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Abstract

Magnetic resonance imaging (MRI) has emerged as a promising technique for non-invasive 

medical imaging. The primary challenge in MRI is the trade-off between image visual quality 

and acquisition time. Current MRI image denoising algorithms employ global thresholding to 

denoise the whole image, which leads to inadequate denoising or image distortion. This study 

introduces a novel pixel-wise (localized) thresholding approach of singular vectors, obtained 

from singular value decomposition, to denoise magnetic resonance (MR) images. The pixel-wise 

thresholding of singular vectors is performed using separate singular values as thresholds at 

each pixel, which is advantageous given the spatial noise variation throughout the image. The 

method presented is validated on MR images of a standard phantom approved by the magnetic 

resonance accreditation program (MRAP). The denoised images display superior visual quality 

and recover minute structural information otherwise suppressed in the noisy image. The increase 

in peak-signal-to-noise-ratio (PSNR) and contrast-to-noise-ratio (CNR) values of ≥ 18% and ≥ 

200% of the denoised images, respectively, imply efficient noise removal and visual quality 

enhancement. The structural similarity index (SSIM) of ≥ 0.95 for denoised images indicates that 

the crucial structural information is recovered through the presented method. A comparison with 

the standard filtering methods widely used for MRI denoising establishes the superior performance 

of the presented method. The presented pixel-wise denoising technique reduces the scan time by 

2–3 times and has the potential to be integrated into any MRI system to obtain faster and better 

quality images.
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I. INTRODUCTION

Magnetic resonance imaging (MRI) is a widely used non-invasive imaging technique that 

provides detailed structural information and functional characteristics of internal organs. 

The ability of magnetic resonance imaging to characterize and discriminate tissues using 

their physical and biochemical properties offers special advantages in clinical diagnosis. 

Additionally, the technique produces sectional images of similar resolution in any projection 

plane without moving the patient. Generally, the magnitude of the reconstructed MRI image 

is used for visual inspection which plays a crucial role in accurate clinical diagnosis. 

However, the visual quality of the MR image is degraded by the existing noise during the 

acquisition process [1]. During data collection, the MR images get corrupted by various 

kinds of noise arising from electronic noise, random signal fluctuation, or faulty detector 

elements [2]. Depending on the single or multi-channel data collection, noise in MRI is 

described by white Gaussian noise [3], Rician noise [4], and non-central Chi distribution [5], 

[6].

Generally, noise reduces the visual quality of the image and masks subtle information, which 

is problematic, especially in diagnostic imaging. Further, image postprocessing techniques 

such as image segmentation [7], [8], [9], [10], [11] and predictive analysis [11], [12] are 

employed for diagnostic feature extraction and classification purposes. However, noise in the 

image affects the image segmentation and may alter the classification results. In diagnostic 

imaging, a small variation in image processing might lead to incorrect diagnosis. Hence, 

efficient denoising of MR images is essential for further processing and accurate diagnosis.

Current denoising techniques employ global thresholding criteria. In global thresholding, the 

spatial distribution of noise magnitude throughout the image is assumed to be consistent 

across the image. However, the noise distribution in the MR images follows Gaussian, 

Rician, or non-central Chi distributions that vary locally and can possess distinct magnitudes 

between neighboring pixels, which might lead to loss of critical information or distort 

the pixels with less noise. Hence, a localized denoising approach that treats the noise in 

individual pixels separately is necessary for efficient denoising of the MR images. The 

flowchart in Figure 1 illustrates the difference between the global and presented local 

thresholding approaches.

Here, we present a singular value decomposition (SVD) based MR image denoising method 

that implements pixel-wise thresholding of singular vectors. It is based on the new approach 

of Srivastava-Freed singular value decomposition (SF-SVD) that has enabled point-wise 

processing of two-dimensional data [13], [14]. In this paper, we develop a new localized 

denoising method to remove noise at each pixel individually by performing pixel-wise 

thresholding, given that the spatial noise varies throughout the image. The presented pixel-

SRIVASTAVA et al. Page 2

IEEE Access. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wise denoising method is applied to the MR images of a commercially available MRAP 

approved phantom. The denoised images are very similar to the reference images both 

qualitatively and quantitatively. The algorithm is fast and has the potential to be integrated 

into any MRI system to reduce acquisition time.

