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Compaction of quasi-one-dimensional elastoplastic
materials
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Insight into crumpling or compaction of one-dimensional objects is important for

understanding biopolymer packaging and designing innovative technological devices. By

compacting various types of wires in rigid confinements and characterizing the morphology of

the resulting crumpled structures, here, we report how friction, plasticity and torsion enhance

disorder, leading to a transition from coiled to folded morphologies. In the latter case, where

folding dominates the crumpling process, we find that reducing the relative wire thickness

counter-intuitively causes the maximum packing density to decrease. The segment size

distribution gradually becomes more asymmetric during compaction, reflecting an increase of

spatial correlations. We introduce a self-avoiding random walk model and verify that the

cumulative injected wire length follows a universal dependence on segment size, allowing for

the prediction of the efficiency of compaction as a function of material properties, container

size and injection force.
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C
ompaction of slender objects in confined geometries is
ubiquitous in nature. Perhaps the most important example
is DNA packaging in viral and bacteriophage capsids and

cell nuclei1–5. Other pertinent examples are the folding of insect
wings in cocoons6, and flower or plant leaves in buds7. The
process of compaction may result in complex morphologies
depending on the applied forces and constraints8. Recent
numerical studies9–13 showed that the space-filling properties of
two-dimensional (2D) crumpled sheets are influenced by
parameters such as self-avoidance and plasticity–ingredients
that are difficult to disentangle in experiments. Self-avoidance
alters the hierarchical nature of the compaction process and
induces stronger self-correlations as the compression
increases13,14. Thus, considering the structural evolution is key
for understanding the efficiency of in vitro compaction.

Aiming to provide quantitative insights into the role of
self-avoidance, we turn to one-dimensional (1D) wires. Due to
its very nonlinear nature it is easier to study 1D systems than the
more complicated crumpling process in 2D sheets13,15–17. For
1D-compaction, how the morphology of crumpled objects
develops is of particular importance in technological and
biological applications as, for example, in endovascular coiling
treatment of cerebral aneurysms18 or in packing of DNA19.

When compacting elastic low-frictional wires with a high
bending rigidity in confined geometries in such a way that the
internal torsion is released, highly ordered structures with
distinctly oriented subdomains of parallel coils form (Fig. 1).
However, with increasing friction20 or plasticity9, or by
accumulating torsion during the packing process21,22,
disordered structures emerge where the contribution of folds or
bends in the morphology is more pronounced. For example, by
introducing the number of segments as the order parameter, it
has been recently shown that a sharp transition from ordered
(coiled) to disordered (folded) structures occurs as the friction
increases20. In disordered morphologies, the compaction
efficiency is controlled to a large extent by spatial exclusion
effects, which continuously evolve in the course of compaction.
Hence, unravelling the mechanisms that govern the evolution of
self-avoidance is crucial to achieve an efficient compaction.

Here, we study the morphologies of wires packed into rigid
spherical containers and find that the maximum packing density
in disordered structures decreases with reduced thickness of the
wire (or, equivalently, increasing the container size). To elaborate
on the underlying mechanisms leading to this peculiar behaviour,
we isolate the influence of self-avoidance by focusing on the
compaction of plastic frictional wires, where folding is dominant
in the resulting structure. By following the morphological
evolution, a gradual crossover from random to correlated folding
events is observed due to spatial exclusion effects. We propose
that the compaction can be considered as a confined self-avoiding

random walk (SAW). In such far-from-equilibrium processes,
the imposed constraints and initial conditions do not
uniquely determine the final crumpled state. Instead, there is an
ensemble of admissible configurations, from which some
structural properties of the system can be derived. We introduce
a SAW sampling method that successfully accounts for the time
evolution of the wire segment length. We thus present a more
complete understanding of the compaction: the maximum length
of the injected wire can be estimated from the geometry and
imposed constraints for a given set of material parameters.

