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Abstract: The fabrication processes for silicon nitride photonic integrated circuits evolved from
microelectronics components technology—basic processes have common roots and can be executed
using the same type of equipment. In comparison to that of electronics components, passive photonic
structures require fewer manufacturing steps and fabricated elements have larger critical dimensions.
In this work, we present and discuss our first results on design and development of fundamental
building blocks for silicon nitride integrated photonic platform. The scope of the work covers the
full design and manufacturing chain, from numerical simulations of optical elements, design, and
fabrication of the test structures to optical characterization and analysis the results. In particular,
technological processes were developed and evaluated for fabrication of the waveguides (WGs),
multimode interferometers (MMIs), and arrayed waveguide gratings (AWGs), which confirmed the
potential of the technology and correctness of the proposed approach.

Keywords: silicon nitride; photonic integrated circuits; silicon photonics; arrayed waveguide grating;
generic technology; photonic sensors

1. Introduction

In the last two decades, photonic integrated circuits (PICs) attracted significant re-
search interest and took an increasingly stronger position in the market, especially in the
fields of telecom, datacom [1,2], and sensing applications [3,4]. This is due to the numerous
advantages of PICs: miniaturization, high reliability, energy efficiency, and reduction in
manufacturing and packaging costs. Among several technological platforms dedicated to
integrated photonics, two have the dominant position on the market: silicon-on-insulator
(SOI) and indium phosphide (InP), with recently increasing importance of silicon nitride
(SiN) platform [5]. The key difference between silicon-based and indium phosphide tech-
nologies is the possibility of fabricating active photonic elements. Unlike silicon platforms,
indium phosphide (InP) platform allows monolithic integration of active components like
semiconductor optical amplifiers (SOAs) and lasers, which is a consequence of the direct
energy bandgap of InGaAsP forming the active layer [6]. What is more, by manipulating
the composition of InGaAsP, bandgap engineering is also possible, which offers the freedom
of shaping the spectral range of operation while keeping the lattice constant matched with
the InP substrate (in general, the range 1100–1600 nm is technologically available on the
InP-based platform) [7–10].
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Si-based platforms (SOI and SiN), based on mature technology, offer the advantages of
low loss elements and tighter monolithic integration of passive components, compatibility
with standard CMOS technology, and thus, the natural potential for integration with
integrated electronic circuits. Both platforms suffer, however, from the indirect bandgap
of the silicon which makes monolithic integration of the light sources and amplifiers
impossible. Despite the technological similarities [11] a fundamental differences can be also
determined for silicon and silicon nitride platforms [12]. The first significant distinction is
the spectral range. For silicon PICs, low absorption losses start for wavelengths longer than
1100 nm, while for silicon nitride low loss range starts from 400 nm [13], which enables
shifting the operational spectral range of PICs to the visible part of the spectrum, thus
extending the application area [10,14]. A second significant difference is the refractive
index value, which for silicon is c.a. 3.5, while for silicon nitride c.a. 2.0. Both platforms
use silicon oxide with a refractive index of c.a. 1.5 as a cladding. A large refractive index
contrast, characteristic for the silicon platform, allows obtaining small footprint of elements
and make chips more compact. A minimum bending radius of 100 µm is feasible in silicon
nitride platform, based on the criterion that bend losses should be below 0.01 dB/cm for
1.55 µm wavelength [15]. For silicon on insulator platform bending radius can be as small
as 5 µm without an impact to propagation loss [16]. Single mode waveguides made of
silicon nitride [7] have larger cross-sections than those made using silicon on insulator (SOI)
platform [7,16]. This allows using less sophisticated and cheaper technological processes
for their manufacturing. Common features of silicon and silicon nitride platforms are
advanced, mature, and reliable technology based on CMOS processes and great potential
for monolithic integration with driving microelectronics circuits [17].

The integrated photonics technology was already mastered by several key players
on the PICs market. Companies like Intel, IBM, Luxtera, A*STAR, GLOBALFOUNDRIES,
INPHOTEC, TowerJazz, LioniX, SMART Photonics, LIGENTEC, and Infinera, to enumerate
only a few, dispose of a confirmed potential of manufacturing market-ready PICs [18].
Also, several research centers developing integrated photonics technologies can be easily
enumerated (e.g., CEA-Leti, IHP Microelectronics, Sandia National Laboratories, IMEC,
VTT, HHI, TU/e, AMO, CORNERSTONE). Also, other companies, research centers and
universities work on development of their own technological platforms.

In this work we report the full, successful development flow of building blocks of the
first Polish photonic integrated SiN-based platform that includes waveguides, multimode
interference (MMI) couplers, and the most complex element—arrayed waveguide gratings
(AWGs). We present the main simulation, design and manufacturing steps, present and
comment on the results of the optical characterization of developed structures, and discuss
major challenges with respect to future work. The visible spectral range, potentially
interesting for bio-photonic applications, was chosen for this proof-of-the-concept research
work, however, the platform might also enable reaching IR and mid-IR spectral ranges in
the future.

2. Materials and Methods
2.1. Simulations and Design

A development flow of photonic devices typically starts with a definition of an ac-
ceptable value range of their performance parameters. Then, analytical calculations can
be performed based on those values to obtain first estimate of the device geometrical di-
mensions. Numerical simulations are the next step with the purpose to finetune the device
with respect to its compactness, low-loss operation, or meeting other specific requirements.
At each step, design parameters have to be cross-checked with manufacturing constraints.
Commercial software packages are available on the marked aiding development flow and
were used for numerical simulations and devices GDS extraction presented in this work.
PhotonDesign FIMMWAVE, FIMMPROP, and EPIPROP packages were utilized [19].