The paper is organized as follows. Section II discusses the previous MRI image denoising 

algorithms and their limitations in removing noise effectively. In section III, we provide 

details of the SVD and pixel-wise thresholding of singular vectors to perform denoising. In 

section IV, we present the parameters used to evaluate denoising results. In section V, we 

provide details about the ACR phantom and magnetic resonance imaging system used for 

imaging. Section VI discusses the results and section VII summarizes the findings in the 

conclusion.

II. RELATED WORKS

In general, denoising of the MR images can be performed in two ways. In the first approach, 

one averages multiple recorded images of the same sample. However, the collection of 

multiple images takes a longer time and can introduce motion artifacts. In the second 

approach, the MR images can be denoised by utilizing a suitable denoising technique that 

provides a reliable and quick result. To date, numerous MR image denoising algorithms have 

been presented including the classical spatial and temporal filters [15], anisotropic diffusion 

filter [16], [17], [18], [19], [20], [21], [22], bilateral and trilateral approaches [23], [24], [25], 

[26], [27], [28], wavelet transform [29], [30], [31], [32], [33], [34], [35], the curvelet and the 

contourlet transforms [36], [37], [38], maximum likelihood approach [39], [40], [41], [42], 

linear minimum mean square error estimation [43], [44], [45], nonparametric neighborhood 

statistics/estimation [46], [47], [48] and singularity function analysis [49], [50].

Non-local means (NLM) filtering is one of the most widely used MR image denoising 

techniques [51], [52], [53], [54], [55], [56], [57], [58], [59]. It exploits the redundancy in the 

image and reduces noise by averaging non-local patches. Also, a modified NLM was utilized 

to eliminate Rician noise [60]. Furthermore, a two-stage non-local principal component 

analysis based thresholding method was proposed to denoise the MR images [61]. This 

method performs a non-local PCA thresholding and then applies a rotationally invariant 

NLM filter for denoising. Block matching and 3D filtering (BM3D) is a natural extension 

of the NLM method that utilizes self spatial similarities in the images for denoising [62]. 

Though the existing methods produce reasonable results in the MR image denoising, they 

have several limitations such as time consuming operations, loss of critical information, and 

manual intervention. On the other hand, machine learning techniques can overcome such 

limitations by quickly and autonomously denoising medical images. Recently, deep learning 

based approaches have been used to denoise the MR images [63], [64]. However, deep 

learning methods require a large amount of data for model training and often produce a 

biased result.
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III. PIXEL-WISE THRESHOLDING (PWT)

1) SINGULAR VALUE DECOMPOSITION

Singular value decomposition of a rectangular matrix Xij of dimension M × N
(i = 1, 2, ⋯, M; j = 1, 2, ⋯, N) is given by

X = U Σ V T

(1)

where U and V  are M × M  and N × N  unitary matrices of left singular and right singular 

vectors respectively and Σ = diag δ1, δ2, ⋯, δr  with δ1 ≥ δ2 ≥ ⋯δr ≥ 0, where δr is the singular 

value corresponding to rtℎ singular vectors. Basically U and V  are the eigenvectors of 

XXT  and XTX  respectively.

Also X can be expressed in terms of U, V  and δ as

Xij = ∑
k = 1

min M, N
UikδkV jk

(2)

2) PIXEL-WISE THRESHOLD SELECTION

Currently, given an input image X , SVD denoising methods threshold singular vectors U
and V  by using a single singular value threshold λ  to denoise the image [65], [66]. Singular 

vectors beyond the thresholding singular value λ are not considered in the reconstruction 

of the denoised image. This poses a challenge since it can potentially remove critical 

information and distort pixels with less noise. However, contrary to the truncated SVD, 

the SF-SVD approach preserves critical information of individual points of the singular 

vectors [13], [14]. Localized pixel-wise denoising is achieved in this work by selecting and 

thresholding each pixel of the singular vectors U and V  by different singular values λij. 

Figure 2 depicts the flowchart of the presented pixel-wise denoising algorithm.

Equation 2 can be used to perform SVD of the image, then one can denoise the image X by 

selecting the λij threshold for each pixel to obtain the denoised image X′. Each pixel in X′ is 

given by

Xij
′ = ∑

k = 1

λij

UikδkV jk

(3)

To obtain the threshold λij at any pixel in Xij
′ , we define a saturation parameter S  as shown 

in equation 4.