Results
Universal phase diagram for 1D crumpling. We first consider
the packing of elastic low-frictional wires with a high bending
rigidity in rigid spherical containers. When the wire is allowed to
axially rotate at the injection point to release the torsion during
the packing process, highly ordered coils form as the wire
relaxes towards a global minimum energy. By hindering the
release of torsion, the wire buckles more frequently to free elastic
energy. Hence, the packing process becomes less ordered21,
leading to warped structures similar to those obtained
numerically for compaction of DNA molecules in phage
capsids4 (see Figs 1 and 2a). The disorder is also enhanced by
friction, which causes the wire to resist against sliding and to
randomly bend due to local constraints20. Another property
which obviously affects the morphology is the degree of plasticity
of the wire. While the bending rigidity of the plastic wires can be
quite high, their yield stress is relatively low, leading to structures
with rather straight segments and sharp turnings. Upon
increasing plasticity (that is, lowering the yield stress), the
irreversible deformations of wire increase the disorder of the
crumpled configuration. One can map out a qualitative phase
diagram for the morphological evolution of the resulting
crumpled structures in the space of wire properties (friction,
torsion and plasticity), as depicted in Fig. 2b. More generally,
disordered structures can be generated in diverse ways by tuning
the wire or container properties. The morphological phase space
indeed contains additional degrees of freedom associated with
container properties, such as its flexibility20, shape23 or the degree
of confinement imposed by it (characterized by the container size
R relative to the radius of gyration Rg of the crumpled structure
and also to the persistence length l of the elastic wire). For
example, a biopolymer coils itself inside the cage if l is
comparable to R (for example, in packing of DNA in
icosahedral bacteriophages), while for weak confinement, that
is, looRgoR, the biopolymer chain (such as chromatin) has a
relatively low bending stiffness and behaves as a SAW without
‘feeling’ the boundaries. For l values in between, the
morphological evolution during the crumpling process is

2r

R

Elastic – low torsion/friction Elastic – high torsion Plastic – low friction Plastic – high friction

a b

Figure 1 | Experimental set-up and examples of distinct morphologies. (a) Cross-sectional view of the experimental set-up used to compact 1D wires in a

spherical rigid container. (b) Distinct morphologies obtained by compacting wires with different material properties introduced in the Methods section.

Scale bar, 1 cm.
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complicated due to varying combined effects of self-avoidance
and interactions with boundaries19,24. It has been also shown that
a transition from coiled to disordered configurations occur, as the
accessible space reduces during the compaction of elastic rods25.

To compare the compaction efficiencies, we measure the
packing density once the injection of wire eventually stops.
Indeed, the value obtained for this maximum packing density,
fmax, depends on the wire radius r, the container size R and the
insertion force. We measure this quantity for a given insertion
force and for different combinations of inserted wire radius r
and container radius R. When plotting fmax versus the
non-dimensional system size R

r for the coiled compact morphol-
ogies of low-plasticity, low-friction, low-torsion wires (Fig. 2c), a
plateau at small R

r followed by a weak decrease at larger values of R
r

is observed. It was shown with geometrical arguments22 that fmax

slightly decays with R
r for a purely coiled structure in a spherical

container. Note that the very inner core of the structure
practically becomes disordered as the accessible space reduces
and its shape becomes more irregular (which makes the
formation of coils more difficult). This disordered core (with a
possible R

r-dependent size) can also contribute to the weak decay
of fmax versus R

r . It has been shown that the packing fraction
decreases with increasing disorder in packings of elastic wire26.

When increasing plasticity, friction and/or torsion, resulting in
the formation of folds and bends, the data collapse onto curves
following a power-law fmax�ðR=rÞ� a¼D� 3, with D being the
fractal dimension27,28. The slope of the curve depends on the

degree of disorder. For example, lubricating the inner wall of the
container with silicon oil leads to the formation of highly ordered
coils at the outer layer of crumpled plastic wires, which results in
a mixed coiled-folded structure with a ’ 0:38� 0:03. A similar
exponent is obtained for the compaction of elastic torsional wires
where coils and bends coexist. The steepest descent is observed
for crumpling of plastic wires at high friction, where coils are
absent and folding is the dominant process (a ’ 0:52� 0:05).
While the very weak system-size dependence of efficient
compaction in ordered (coiled) structures is understandable, the
behaviour of disordered morphologies is counter-intuitive, as one
would expect that relatively thinner wires more flexibly fill a given
container, leading to a higher compaction efficiency. A similar
trend for the dependence of packing density on the relative
system size was reported in experiments on DNA packaging in
viral capsids29, revealing that in spite of the huge differences in
length scales of the two systems, the maximum packing densities
behave similarly in the presence of disorder. Self-avoidance
inside a confinement can explain the peculiar behaviour of
fmax versus R