Apart from analytical calculations, two numerical computing methods were utilized:
Finite Difference Method (FDM) and Film Mode-Matching Method (FMM). FDM approxi-
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mates differential equations with difference equations over a mesh. Reduction of differential
equations to algebraic ones that are better suited for modern computers architectures makes
this method a powerful tool for numerical analysis. Film Mode-Matching method (FMM)
was implemented in revised Sudbo’s formulation [20] and is a semianalytical, fully vectorial
waveguide solver dedicated to finding modes in rectangular waveguides [21].

Based on initial simulation results, it was determined that the presence of SiO2
cladding is essential for low-loss propagation and sufficiently high confinement factor.
SiO2 cladding provides symmetry of refractive index distribution around the waveguide,
and hence, symmetrizes the distribution of the mode field. The modes propagating in
structure without SiO2 cladding tend to leak into the bottom layer of SiO2 due to its higher
refractive index compared to air. Therefore, all of the structures reported in this work were
designed as symmetric waveguides with 2.3 µm thick top and bottom SiO2 cladding. A
cross-section of the exemplary waveguide is presented in Figure 1.

Figure 1. A cross-section of Si3N4 waveguide.

Si3N4-based structures performance was examined in numerical simulations. The
first set of elements was designed afterwards. WGs, MMIs, and AWGs were optimized for
wavelengths: 380, 470, 550, 590, 610, and 660 nm to cover wide wavelength range in VIS
passband. Waveguides height was set to 0.32 µm that provides satisfying mode profile and
WGs cross-section within typical values for existing nitride-based platforms [10,22].

2.1.1. Straight and Bend WGs Geometries

WGs having the width of 1.0 µm and height of 0.32 µm were chosen for connecting
the MMIs and AWGs on chip. This WG geometry is a compromise between the quality
of the manufacturing process for silicon nitride structures available in the foundry at the
time of manufacturing, number of modes supported by the waveguide, and edge-coupling
efficiency. Following the performed simulations, single-mode WG operation for height of
0.32 µm would require width as small as 0.3 µm, which would pose risk of low yield and
high WG propagation losses. Furthermore, for sensing applications, multimode devices
are sufficient as majority of optical power propagates in fundamental mode. Results of
guided modes simulations for WG of such design are presented in Table 1. For waveguide
bends, simulations proved, that radiuses as small as 20 µm would support guided modes,
however, R = 100 µm were chosen as minimal to keep the bends resistant to potential
fabrication imperfections. For WGs with width equal to 1.0 µm and bending radius of
100 µm, there are eight guided modes present while operating at 660 nm wavelength.
For these conditions, numerical simulations indicate relative low loss propagation below
2 × 10−7 1/cm (8.7 × 10−6 dB/cm) for all modes. Simulations were carried out for an ideal
waveguide, origins of the losses induced in physical structures and measurement results
are reported in the following sections of this work. Bend modes were simulated with FDM
complex solver and fine-tuned with FMM complex solver both utilizing numerical methods
mentioned above.
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Table 1. Mode parameters simulations results for straight waveguide width 1.0 µm, a chosen
waveguide width for routing of fabricated multimode interferometers (MMIs) and arrayed waveguide
gratings (AWGs). Assumed wavelength of operation was 660 nm.

Mode Modal Index Group Index β [1/µm] Confinement
Factor

Effective Mode
Area [µm2]

TE0 1.8892 2.1748 17.9855 0.9791 0.2542
TM0 1.8471 2.2122 17.5841 0.9320 0.3151
TE1 1.8153 2.2424 17.2817 0.9868 0.2930
TM1 1.7809 2.2670 16.9546 0.9393 0.3260
TE2 1.6913 2.3401 16.1014 0.9790 0.3703
TM2 1.6686 2.3586 15.8852 0.9471 0.3499
TE3 1.5390 2.1441 14.6511 0.7047 0.4778
TE4 1.5319 2.2738 14.5841 0.7886 0.5581
TM3 1.5084 2.4610 14.3598 0.9112 0.4159
TM4 1.4847 1.9050 14.1341 0.3697 0.7418
TE5 1.4648 2.0482 13.9448 0.5346 0.8071

Results of mode simulations are presented in Table 1 for straight waveguides operation
at λ = 660 nm. For fundamental TE mode, FWHM equals 0.72 µm and 0.32 µm in X and Y
direction, respectively. For fundamental TM mode FWHM equals 0.77 µm and 0.27 µm in
X and Y direction, respectively.

For WG bends with the width of 1.0 µm and bending radius of 100 µm, there are
10 guided modes versus 11 found for straight WGs, and in both cases, most of the optical
power is transmitted in the fundamental mode as effective index decreases quickly with
increasing mode order. Simulation results of bend modes proved fine confinement of the
fundamental mode. Comparison of fundamental modes cross-section for straight and bend
(R = 100 µm) WGs is illustrated in Figure 2.

Figure 2. Cross-sections of fundamental modes for straight (up) and bend WGs (down).



Materials 2022, 15, 1398 5 of 23

Modes in bend WGs are well confined, with effective mode areas of 0.2534 and
0.3137 µm2 for TE0 and TM0 modes, respectively.

2.1.2. MMIs Simulations and Design

We investigated three general types of MMI structures, differing in the number of
output ports (two, four, and eight). The investigated types design together with the maps
of simulated EM fields are illustrated in Figure 3.