SRIVASTAVA et al. Page 4

IEEE Access. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



S = ∑
k = 1

l
UikδkV jk

2

(4)

where l is the number of singular values. The parameter S gradually saturates as the sum 

of UikδkV jk
2 increases with an increase in l. S will saturate faster for noisy pixels than that 

of the pixels without noise. The singular vector number l at which the saturation begins is 

determined as the threshold value required to denoise the pixel. Plots of S vs l at different 

pixel numbers for images of different slices are displayed in figure 3. The vertical lines 

inside the figures show the singular value number used to denoise that pixel. It can be seen 

from the figure 3 that the saturation for noisy pixels occurs at lower singular values.

IV. EVALUATION METRICS

A. PEAK SIGNAL TO NOISE RATIO (PSNR)

Denoised images are evaluated using the peak-signal-to-noise ratio. The PSNR quantifies the 

amount of noise removed from the corrupted image and is defined as the ratio between the 

maximum possible power of a signal and the power of the distorting noise. In general, a 

higher value of PSNR indicates lesser noise in the signal. The PSNR in decibels (db) can be 

calculated from equation 5.

PSNR = 10log10
P2

MSE

(5)

where P  is the maximum possible value of the image and MSE is the mean square error of 

the denoised image with respect to a reference image which is given by equation 6.

MSE = 1
MN ∑

i = 1

M
∑

j = 1

N
Xij

′ − Rij
2

(6)

where Xij
′  and Rij are the pixel at index i, j  in the denoised image X and reference image R

respectively.

B. CONTRAST TO NOISE RATIO (CNR)

The quality of the denoised image is determined by contrast to noise ratio. CNR is defined 

as the ratio between the contrast of the signal to the background and the spread of the 

distorting noise. In general, a higher CNR value indicates better differentiation between the 

target structure and the noise. Mathematically, CNR can be expressed as equation 7.
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CNR = μROI − μB
σnoise

(7)

where μROI and μB are the mean values of the region of interest (ROI) and background 

respectively, and σnoise is the standard deviation of the noise.

C. STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

Structural similarity index measure (SSIM) is used to determine the perceived quality of an 

image by measuring the similarity between two images [67]. The SSIM value ranges from 0 

to 1. The higher the SSIM value greater the similarity between the images, lower the SSIM 

value lesser the similarity between images. The mathematical formula is given by equation 8

SSIM = 2μXμY + c1 2σXY + c2

μX
2 + μY

2 + c1 σX
2 + σY

2 + c2

(8)

where μX and μY  are mean values of images X and Y  respectively, and σX and σY  are the 

standard deviations of image X and Y  respectively. σXY  is the correlation between image 

X and Y . c1 = k1L 2 and c2 = k2L 2 are constants to stabilize division in case of weak 

denominators. L is the dynamic range of the pixel values, k1 = 0.01 and k2 = 0.03.

D. ROOT MEAN SQUARE (RMS) AND STANDARD DEVIATION (STD)

The consistency of the noise in the collected data is evaluated using root mean square and 

standard deviation. RMS and STD quantify the magnitude and deviation, respectively, of the 

noise present in the collected data. RMS and STD of noise are calculated using equation 9 

and 10

RMS = 1
MN ∑

i = 1

M
∑

j = 1

N
nij

2

(9)

STD = 1
MN − 1 ∑

i = 1

M
∑

j = 1

N
nij − n 2

(10)

where M and N are the number of rows and columns in the image, nij is the noise magnitude 

at pixel i, j  obtained following the equation 11 and n is the mean value of the noise given 

by equation 12.
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nij = Xij − Rij

(11)

n = 1
MN ∑

i = 1

M
∑

j = 1

N
nij

(12)

V. DATA COLLECTION

A. PHANTOM PREPARATION

Generally, the quality of MRI images is assessed through phantom images following 

the guidelines set by the American College of Radiology (ACR) magnetic resonance 

accreditation program (MRAP) [68]. The MRAP approved phantom used for MRI imaging 

may be obtained commercially [68]. The phantom is constructed using acrylate plastic, 

glass, and silicone rubber. The cylindrical phantom is 16.5cm long and 20.4cm in diameter 

[68].