r via a mean-field interpretation, assuming that the
self-avoidance energy originates mainly from the homogeneously
distributed binary contacts between the wires (whose density
nearly grows as the square of the packing fraction), and also
supposing that the local radius of curvature of the confinement is
comparable to the container size and varies slowly. When
balancing the confining energy and self-avoidance30–32, the
lowest (harmonic) approximation of the confining energy yields
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Figure 2 | Morphological phase diagram and scaling of geometrical characteristics. (a) Examples of morphological differences upon increasing key

material parameters. (b) Schematic morphological phase diagram in the space spanned by torsion, friction and plasticity. (c) The maximum packing density

fmax versus the relative system size R
r (parameters defined in Fig. 1a). (d,e) Scaling of the number of bends N (d), and the dimensionless mean segment size

‘h i
R (e) versus the effective system size R

r , for plastic frictional wires. The filled circles (open triangles) indicate experimental (simulation) results. The dashed

lines are power-law fits to the experimental data. The crosses denote the simulation results obtained when assuming that the packing fraction is the

influential parameter on the self-avoidance effects. The open circles in (d) show the experimental results obtained from the high frictional set-up. Error bars

correspond to s.d. of five separate measurements.
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an energy density of the order of ðRrÞ
� 1 while the self-avoidance

energy density is proportional to f2�ðRrÞ
� 2a. By equalizing these

energy densities we obtain f�ðRrÞ
� 0:5.

Segment size statistics. To better understand the influence of
disorder, we choose plastic frictional wires to avoid ordered
coils and create the highest possible disorder in the crumpled
structure. After compacting the wires, we open the moulds and
investigate the resulting compacted structures by analyzing
the folding statistics. The points of folding were often determined
by sharp changes of wire orientation. If they were not easily
distinguishable, then a minimum threshold of 90� for the turning
angle of the wire, and a maximum threshold of R

2 for the radius of
curvature were imposed. We cut the wire at each of the folding
points, straighten the segments and measure their length.
Straightening of the curved segments rarely allows for segment
lengths ‘ longer than the container diameter, but we checked that
the maximum segment length ‘max remains smaller than pR in
the absence of coils. We preserve the order of the wire segments
and average the results over five realizations for each value of R/r
to obtain the sequence of the segment lengths ‘n.

A key observation is the scaling of the total number of segments
N with the effective system size R

r . Similar scaling laws were reported
for 2D packings of wires27,30,33. As shown in Fig. 2d, a power-law
relation of the form

N � R=rð Þb ð1Þ
holds with b¼ 1.86±0.03 for smooth wire and container with
wire–wire and container-wire friction coefficients mww ’ 0:2 and
mcw ’ 0:4, respectively. The exponent can be understood by
considering the wire crumpling process as a SAW in confinement.
For comparison, for the number of steps on a cubic lattice in an
ordinary random walk b equals 2, while for SAW b ’ 5=3
(ref. 34). The fact that we find an exponent in between these two
values can be understood because there is a gradual evolution of
spatial correlations over the course of crumpling (see below), thus,
the exponent continuously decreases from 2. However, the wires
can slide over each other due to the finite friction so that the self-
avoidance constraint is only partially fulfilled. For comparison, we
repeated the experiment by roughening the plastic wires and the
inner surface of the moulds to increase the friction coefficients to
mww ’ 0:45 and mcw ’ 0:45. The considerable change in the
wire–wire friction resulted in a smaller exponent b¼ 1.75±0.05
which is closer to the pure self-avoidance limit (see Fig. 2d).
From the scaling of fmax and N with R

r one expects that
the normalized mean segment size ‘h i

R follows ðRrÞ
� 0:4, as

confirmed by the experimental results in Fig. 2e.