Figure 3. Schematics of simulated 1 × 2, 1 × 4, and 1 × 8 MMI optimized for 660 nm with matched
color-maps of total EM-field intensity averaged over Z-axis of structures. X- and Y-axis scales are not
matched for better visualization.

For every MMI, the input WG is nontapered of 1.0 µm width, which results in better
field contrast in multimode region (MMR) in respect to devices with tapered input WG.
In general, a nontapered input WG results in stronger diffraction at the MMR interface
and more confined field maxima in simulation results, which makes the process of shaping
and placing the outputs much easier. Output waveguides are straight with the same
geometry as input waveguides for 1 × 2 MMIs. For 1 × 4 MMIs, the output section is
constructed of three subsections: a 10 µm-long straight section, an s-bend section for more
rapid output separation that is closely placed at the end of MMR, and a final straight section.
For 1 × 8 MMIs, a two-subsection output is implemented. On the MMR end side, there
are 30 µm-long tapers starting with an initial width of 1.2 µm and straight 1.0 µm width
section. This approach results in equal power propagating in each output and lower overall
losses of the element.

2.1.3. AWGs Simulations and Design

To design an AWG layout properly, a number of input parameters are required.
The three groups of them can be enumerated: technological parameters determined by
the chosen technology process (I/O waveguide width, refractive indices, I/O and array
waveguides gaps), type parameters [23] determined by the requirements of the application
(number of I/O channels, central wavelength, channel spacing, free spectral range), and
transmission characteristics in the form of performance parameters (adjacent waveguides
crosstalk, non-uniformity). For predefined layout type, based on the given number of
channels, and channel spacing, geometrical design parameters are calculated and presented
in Table 2. AWGs have many degrees of freedom; therefore, multiple design strategies can
be implemented. Most commonly Smit and van Dam analytical model is used [24] with
the recently upgraded model for star couplers [25]. Some standard design flows are well
established and widely reported in literature [23,24,26,27]; additionally, design flow aided
with novel AWG design software is described in [28]. Most detailed description of design
procedure for MUX/DeMUX AWG is given by Smit and van Dam in [23,24]. In this work,
a layout consisting of two symmetrical array bend sections comprising WGs of fixed radius
connected with straight section WGs is implemented, presented in Figure 4.
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Table 2. AWGs’ geometrical design and simulated performance parameters: AWG N × M—I/O
numbers, λc—central wavelength; NWG—number of WGs in array; RwlR—Rowland radius; order
of array; WgSpac—design WG spacing in array; Plength—physical pathlength of device between
transition WG tapers; Olength—optical length of device; Wc—worst coupling between PA WGs;
Overlap—between str. mode 1 used for AWG layout with corresponding bend mode; FSR—Free
Spectral Range.

AWG N × M λc [nm] NWGs RwlR Order
WgSpac

FPR
[µm]

Plength
[µm]

Olength
[µm] Wc Overlap FSR

[nm]

1 × 4

380 26 48 50 1.3 391.44 1119.00 0.011 0.987 6.55
470 30 46 50 1.4 495.21 1420.02 0.008 0.996 8.23
550 33 46 50 1.5 596.24 797.92 0.380 0.995 9.66
590 34 45 52 1.4 679.76 555.99 0.055 0.997 9.80
610 34 45 54 1.3 728.85 1281.37 0.053 0.997 9.86
660 36 50 52 1.5 786.56 2462.64 0.063 0.996 11.01

1 × 8

380 26 48 50 1.3 491.63 1131.70 0.038 0.987 6.32
470 30 46 50 1.4 490.22 1232.69 0.012 0.994 8.03
550 33 46 50 1.5 595.43 1208.68 0.049 0.998 9.36
590 34 45 52 1.4 679.77 1176.35 0.421 0.996 9.80
610 34 45 54 1.3 727.00 786.00 0.089 0.998 9.80
660 36 45 52 1.5 786.55 1349.48 0.061 0.998 10.71

Figure 4. Geometry of AWG: (a) layout of arrayed waveguide grating; (b) geometry of output
star coupler.

The calculated design parameters depend on the specific design approach. An exem-
plary set of parameters may be as follows: ∆L, array order m, dispersion D, divergence angle
of the array waveguides in the array aperture ∆α, free propagation region (FPR) radius
Ra, length of the arrayed waveguides Li and lateral spacing of the arrayed waveguides da
derived from aforementioned parameters in accordance with the method presented in [27].
This set is defined based on parameters dependencies. AWG characteristics: number of
channels N, central frequency fc, channel spacing ∆fch, 1-dB channel bandwidth ∆fL, free
spectral range ∆fFSR, central insertion loss L0, maximum nonuniformity Lu, maximum
crosstalk and maximum polarization dependence specify the AWG operation. The list
of functional parameters provided by the end-user or defined by the application of the
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AWG sets the boundaries for accepted values of the design parameters. Set of the maxi-
mum acceptable nonuniformity determines maximum dispersion angle and the FPR length
which is dependent on the latter [24]. Knowing the limit for receiver spacing and channel
spacing, dispersion is also known. WG geometry and material (Si3N4) determine the
minimal phase array (PA) waveguides spacing. For AWGs considered in this work, based
on conducted simulations, coupling between neighboring WGs is negligible for spacing
larger than 1.25 µm and the smallest distance between the WGs in the array larger than
1.8 µm. Divergence angle and length increment are fixed by choice of parameters discussed
above. The width of the input aperture is retrieved from the simulated field distribution on
the object plane, and it defines the number of PA waveguides.