The phantom is filled with 10 millimolar (mM) nickel chloride solution containing sodium 

chloride (45 mM) to simulate biological conductivity. The contrast vial contains 20 mM 

nickel chloride and 15 mM sodium chloride solution providing a difference in T1 and T2 

(T1 & T2 are longitudinal and transverse relaxation times) values. Actual values of T1 and 

T2 depend on the field strength in use and the temperature of the phantom.

B. MAGNETIC RESONANCE IMAGING (MRI)

The ACR phantom [68] was scanned 16 times with identical scan parameters on a General 

Electric Medical Systems 3.0 Tesla MR750 scanner (Waukesha, WI, software version 

DV29.1) with a 32 channel receive-only head coil. Magnitude, phase, real, and imaginary 

image components were saved to a disk. A 2D T1-weighted spin-echo sequence was used, 

with 18 slices of thickness = 0.5 mm, spacing = 5.5 mm, field-of-view = 25 × 25 cm, 

acquisition matrix size = 128 × 128, output image matrix size = 256 × 256 (resolution = 

0.98×0.98 mm), TR = 26 ms, TE = 13 ms, flip angle = 90°, bandwidth = 15.63 kHz, and 

extended dynamic range (32 bit number format).

C. NOISE VARIANCE OF MRI PHANTOM IMAGES

The ACR phantom consists of 18 slices and each slice was scanned 16 times. The reference 

images of each slice are then computed by averaging the 16 scanned images. The mean 

RMS and STD of 16 images for each slice are shown in Table 2. The noise for the phantom 

MR images is obtained by subtracting the reference images from the noisy ones and the 

RMS and STD are calculated following equations 9 and 10, respectively. Furthermore, the 

RMS and STD of every image for all slices are tabulated in Table 6 in Appendix A.
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VI. RESULTS AND DISCUSSION

The presented pixel-wise thresholding based denoising method is tested on the MR images 

of a standard ACR approved phantom. The performance of the algorithm is evaluated 

both qualitatively and quantitatively by computing the reduction in noise, recovery of 

the structural information, and enhancement in the visual quality of the image, typically 

quantified by peak-signal-to-noise-ratio, structural similarity index, and contrast-to-noise-

ratio, respectively. The qualitative denoising result of the MR images of the phantom 

captured at different scans are depicted in Figures 4, 5, and 6.

A. NOISE REMOVAL

The qualitative denoising result of slices 2, 8, and 10 are shown column wise in Figure 4. 

The first, second, and third columns in Figure 4 illustrate the noisy, denoised, and reference 

images, respectively. The noisy images and reference images are obtained by averaging 3 

and 16 repetitive scans, respectively. It should be noted that the noisy images used are the 

average of three scans that include previous, current, and next scans. It can be seen from 

Figure 4 that the structures in the noisy image are blurred due to the presence of noise, 

whereas, it is clearly visible in the denoised images. Visually, the denoised images are 

quite similar to the reference images. Additionally, noisy, denoised, and reference images at 

different scan numbers of slices 3 and 13 are shown in Figure 5.

Quantitatively, the noise removal efficacy is evaluated by calculating the peak-signal-to-

noise ratio of the denoised images with respect to the reference images. PSNR of the noisy 

and denoised images of all the slices are tabulated in Table 3. It can be seen from Table 3 

that the PSNR of the denoised images increases significantly compared to the noisy images. 

This increase in PSNR justifies the visual quality enhancement of the denoised images.

B. VISUAL QUALITY ENHANCEMENT

The noisy, denoised, and reference images of slices 1, 7, and 16 are shown column wise 

in Figure 6. The noisy images displayed in the first column of Figure 6 have some distinct 

features highlighted inside the red elliptical area. However, the features are visually masked 

due to the presence of noise. The denoised images shown in the second column of Figure 

6 reveal visually clear images and recover the features suppressed in the noisy images. It 

can be seen that the wedges, square array, and the bright spots in Figure 6b, 6e and 6h, 

respectively are now clearly visible in the denoised images. One can visually confirm that 

the retrieved features are exactly the same as seen in the reference images exhibited in the 

third column of Figure 6. This illustrates that the presented pixel-wise denoising method 

removes noise effectively while preserving the finer details in the image.