Evolution of spatial correlations. At earlier stages of the
crumpling process in a given mould, the injected wire proceeds in
the container without interacting with the accumulated wire.
Assuming that the plastic wire bends at a random point between
the injecting hole and a contact point at the container surface, the
resulting segment length ‘ is a random variable, symmetrically
distributed between 0 and the maximum possible segment length
‘max. By increasing the total length L of accumulated wire, spatial
exclusion effects grow and the injected wire cannot easily proceed
through the sphere without touching the crumpled structure.
Hence, long segments gradually become less probable and the
probability distribution P ‘

R

� �
of the normalized segment size

becomes more asymmetric due to relatively large populations of
smaller segments (see Fig. 3a). When comparing the final struc-
tures (that is, those obtained when the injection of wire stops), we
interestingly find that for larger values of R

r the segment size
distribution P ‘

R

� �
is more asymmetric and shifts towards smaller

segment sizes (Fig. 3b). This behaviour similarly indicates the
growth of spatial exclusion effects with increasing R

r . Note that the
initial segment sizes ‘ are only determined by the container size R
in all containers, however, ‘ gradually decreases as the spatial
exclusion effects grow. The effect is more pronounced for larger
spheres as the crumpling process continues further.

Self-avoiding random walk model. We argue that the strength of
self-avoidance effects is indeed captured by the total length L of
the injected wire, rather than the total volume excluded by it (that
is, the packing fraction). The exclusion effect that an inserted
rod-like object experiences inside a crumpled structure is
effectively determined by the projection of the crumpled wire on
a plane perpendicular to the direction of insertion. Therefore, the
total length and the thickness of the crumpled wire are expected
to be the influential parameters. However, the circular cross-
section of wires reduces the contact area between the touching
wires and, thus, the effective frictional force between them. As a
result, the self-avoidance effects are not proportionally increasing
with the wire thickness (that is, r). We conclude that the entire
contribution to the spatial exclusion constraint can be attributed
to the length of wire, reflected in the dimensionless quantity l¼ L

R
which grows as l� R

r

� �1:5
(while f decreases as f� R

r

� �� 0:5
). In

the following, we simulate the folding process as a SAW of the
wire inside the confinement. While the existing SAW algorithms
mainly follow stochastic Markovian dynamics to sample the
ensemble of trajectories on regular lattices, here we propose an
alternative approach which accounts for the time evolution of the
step size ‘. We suppose that the strength of self-avoidance effects
after the n-th segment is mainly controlled by the length Ln of the
inserted wire, that is, the larger is the parameter ln¼ Ln

R , the
smaller is the success probability for the segment nþ 1 to be a
long one. The size ‘nþ 1 of the next segment is obtained via the
following algorithm: a trial segment size ‘ is chosen randomly
within 0; ‘max½ �, with ‘max being the maximum segment length
obtained in experiments for a given value of R. The proposed ‘ is
accepted according to a Metropolis-like criterion with probability

Pnþ 1ð‘Þ¼N � 1exp �kln‘=R½ �; ð2Þ
where N¼ R

kln
1� exp � kln‘max=R½ �ð Þ is the normalization factor.

The coefficient k depends on wire properties and is treated as a free
parameter to take into account the partial fulfillment of the self-
avoidance constraint due to sliding of the wires. While the expo-
nents are not affected by the choice of k, by fitting it we can
quantitatively reproduce the experimental data. For the sake of
simplicity, here we used a single averaged value of k to reproduce all
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Figure 3 | Probability distribution of the normalized segment size.

The symbols (lines) represent the experimental (simulation) results for

r¼0.5 mm. (a) results obtained by injecting wires of different total length

L into a container with radius R¼ 14.5 mm. (b) results of injecting the

maximum possible length of wire (when applying the insertion force of

nearly F¼ 100 N) in different container sizes R.
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the experimental data. In the case of rejection, a new ‘ is tried.
Finally, the cumulative length is updated as Lnþ 1¼Lnþ ‘ before
starting the next step. Equation (2) assumes an exponentially lower
acceptance chance for larger trial lengths ‘. Moreover,
the acceptance probability decreases with increasing ln, as the self-
avoidance effects become more pronounced. The method samples
the segment-length landscape according to a Boltzmann-like dis-
tribution. Initially, the wire walks in free space (ln¼ 0), thus,
Pnþ 1ð‘Þ¼ 1

‘max
independently of the trial length ‘. However, larger

values of ‘ become gradually less probable with increasing ln. We
perform extensive Monte Carlo simulations by adjusting ‘max and
the threshold value of f to the experimental data. The results shown
in Figs 2 and 3 are in remarkable agreement with experiments. We
checked that the power-law scalings cannot be reproduced when
replacing ln with fn in equation (2) (see Fig. 2d,e). Notably, the
numerical predictions for the total wire length L differ less than 4%
from the experimental values for all system sizes.

