 
can help us predict individual differences in behavior.
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