We measured the structural similarity index and contrast-to-noise ratio to quantify feature 

recovery and visual quality enhancement of the denoised MR images, respectively. Both 

the SSIM and CNR of the noisy and denoised images are calculated with respect to the 

reference images. Table 3 tabulates the SSIM and CNR of the noisy and denoised image of 

all slices. It can be seen that the SSIM values of denoised images are ≥ 0.95, whereas, the 

SSIM values of the noisy images are < 0.5. This illustrates that the denoised image recovers 
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almost all the structural information masked in the noisy image by the noise. Furthermore, 

CNR values of the denoised image increase by 3-4 times in comparison to the noisy images 

leading to visually clean images.

C. SCAN TIME REDUCTION

In general, the MR images are averaged over multiple scans to obtain a good quality image. 

These multiple scans are collected and averaged internally by the machine’s algorithm. 

However, the acquisition of multiple scans takes a longer time and can introduce motion 

artifacts. Hence, it is important to reduce the scan time, which can be achieved by denoising 

the image after a few scans. The reference images depicted in Figures 4, 5 and 6 are 

obtained by averaging 16 repetitive scans. However, a similar quality image is achieved by 

denoising the averaged image of the three repetitive scans. It can be seen from Figure 4, 5, 

and 6 that the denoised images are visually similar to the reference images. Additionally, 

the SSIM value of ≥ 0.95 indicates that all the structural information is intact in the 

denoised images. It should be noted that the recording of the reference image consumes 

approximately 23 minutes and 24 seconds, whereas the averaged image of the first three 

scans takes 4 minutes and 38 seconds. Further, the presented pixel-wise denoising method 

requires around one second of time to denoise the MR image. Hence, by utilizing the 

presented method the MRI scanning time can be made 2-3 times faster.

D. COMPARISON WITH EXISTING METHODS

We compared the performance of the presented pixel-wise thresholding method with the 

adaptive fuzzy hexagonal bilateral (AFHB) [28], Pre-smooth non-local means (PSNLM) 

[59], standard bilateral [25], and non-local means [53] filtering-based MRI denoising 

techniques. The noisy images obtained by averaging three repetitive scans are used to 

compare the performance of the above mentioned methods. Figure 7 depicts the comparison 

result of the MR images for adaptive bilateral filtering, PSNLM, and the presented pixel-

wise denoising method. The first column of Figure 7 shows the noisy images of slices 1, 7, 

and 16. The second, third, and fourth columns of Figure 7 demonstrate the denoised images 

obtained from adaptive bilateral filtering, PSNLM filtering, and the presented pixel-wise 

denoising method, respectively. It can be seen from the second and third columns of figure 

7 that the adaptive bilateral and PSNLM filtering successfully removes noise. However, 

the filtering methods failed to recover features inside the highlighted region. In fact, the 

unclear features inside the highlighted area of the noisy images are distorted due to the 

filtering operation. Both the adaptive bilateral and PSNLM filtering methods provide even 

poorer structural information in comparison to the noisy images. This can be confirmed 

from Figure 7, where the structures or square blocks hidden in the noisy images in the first 

column are filtered out in the denoised images seen in the second and third columns. The 

comparison results of the presented pixel-wise denoising method with the standard bilateral 

and non-local means filtering techniques shown in figure 8 in Appendix A illustrate the 

superior performance of the pixel-wise threshold selection method.

Table 4 tabulates the quantitative results of the presented pixel-wise denoising method, 

adaptive bilateral, and PSNLM filtering techniques. Both the filtering methods display a 

small improvement in PSNR compared to the noisy image, whereas the SSIM value is 
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similar to that of the noisy image. This illustrates that the filtering methods suppress the 

structural information present in the noisy image. Further, it can be seen from Table 3 that 

the CNR for both the adaptive bilateral and PSNLM filtering methods is significantly greater 

than that for the noisy images. However, a multi-fold increase in CNR value is observed 

for the presented pixel-wise denoising method. Similar comparative results are obtained for 

the standard bilateral and non-local means filtering techniques. The quantitative results are 

depicted in Table 7 in Appendix A.