Two series of single input AWGs were designed: with four and eight outputs, both
optimized for central wavelengths: 380, 470, 550, 590, 610, and 660 nm. Simulation results
are presented in Table 2. Rows with structures discussed in detail in following sections
have been highlighted.

In addition to design parameters presented in the above table, a detailed description of
AWG 100 GHz 1 × 8 optimized for λc = 610 nm and 590 nm follows as for those structures
the full spectral characterization was conducted.

Predefined in Photon Design EPIPPROP Fixed Radius layout was used for all simu-
lations. This layout is symmetric and arrayed waveguides are organized in five sections:
straight I/O sections, symmetrical bend sections of equal radius for each of the arrayed
WGs and additional straight section for length increment. Bending radius for arrayed WGs
was set to 50 µm. This was an acceptable exception from minimal 100 µm bending radius
of WGs for routing devices in the PICs. The channel spacing is equal for all AWGs: 0.8 nm
(100 GHz). Details of the layout are presented in Figure 5.
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For all designed AWGs, taper initial width is a chosen to be standard WG width of
1.0 µm, length 30.0 µm, and endface width is 1.3 µm. The wide etched offset of 12 µm were
defined for all layouts to minimize risk of parasitic light coupling in the characterization
setup. Array I/O sections are also tapered in input and output apertures in the same
manner as input section tapers. Geometry of array I/O tapers differs to take account
geometrical differences of generated layouts. Array I/O tapering lowers devices losses. It
is, however, a tradeoff between low-loss operation and crosstalk. The same approach was
implemented for the output section of tapered WGs at the image plane.

For AWGs 1 × 8 optimized for λc = 610 nm and λc = 590 nm, simulated phase matching
is well preserved in the array. For normalized power injected into the input WG, 0.914 is
coupled into the array and 0.799 of the initial power is decoupled at the array end for the
first and respectively 0.912/0.753 for the latter.

In Figure 6 the simulated characteristics of spectral response of AWG 100 GHz 1 × 8
optimized for λc = 610 nm are presented.

Figure 6. Simulated output spectra of AWG 100 GHz 1 × 8, λc = 610 nm.

Investigated AWG characterizes with good wavelength robustness with non-uniformity
of 0.641 dB and central insertion loss equals 1.640 dB. Average simulated channel spacing
is 0.805 nm and FSR equals 9.811 nm.

In Figure 7 simulated spectral characteristics of AWG 100 GHz 1 × 8 optimized for
λc = 590 nm are presented. This AWG characterizes with non-uniformity of 1.315 dB and
central insertion loss equals 1.651 dB. Average simulated channel spacing is 0.805 nm and
FSR equals 9551 nm.

Figure 7. Simulated output spectra of AWG 100 GHz 1 × 8, λc = 590 nm.
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Comparison of simulation results of two AWGs discussed above shows good unifor-
mity between the devices in means of power efficiency. However, phase error crosstalk
is considerably higher for AWG operating at λc = 590 nm. Also, non-uniformity value is
higher for that device. Wavefront after grating indicates higher crosstalk for AWG operating
at λc = 610 nm than for the second one. In fact, only phase error crosstalk shows significant
difference between devices.

2.2. Mask Layouts Design

Based on the results of the simulations discussed in previous subsections, three layouts
comprising test structures were designed. The purpose of the first layout was to test WGs
geometries. Two following layouts comprised functional devices, connected to the WGs of
fixed cross-section (W × H: 0.32 × 1.0 µm). Layouts presented in Figure 8 were designed
with an open-source Python-based software Nazca Design environment [29].

Figure 8. Comparison of layouts: (a) Layout 1; (b) Layout 2; (c) Layout 3.

The purpose of the first layout was to investigate loss level for different WGS cross-
sections. To achieve that goal and gather information on WGs performance, several test
structures was designed and placed in the layout. The layout comprises: straight WGs of
widths 0.3 µm to 2.9 µm, with 0.2 µm aimed to determine production offset, three series of
short and long delay-lines of widths matching straight WGs to determine loss-levels for
different cross-sections and bending radii, and series of structures designed to investigate
loss on 90◦ bends. Layout dimensions are 1.8 × 1.8 cm plus 0.4 cm offset for dicing.
Structures of each type are multiplied in the layout to provide valid statistical data.

Second layout comprises investigate symmetric MMIs 1 × 2, 1 × 4, and 1 × 8 optimized
for 380, 470, 550, 590, 610, and 660 nm wavelength operation. Three copies of each of
designed MMI are placed in the layout. This layout also comprises test semi-straight WGs
and bend WGs with one and nine 90◦ bends for reference. Three types of MMIs cascades
were designed: first, a simple four-output two-level symmetrical cascade of three MMIs
1 × 2; second, a combined eight-output symmetrical cascade of one MMI 1 × 4 at the first
level and four MMIs 1 × 2 at the second level; and finally, a third eight-output three-level
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cascade comprising seven MMIs 1 × 2. Layout dimensions are 0.9 × 2.0 cm with 0.3 cm
offset for dicing.

Third layout is the most complex one, designed for investigating AWGs, 90◦ bends,
MMI 1 × 2 cascades and structures combined of MMIs 1 × 2 and AWGs. Middle section of
the layout comprises three series of 12 AWG. Single series consist of six four-channel AWGs
and six eight-channel AWGs, one for all central wavelengths of interest. Inputs and outputs
of AWGs are placed on opposite edges of the layout with applied offset. Upper section
consists of 12 combined structures. Bottom section consists of 90◦ bend WGs delay lines
comprising 32 × 90◦ bends and 18◦ bends, five WGs each. There are also diagnostic WGs on
the layout. Last structure class are 1 × 2 MMI cascades for investigation of reproducibility
of losses induced by a single MMI 1 × 2. Layout dimensions are 0.9 × 2.0 cm with 0.3 cm
offset for dicing.