In Fig. 4 we take a closer look at the tail of P ‘
R

� �
obtained from

the numerical simulations. While Gaussian function represents
the distribution of random uncorrelated data, gamma and log-
normal functions are respectively associated with random events
in the presence of self-correlations and those that occur
hierarchically8,11,13,35–37. Since the noisy data of the
experimental tail prevents any conclusive statement on the tail
behaviour of P ‘

R

� �
, we plot these three functions (with the same

mean and variance as the experimental data) and use them as
guidelines to demonstrate the trend of the tail behaviour obtained
from the numerical simulations. We investigate the evolution of
the tail during the injection of wire in a given container, and also

compare the tails when the maximum possible length of wire is
injected in different container sizes. As shown in Fig. 4, the tail is
better captured by the Gaussian for small R

r or at the early stages
of crumpling, while there is a gradual crossover towards the
Gamma distribution, either by increasing the container size or by
increasing the length of the injected wire. Thus, self-correlations
are the dominant underlying mechanism here. A hierarchical
folding mechanism is expected to cause a rather stable log-normal
distribution tail over all timescales, thus, the evolution of the tail
is in favour of evolving correlated events. It has been previously
shown numerically13 and by compacting of rods in 2D
experiments14, that self-avoidance alters the hierarchical nature
of crumpling at high compression and induces self-correlations.

The cumulative length Ln of the inserted wire after the n-th
segment qualitatively collapses onto a master curve for different
values of R

r (Fig. 5). The segments are initially independent of each
other and Ln/R grows linearly with n. The steps however become
more correlated with increasing n, leading to a slower growth of
Ln/R. A similar reduction of the slope has been recently observed
for motor-driven viral packaging38. From the scaling of f and N
with R

r , one obtains the asymptotic scaling L=R�N0:8, which is
consistent with experiments [see Fig. 5(inset)]. Starting from
‘1h i¼ ‘max

2 , the mean segment size at next steps can be estimated in
terms of Ln as

‘nþ 1h i¼
Z ‘max

0
Pnþ 1ð‘Þ‘d‘¼

R
kln
þ ‘max

1� ekln‘max=R
: ð3Þ

Hence, we obtain the following recursive analytical expression for
the injected length of wire after the n-th segment

Ln

R
¼ ‘max

2R
þ
Xn� 1

i¼1

R
kLi
þ ‘max=R

1� exp k‘maxLi=R2½ �

� �
; ð4Þ

in excellent agreement with the data as shown in Fig. 5(inset).

Buckling threshold. The inset of Fig. 6 shows that the injection of
wire eventually stops at a cutoff segment length ‘c which is
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independent of R for a given r. It follows that the process stops
when the segment size becomes so small that the applied feeding
force F exceeds the maximum power of the motor. The minimum
threshold length can be obtained from the Euler buckling theory

as ‘c¼
ffiffiffiffiffiffi
p3Y
16F

q
r2 so that ‘c is determined by the insertion force and

wire properties (Young’s modulus Y) and is independent of R. For
r¼ 0.3 mm (0.5 mm) and a maximum insertion force of nearly
F¼ 100 N in our set-up, we obtain ‘c ’ 2:2 mm (6.0 mm), close
to the experimental values of 2.3 and 5.8 mm [Fig. 6(inset)].