1) EFFICIENCY COMPARISON—The CPU processing time and memory usage for an 

Intel Core i5-9300H CPU @ 2.40GHz with 32.0 GB installed RAM system is calculated 

for all three methods. It can be seen from Table 5 that the presented pixel-wise denoising 

method takes less than one second and uses approximately 128 MBs, respectively to execute 

denoising, whereas, the PSNLM filtering techniques take more than six seconds and use 

greater memory to complete the denoising process. The adaptive bilateral filtering takes a 

longer time and utilizes less memory to complete the denoising process.

VII. CONCLUSION

In this paper, we presented an SVD based pixel-wise threshold selection MRI denoising 

method. Unlike the truncated SVD denoising methods which utilize global thresholding, we 

perform pixel-wise thresholding of singular vectors. Qualitatively, the denoised image has 

improved visual quality and recovers suppressed features. The PSNR of the denoised image 

improves significantly, whereas, an SSIM of ≥ 0.95 demonstrates that the denoised image 

recovers all the structural information. A multi-fold increase in the CNR value illustrates 

enhancement in the image visual quality. Additionally, the presented pixel-wise denoising 

denoising method enables 2-3 times faster acquisition by denoising images of just the first 

few scans. Thus, the presented pixel-wise denoising method outperforms the widely used 

filtering methods in all quantitative parameters and takes lower CPU time to denoise. This 

technique can be integrated into magnetic resonance imaging systems to reduce acquisition 

time without compromising image quality.
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APPENDIX A

Figure 8 shows the comparative denoising results of PWT with Bilateral and Non-local 

means filtering. The first column of Figure 8 shows the noisy images of slices 1, 7, and 

16. The second, third, and fourth columns of Figure 8 demonstrate the denoised images 

obtained from bilateral filtering, NLM filtering, and the presented pixel-wise denoising 

method, respectively.
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FIGURE 1. 
Flowchart of current denoising methods vs presented pixel-wise denoising method. AFHB: 

Adaptive fuzzy hexagonal bilateral, PSNLM: Pre-smooth non-local means.
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FIGURE 2. 
Flowchart of the presented pixel-wise thresholding (PWT) method.
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FIGURE 3. 
Plot of S vs l at different pixels for images of (a) Slice-1, (b) Slice-2, (c) Slice-3, and (d) 

Slice-4. S at different pixels saturate at different singular values depending on the PSNR of 

that pixel. The vertical lines belong to the threshold singular value.
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FIGURE 4. 
Denoising results of MRI scan of the ACR phantom for slices 2 (first row), 8 (second row), 

and 10 (third row) respectively. The noisy and reference images are obtained after averaging 

3 and 16 identical scans respectively. The denoised images display improved image quality 

and enhanced visibility.
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FIGURE 5. 
Denoising results of MRI scans of ACR Phantom for slices 3 and 13 at scan numbers 5,7, 

and 9, respectively. The results are consistent across different scans.
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FIGURE 6. 
Denoising results of MRI scan of the ACR phantom for slices 1,7 and 16 respectively. The 

highlighted area in the figure illustrates the recovered features after denoising.

SRIVASTAVA et al. Page 24

IEEE Access. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7. 
Comparison of PWT with the adaptive fuzzy hexagonal bilateral and PSNLM filtering of 

slices 1 (first row), 7 (second row), and 16 (third row). Adaptive fuzzy hexagonal bilateral 

filtering is able to reduce noise but fails to recover features highlighted in the red ellipse. 

PSNLM filtering is able to recover features but they are difficult to identify without knowing 

they existed before. PWT is able to reduce noise as well as recover features. AFHB: 

Adaptive fuzzy hexagonal bilateral, PSNLM: Pre-smooth non-local means.
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FIGURE 8. 
Comparison of PWT with the bilateral and NLM filtering of slices 1 (first row), 7 (second 

row), and 16 (third row). Bilateral filtering is able to reduce noise but fails to recover 

features highlighted in the red ellipse. NLM filtering is able to recover features but they are 

difficult to identify without knowing they existed before. PWT is able to reduce noise and 

recover features.

SRIVASTAVA et al. Page 26

IEEE Access. Author manuscript; available in PMC 2024 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SRIVASTAVA et al. Page 27

TABLE 1.

Description of symbols used.