2.3. Fabrication Processes

Fabrication starts by precleaning procedure. For this purpose, standard processes
were used, identical to those in the CMOS technology, namely, SC-1, SC-2, and Piranha [30],
which allow to remove all organic and metallic contaminations from the wafer surface.

After the precleaning process, the wet thermal oxidation process is performed at a
temperature of 1200 ◦C. In this process a 2.3 µm-thick SiO2 layer is obtained, intended
to separate the silicon substrate from the Si3N4 guiding layer. Then, silicon nitride layer
is deposited. In our experiments the Low-Pressure Chemical Vapor Deposition (LPCVD)
method was deployed, with dichlorosilane (H2SiCl2) and ammonia (NH3) used as process
gasses. Finally, the layers with a thickness of 320 nm were obtained.

Having these prepared it is necessary to transfer the designed pattern—typically either
photolithography or electron beam lithography methods are used. Due to the experimental
nature of the work, the electron beam lithography was implemented—time consuming
and costly, however resulting in an excellent quality of the defined pattern and offering a
high level of flexibility. The positive resist was used to define the pattern, from the most
popular family of resists for electron beam lithography, based on polymethyl methacrylate
(PMMA) [31]. The PMMA concentrations ranging from 4% to 7% (in anisole) were tested
to optimize the process. The resist was deposited using a classical spin-coating technique.
Depending on the concentration and the spin speed (between 1000 and 4000 rpm), thickness
of the layers varied from 300 nm (for the speed of 2000 rpm and 4% concentration) to 1 µm
(1600 rpm and 7%). For the final fabrication 700 nm thick layer of the resist was spin-coated
using 6% PMMA at 1550 rpm. A conductive coating needs to be applied during an exposure
of nonconductive substrates, such as an Si wafer with SiO2 and Si3N4 layers, to an electron
beam. In this work, polyaniline-derivative polymer was used to avoid charge accumulation
on the surface [32]. A standard layer with a thickness of 40 nm was spin-coated on the
resist at 4000 rpm. After spin coating the resists were baked at a hotplate at 150 ◦C and
90 ◦C, for PMMA and conductive protective coating, respectively, to evaporate the solvent
before the lithography [33].

For experiments with electron beam lithography a system with a beam current of
50 nA and 32 nm beam diameter spot was used. Experimentally determined exposure
doses were in the range of 400–1000 µC/cm2, depending on the thickness of the resist
layer. Final base dose was set at 600 µC/cm2. Figure 9 presents a part of the waveguide
pattern etched with a too low exposure dose used; a part of the resist was underexposed
and remained on the surface after development and etching.

Since PMMA is a positive resist, to manufacture waveguides in the silicon layer, it
was necessary to expose to etching the whole surface but waveguiding area. During the
preparation of the electron beam lithography process, the proximity effect’s correction was
included. This enabled eradication of the effects related to pattern over- or underexposure
during the e-beam process due to differences in pattern density. Proximity effect correction
involves changing the exposure dose depending on the position of the exposed field in the
pattern. The results depend on the sample materials as well as the exposure parameters.
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In this work, the Monte-Carlo method was used to calculate the proximity effect correc-
tion [34]. Due to this solution, exposure dose was precisely defined locally, depending
on the changing density of the pattern. The layout of a waveguide bend with the dose
correction is presented in Figure 10—blue color indicates areas where the lower relative
exposure dose is needed (denser pattern), while the green color indicates higher doses.

Figure 9. Etched waveguides with marked places of too low an exposure dose during electron beam
lithography process.

Figure 10. Layout of a waveguide turn with proximity effect correction. Relative dose values are
marked with colors—dark blue is lowest dose; green is the highest.

A separate optimization was done for the patterns divided into the exposure fields—
fracturing. The exposed pattern is approximated by rectangular exposure fields due to
the limitations of electron beam lithography system. While preparing the process, it is
possible to choose basic dimensions of rectangles with the limitation of the minimal area
size. Figure 11 shows the effect of optimized fracturing.
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Figure 11. Pattern fracturing: (a) before optimization; (b) after optimization.

During optimization, the dimensions and distribution of rectangles was changed, so
that they precisely reproduce the curvature of the waveguide in resist.

The developed structures were then subjected to etching process to remove silicon
nitride from the exposed areas. The dry etching—reactive ion etching (RIE) with CHF3/O2
gasses was selected due to its anisotropy, with the 950PMMA resist used as a mask. The
determined PMMA: Si3N4 selectivity was 1.3:1 with an etch rate 31 nm/min. The etched
structures were inspected using scanning electron microscope, and the results are shown in
Figure 12. Measured wall angle was >86 deg. with low roughness of both walls and bottom
of etched structures. Observed defects related to the transferring of layout to Si3N4 layer,
such as a change in dimension and a trapezoidal cross-section, resulting from imperfections
of the lithography and etching processes, may result in the later deviation of elements
transmission characteristics from simulation results.

Figure 12. Cross section of exemplary waveguides etched in Si3N4 with remaining top layer of resist
mask of width (a) 0.36 µm and (b) 2.7 µm.

After etching, the PMMA mask was removed and 2300 nm layer of SiO2 was deposited
using PECVD method with process gasses SiH4/He and N2O.
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The final stage of manufacturing of photonic elements is separating the structures.
Different methods can be used for this purpose, such as cleaving, dicing, laser ablation, or
stealth dicing.