Figure 6 interestingly evidences a universal filling mechanism
independent of R. The normalized cumulative wire length Ln/R
vs. the normalized length of the n-th segment ‘n=R collapses onto
a universal curve for different values of R

r . As the wire injection
continues, ‘n=R gradually decreases until it reaches the minimum
threshold value ‘c=R, where the process eventually stops. For a
given value of r, ‘c is independent of R, thus, ‘c=R decreases (that
is, shifts to the left in Fig. 6) with increasing R. Consequently, the
cutoff number of the steps at which the process stops increases
with R. By calculating ‘c from the insertion force and wire
properties, one can predict the total length of crumpled wire for
different R. The data collapse is also obtained when injecting
wires of different total length L into a given container (dashed
lines in Fig. 6). Indeed, there is no significant difference between
the sequence of the segment sizes ‘n for different total lengths of
the injected wire. This shows that the previously formed segments
are not considerably affected during the compaction process,
evidencing that the hierarchical folding events rarely happen.

In summary, we reported the compaction of 1D objects in
spherical containers and showed how the morphology evolves from
ordered (coiling) to disordered (folding and bending) structures in
the phase space spanned by friction, torsion and plasticity. The
disorder reduces the compaction efficiency and causes a nontrivial
system-size dependence, which is explained by SAWs in confined
geometries. Monitoring the evolution of segment-length

distributions in highly disordered structures of plastic frictional
wires showed that the compaction process is correlated: the longer
the injected wire, the stronger the spatial exclusion effects leading to
shorter segments. The self-avoidance constraint is only partially
fulfilled due to sliding of the wires, leading to an exponent b slightly
larger than 5/3 as reported for SAWs. Our results provide new
insight into underlying mechanisms of crumpling beyond the
simple hierarchical description of the process, which also helps to
better understand the reverse processes, for example, viral DNA
ejection39 and unpacking of crumpled wires40. While more detailed
morphological information can be obtained via Discrete-Element
Method (DEM) simulations, these are however computationally
expensive. Our proposed sampling method opens the door to
relatively simple Monte Carlo simulations of SAWs inside arbitrary
confinements to obtain some of the macroscopic quantities of
interest for example, the arbitrary moments of segment size
distribution.

Methods
Experimental set-up. The experimental set-up consists of a rigid hollow spherical
container of inner radius R with a small hole to insert the wire (see Fig. 1). Several
transparent polymeric moulds with radii RA[4,30 mm] were used. A small nozzle
and two counterrotating rollers were attached to the injecting hole to facilitate the
control of the insertion speed.

Material properties. As a model elastoplastic material, we chose solder wire
Sn60Pb40 with Young’s modulus YE30 GPa and yield stress sE28 MPa. For the elastic
wire experiments, we mainly used fishing line with Young’s modulus Y¼ 2.00±0.01
GPa (obtained experimentally by tensile tests). Moreover, elastic silicon wires and
cotton threads with relatively lower Young’s moduli YE5.0 and 0.8 MPa were also
used. The wire–wire and container-wire friction coefficients, using smooth wires and
container walls, were mww¼ 0.20±0.02 and mcw¼ 0.40±0.02, respectively. By
roughening the plastic wires and the inner surface of the polymeric moulds with
sandpaper, we obtained higher friction coefficients mww¼ 0.45±0.02 and
mcw¼ 0.45±0.02. We also used smooth lubricated plastic wires and inner surfaces of
the moulds to lower the friction coefficients, leading to mww¼ 0.12±0.02 and
mcw¼ 0.18±0.02. The lubrication was done with silicon oil.

Insertion process and imaging. We inserted wires of radius r¼ 0.4, 0.5, 0.6, 0.8 or
1.4 mm into the moulds with a slow feeding speed of about 1 mm s� 1 to avoid
inertial effects. We checked that the results are independent of the feeding speed in
the quasi-static compaction regime. The insertion process continued with the
constant speed until the insertion force exceeded the power threshold of the motor
and the wire buckled outside of the container. The final plastic-wire structure
preserves its shape after opening the mould allowing for a detailed analysis of
morphological changes, which can be considered as plastic deformations. In the
low-torsion elastic set-up, we allowed axial rotation of the wire between the nozzle
and the sphere. The images presented in Figs 1 and 2 were taken by a camera with
pixel resolution of 70mm. Before opening the moulds, we filled them with a
transparent gel in the case of elastic wires to preserve the shape of the final
structure.

Data availability. The data that support the findings of this work are available
from the corresponding authors on request.
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