Symbol Description

X Input rectangular matrix.

X′ Denoised rectangular matrix.

U Left singular vector matrix.

Σ Singular value matrix.

V Right singular vector matrix.

δ Individual singular value.

λ Threshold value.

PSNR Peak Signal-to-Noise ratio.

P Maximum possible value of image.

MSE Mean Square Error.

R Reference rectangular Matrix.

μ Average.

σ Standard Deviation.

S Saturation Parameter.

n Noise.

n Mean of noise.

RMS Root Mean square value.

STD Standard Deviation.
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TABLE 2.

Mean of RMS and STD of noise. The mean RMS and mean STD are computed by taking the mean of RMS 

and STD of the 16 individual scans.

Slice Mean RMS Mean STD

1 26.67 16.56

2 26.45 16.56

3 27.72 17.18

4 26.36 17.28

5 27.56 17.45

6 27.73 17.77

7 28.57 18.09

8 30.36 18.43

9 29.57 18.41

10 28.81 18.48

11 29.40 18.53

12 29.31 18.52

13 28.63 18.29

14 29.25 18.11

15 28.91 17.88

16 27.84 17.70

17 27.43 17.18

18 26.41 16.58

IEEE Access. Author manuscript; available in PMC 2024 December 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SRIVASTAVA et al. Page 29

TABLE 3.

Quantitative denoising results of the presented pixel-wise denoising method for phantom images of all slices.

PSNR SSIM CNR

Slice Noisy Denoised Noisy Denoised Noisy Denoised

1 65.30 80.17 0.37 0.94 7.78 37.24

2 65.36 80.00 0.41 0.95 9.62 47.47

3 64.91 78.93 0.42 0.95 12.16 58.53

4 64.75 78.32 0.45 0.96 14.18 64.69

5 64.81 78.35 0.46 0.96 16.50 74.91

6 64.47 78.05 0.47 0.96 17.01 80.32

7 64.20 76.78 0.54 0.97 17.25 71.92

8 64.01 77.31 0.62 0.98 17.72 78.85

9 64.09 77.80 0.45 0.96 20.44 98.39

10 63.98 78.08 0.45 0.96 20.48 105.25

11 63.81 77.82 0.44 0.96 20.60 103.79

12 63.86 77.78 0.44 0.96 20.06 104.59

13 64.00 77.58 0.48 0.96 20.58 97.83

14 64.17 77.09 0.48 0.96 22.12 92.18

15 64.35 77.37 0.48 0.96 20.70 94.09

16 64.55 77.36 0.49 0.96 19.75 89.37

17 64.78 78.25 0.48 0.97 20.47 86.76

18 65.15 78.17 0.49 0.97 21.91 95.28
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TABLE 5.

Efficacy comparison of the presented pixel-wise denoising method with AFHB and PSNLM. AFHB: Adaptive 

fuzzy hexagonal Bilateral, PSNLM: Pre-smooth non-local means.

CPU Time (s) Memory Usage (MBs)

Slice AFHB PSNLM PWT AFHB PSNLM PWT

1 7.58 6.28 0.86 7.48 2382.73 128.25

2 7.81 6.73 1.00 7.48 2382.73 128.25

3 7.17 6.36 0.86 7.48 2382.73 128.25

4 6.96 6.66 0.98 7.48 2382.73 128.25

5 6.84 6.20 1.05 7.48 2382.73 128.25

6 6.52 6.69 0.83 7.48 2382.73 128.25

7 6.39 6.47 0.84 7.48 2382.73 128.25

8 6.75 6.55 0.86 7.48 2382.73 128.25

9 6.48 7.34 0.86 7.48 2382.73 128.25

10 6.55 8.20 0.78 7.48 2382.73 128.25

11 6.98 7.56 0.91 7.48 2382.73 128.25

12 6.59 10.30 0.92 7.48 2382.73 128.25

13 6.86 7.47 1.00 7.48 2382.73 128.25

14 6.72 7.53 0.81 7.48 2382.73 128.25

15 6.61 8.36 0.95 7.48 2382.73 128.25

16 6.67 7.44 0.89 7.48 2382.73 128.25

17 6.87 8.45 0.82 7.48 2382.73 128.25

18 6.66 8.41 1.02 7.48 2382.73 128.25
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