2.4. Characterization Setups and Methodology

Two measurements setups were assembled for characterization of developed photonic
structures. Both are schematically presented in Figure 13.

Figure 13. Characterization setups schematics: (a) setup utilized for characterization of waveguides
(WGs) and MMIs; (b) setup utilized for AWGs characterization.

First (a) setup was used for characterization of operation of WGs, MMIs, and MMIs
cascades. The temperature-stabilized red laser diode operating at 660 nm was used as
a light source. Light was launched into the chip via optical fiber placed on micrometer
translation stage. Also, the photonic circuit was placed on micrometer translation stage and
on the output side there was an identical setup as on the input side. Output fiber delivered
the light passing through the measured structures to the power meter. No temperature
stabilization of the chip was applied apart from the stabilized laboratory temperature. For
inspection and easier manual alignment of the setup, an optical microscope was placed
above the chip.

Characterization of the AWG was performed using the second (b) measurement setup
comprising high-power optically pumped semiconductor OPSL operating at 532 nm with
output power 5.16 W, followed by tunable dye laser with Rhodamine G6. The light was
coupled into the chip with 50× optical objective. On the output side, the light was coupled
into S120C sensor connected via fiber with the power meter. The setup was adjusted
manually in the means of the elements position adjustments and wavelength scanning.
Measurements were performed for the wavelengths ranging from 570 to 630 nm with an
average step of 0.275 nm. Optical spectrometer was used for wavelength control during
scan execution and optical spectrum analyzer as more accurate instrument was used for
performing reference diagnostic wavelength sweep.

In both setups, chips were mounted on the central stage of the setup with carbon
adhesive tape.

3. Results

Optical characterization was performed for photonic integrated circuits fabricated in
two production runs: 1st run comprising topographies based on initial Layout 1 presented
in Figure 8 and 2nd run comprising two following topographies based on Layout 2 and
Layout 3 presented in Figure 8. One 4” wafer was processed in each run.
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Characterized devices are placed in the chip in series to enable statistics from multiple
measurements of the devices of the same type. Each device I/O is routed to the edge
interface with WGs. The edge interface was created by manual cleaving with the assist
of the table scriber. This method of chip separation was proved to be sufficient for low
volume prototyping. Microscopic photographs of exemplary chips of each fabricated type
are presented in Figure 14.

Figure 14. Optical micrographs of fabricated chips: (a) 1st Topography (from Layout 1); (b) 2nd
Topography (from Layout 2); (c) 3rd Topography (from Layout 3).

3.1. Inspection of Manufactured Elements

The visual inspection of manufactured structures was performed with scanning elec-
tron microscopy (SEM) and optical microscopes before and after deposition of SiO2, before
and after wafer dicing. A vast majority of the devices were fabricated accordingly to the
design and without any defects. Most promising PICs were selected for characterization.
The exemplary structures are presented below. In Figure 15a, there is a SEM image of delay
lines. The clearly visible elevations correspond to beneath located WGs. In Figure 15b, there
is visual image of the same delay line in which reddish lines mark Si3N4 etching areas.

Figure 15. Scanning electron microscopy (SEM) (a) and optical (b) microscopic images of manufac-
tured WGs.
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In Figure 16, there are three microscopic images of the MMIs presented: (a) 1 × 2, (b)
1 × 4, (c) 1 × 8, all optimized for 660 nm operation.

Figure 16. Optical microscope images of MMIs: (a) 1 × 2; (b) 1 × 4; and (c) 1 × 8 optimized for
660 nm operation.

In Figure 17 there are two SEM images presenting structures reproduced in resist
before etching and final SiO2 cladding deposition: (a) AWG 1 × 4 phase arrayed WGs; (b)
magnification of the PA near output aperture showing correctly etched output tapers; (c)
output section of MMI 1 × 2, where right angles of output WGs at the MMR end can be
seen; and (d) image plane of AWG 1 × 4, where tapered WGs starting points positions
accuracy versus layout can be verified. All four images confirm the correctness of the
projection of the layout during fabrication process before SiO2 deposition.

Figure 17. SEM images of etched structures reproduced in resist before etching and final SiO2

cladding deposition: (a) arrayed WGs of AWG 100 GHz 1 × 4 optimized for 590 nm operation; (b) its
output aperture magnification.

In Figure 18 there are optical microscope images presenting a final structure of 100 GHz
1 × 8 AWG designed for λc = 610 nm; magnified are the elements crucial for the correct
operation of the structure are magnified.
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Figure 18. Microscope images of final structures: (a) AWG 100 GHz 1 × 8 designed for λc = 610 nm;
(b) a detail output aperture; (c) detailed image plane; and (d) detailed PA.

The above-presented micrographs visualize key details of the AWG and confirm the
appropriate manufacturing quality.

3.2. WGs Characterization Results

To obtain average loss levels of straight WGs, test structures comprising pairs of
delay lines of identical cross-sections and length difference of 1 cm were used. The loss
originating from additional bends in longer branches of delay lines was taken into account,
as 90◦-bend loss level was retrieved from separate test structures described in the last
paragraph of Section 3.2.

The average optical power losses in WGs were found to be 3.65 dB/cm (σ = 1.91 dB/cm)
for bend radius R = 100 µm and 1.71 dB/cm (σ = 0.50 dB/cm) for R = 400 µm. Each loss
level was retrieved as an average of 14 measured WGs on the first chip. The average optical
power losses in WGs on the second chip were found to be 3.30 dB/cm (σ = 2.43 dB/cm)
for bend radius R = 100 µm, also retrieved as an average of 14 measured waveguide
pairs. These results show that the WGs performance is well within expected parameters.
Obtained values are more than competitive in comparison to commercially available
platforms dedicated to visible spectral range [10], which can be considered a significant
success. There is, however, a plenty of room for further improvements and better results
are expected in the next production runs. A summary of the results for straight WG
propagation loss is presented in Table 3.

Table 3. Summary of results for straight WG loss, W × H = 1000 × 320 µm, λ = 660 nm.

Chip Bend Radius
[µm] Loss Number

of Measurements
Standard
Deviation

1st 100 3.65 dB/cm 14 1.91 dB/cm
1st 400 1.71 dB/cm 14 0.50 dB/cm
2nd 100 3.30 dB/cm 14 2.43 dB/cm
3rd 100 0.21 dB 5 0.01 dB
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In the 1st chip, WGs of various cross-sections were investigated. The results show an
approximately linear correlation in output power with decreasing geometrical cross-section
of the WGs. The results are illustrated in Figure 19. Deviations from linear correlation of
output power with decreasing WG cross-section can be identified as random defects and
differences in coupling quality between particular measurements. There is a negligible
standard deviation of the output power for all but three WG cross-sections: 0.928, 0.544,
0.352 µm2.

Figure 19. Output power correlation with WG’s cross-sections.

Delay WG lines with 32 and 18 right angle (90◦) bends with radius of 100 µm were
designed on third layout to investigate single 90◦ bend loss in standard 1.0 µm width WG
based on conclusions derived from the first layout investigation. There are five WGs in
each line. The average loss of a single bend equals 0.21 dB (σ = 0.01 dB). Small σ indicates
much better repeatability of manufactured WGs in comparison to first layout-based chip,
while the relatively small average loss verifies positively the decision of using tight 100
µm bending radius for the given WG cross-section. A summary of the results for multiple
delay lines, five WGs each, is presented in Table 4.

Table 4. Summary of results for bend WG loss, W × H = 1000 × 320 nm, λ = 660 nm.

Delay Line
Av. 32 90◦

Bends Output
Power [dBm]

Av. 18 90◦

Bends Output
Power [dBm]

14 90◦ Bends
Difference [dB]

1 90◦ Bend Loss
[dB]

1 4.31 7.16 2.85 0.2036
2 4.19 7.13 2.94 0.2100
3 4.28 7.07 2.79 0.1993
4 4.47 7.35 2.88 0.2057
5 4.28 7.32 3.04 0.2171

Average 0.2071

3.3. MMIs Characterization Results

Transmission losses of single MMIs could be retrieved from more complex test struc-
tures. MMIs cascades with dedicated reference WGs were designed with I/O interfaces
on neighboring perpendicular facets on PICs comprising Layout 2 and Layout 3. MMI
measurements were conducted using test setup comprising laser diode operating at 660 nm.

First, the reference WGs transmission was measured to determine base transmitted
power level and loss on a single 90◦ bend for the chip comprising MMIs; this was performed
as described in Section 3.2. Measurements results for series of five reference WGs with one
and nine 90◦ bends, respectively, indicates the average output power of 9.83 dB (σ = 0.13 dB)
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for a single bend WG, while comparison with nine bends gives average loss of a single
bend equal to 0.29 dB (σ = 0.01 dB).

Performance of 1 × 2 MMIs was investigated by measuring transmission power of
a two-level, four-output MMI symmetrical cascade comprising three 1 × 2 MMIs. The
layout of such a test structure is presented in Figure 20. Based on these measurements and
reference WGs performance on the same PICs, an average loss of single 3-dB MMI splitter
designed to operate at 660 nm, measured optical power is, as expected, equally distributed
between outputs and the average loss equals 0.49 dB (σ = 0.04 dB) for four measurements.

Figure 20. Topography of test structure comprising three 1 × 2 MMIs designed for λ = 660 nm.

Both the reference WGs and symmetrical cascade comprising three 1 × 2 MMIs mea-
surement results served as the reference for retrieving 1 × 4 MMIs operational parameters.
Average loss of 1 × 4 MMI designed for 660 nm wavelength equals 5.53 dB (σ = 0.43 dB)
for 8 measurements. The origin of exceptionally high measured losses of MMIs 1 × 4 is
a geometrical placement of the output tapered WGs. Closely placed outputs resulted in
fabrication flaw. Not fully etched narrow trenches in 320 nm SiN layer resulted in change
in the length or the multimode region (MMR) of the MMI in respect to design value.

For closer illustration of mentioned lossy behavior of 1 × 4, SEM image of fabricated
structure is presented in Figure 21. There are two sections visible in the picture. MMR and
section of closely placed output WGs is visible.

Additionally, robustness of the MMIs design was tested when 1 × 4 MMI designed for
610 nm wavelength was characterized in the setup equipped with 660 nm laser diode. The
average device loss was 9.31 dB (σ = 1.55 dB) for 8 measurements. That gives additional
3.79 dB loss while MMI operates under wavelength shifted by 50 nm in respect to the
intended wavelength. Loss values were referenced to the power transmitted via diagnostic
WGs placed on the chip.

The performance parameters of the developed MMIs exhibit very low sensitivity to
manufacturing imperfections and input/output waveguides position offsets in respect to
devices symmetry axis. Additionally, MMIs show resilience for wavelength offset in relation
to the design wavelength. Two main sources of additional losses can be identified: First
is mismatch in horizontal dimensions originating in under- or over-etch of the structures
and resulting in change of real MMR dimensions in respect to intended ones. In Figure 22,
a SEM image of the cross-section of WG with 1 µm designed width is presented. Actual
fabricated width is 918.8 µm.
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Figure 21. SEM image of 1 × 4 MMI designed for λ = 660 nm with visible closely placed output WGs.

Figure 22. SEM image of cross-section of WG with 1 µm designed width.

Second source of losses is difference in effective refractive indices between designed
and fabricated devices. For 1 × 2 MMIs, FWHM of total transmitted power as a function of
wavelength equals approximately 137 nm, meaning that wavelength deviations in range of
75 nm from designed wavelength double the losses of the device in respect to operation at
designed wavelength.

3.4. AWGs Characterization Results

The obtained transmission spectra are presented in Figure 23 for 1 × 8 AWG, optimized
for 610 nm central wavelength.
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Figure 23. Measured spectrum of AWG 1 × 8 optimized for 610 nm transmission.

The measurements of AWG optimized for 610 nm exhibit a shift of 2.85 nm of the
central wavelength in respect to the design parameters. The shift occurs due to the geo-
metrical inconsistence between the designed and fabricated structure mentioned above in
Section 2.3. Fabrication processes. Additionally, the difference between structure tempera-
ture of 25 ◦C chosen for simulation and actual temperature of measured structure may also
contribute to this effect. The value of the channel spacing equal to 0.79 nm is consistent
with the simulations. The free spectral range FSR derived from the measured spectra is
9.23 nm in correspondence to 9.81 nm, resulting from simulations.

Analogous results obtained for AWG 100 GHz 1 × 8 optimized for λc = 590 nm are
presented in Figure 24.

Figure 24. Measured spectrum of AWG 1 × 8 optimized for 590 nm transmission.
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For this AWG, 1.67 nm shift in central wavelength was measured in respect to design
value. The measured channel spacing equals 0.81 nm is consistent with simulations and
FSR derived from measurements equals 10.03 nm in correspondence to 9.51 nm simulated
FSR value.

4. Discussion

Measurements results show satisfying performance of fabricated elements with large
optimization and improvement potential in the following runs. Majority of the measure-
ments of WGs and MMIs provided results comparable to those reported for commercial
platforms [10]. Comparison of best obtained results to commercial platforms are presented
in Table 5.

Table 5. Comparison of WGs’ performance in SiN-based platforms for VIS pass-band.

Group Type Wavelength [nm] WG W [nm] WG H [nm] Str. WG Loss
(dB/cm)

Ghent [13] multimode 532 600 180 1.25
Aachen [34] single mode 660 700 100 0.51

WUT multimode 660 1000 320 1.71
Imec(BioPIX) [14] - 835 600 150 0.66

Correct operation of all types of developed devices was proved during the
measurements—the measured parameters of the most complex passive element, which
is AWG, are promising and show potential to match commercially available products in
the future. Lowering the losses and better matching the design and actual transmission
parameters is a matter of further development. Number of issues were addressed and
solved along the process and recommendations were noted for further improvements of
measurements reliability and efficiency. To achieve lower loss levels, more accurate material
properties will be used in the next simulations. Design will also consider manufacturing
capabilities and characterization efficiency.

During technological works, the parameters of individual manufacturing steps were
established and tested in several iterations. Then, the necessary steps were compiled into the
fabrication flow. Critical areas of technology were defined—precise deposition of the Si3N4
layer, detailed transferring layout in the material, and repeatable separation of structures.
The measurement results enabled determining the needs of processes optimization. Better
elements definition in material resulting from the optimization of lithography and etching
processes will allow obtaining the transmission characteristics of the elements consistent
with the simulations. Depositing in a controlled manner a thinner Si3N4 layer will allow
single-mode components fabrication. Modification of cleaving techniques for the separation
of structures will reduce the coupling losses. Works on the preparation of new production
steps are also planned, allowing the extension of the element library with interferometers,
ring resonators, and Bragg gratings.

Measurements of WGs and MMIs proved accuracy of simulations and correctness of
the technological process. Conclusions were noted to further improvement and to act as a
starting point for development of optical power splitters and (de)multiplexers. Optimal
WG cross-sections and design parameters were chosen for the following work. Successful
development of AWGs provides foundation to establishing mature material platform and
opens new possibilities for applications of SiN-based photonic integrated circuits.

Obtained results and gained expertise enables future optimization of already investi-
gated BBs and development of new elements (e.g., modulators, ring resonators), including
attempts to hybrid integration of active components, such as light sources and detectors.

Based on conclusions from an experimental technology run, far-reaching optimization
and standardization of design, manufacturing, and characterization process were imple-
mented. Additional steps such double etch depth, metallization for heaters and suspended
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structures development were scheduled. Investigation of telecommunication band and
mid-IR is planned to verify platform operational band scalability difficulty.

5. Conclusions

This article reports the full and successful development flow of building blocks for the
first Polish photonic integrated platform that includes the most complex passive photonic
integrated element: arrayed waveguide gratings (AWG). Visible spectral range was chosen
as a promising niche for commercialization in the market of sensing applications.

Obtained results and gained expertise enable future optimization of already developed
BBs and development of new elements (such as modulators, ring resonators, tapers, etc.),
including attempts to hybrid integration of active components—light sources and detectors.

Fabrication can be mastered regardless of final application targeting visible, near in-
frared (NIR), and mid-infrared (MIR)/MIR+ spectral ranges [10,35]. Also, integration with
driving electronics via wire and flip-chip bonding is to be addressed together with cross-
platform integration, thereby allowing the hybrid integration of light sources and detectors.
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