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Abstract

Across many environments microbial glycoside hydrolases support the enzymatic process-

ing of carbohydrates, a critical function in many ecosystems. Little is known about how the

microbial composition of a community and the potential for carbohydrate processing relate

to each other. Here, using 1,934 metagenomic datasets, we linked changes in community

composition to variation of potential for carbohydrate processing across environments. We

were able to show that each ecosystem-type displays a specific potential for carbohydrate

utilization. Most of this potential was associated with just 77 bacterial genera. The GH con-

tent in bacterial genera is best described by their taxonomic affiliation. Across metagen-

omes, fluctuations of the microbial community structure and GH potential for carbohydrate

utilization were correlated. Our analysis reveals that both deterministic and stochastic pro-

cesses contribute to the assembly of complex microbial communities.

Author Summary

The deconstruction of complex carbohydrates (e.g., cellulose, chitin), mostly by microbes,

releases short metabolizable oligosaccharides to the environment. This contributes to the

functioning of an ecosystem and is essential for global carbon cycling. Carbohydrate deg-

radation requires the production of carbohydrate active enzymes (CAZymes). Among

these, GH are the most abundant enzymes to break down polysaccharides into smaller

products. However, not all the microbes have genes for all the glycoside hydrolases (GH).

In addition, microbial communities are dynamic assemblages and display important spa-

tio-temporal variations. Thus, two major questions are, which microbes are associated

with GH genes and which are involved in carbohydrate processing across environments.

The bioinformatic challenge is therefore to collect enough metagenomic datasets and to

reanalyze microbiomes in the light of GH genes. Here, we created a custom bioinformatic

pipeline aimed at identifying sequences for GH in 1,934 sequenced microbiomes derived

from 13 broadly defined ecosystems, including terrestrial and marine ecosystems as well

as human and animal associated microbiomes. We linked changes in microbial commu-

nity composition and functional potential for carbohydrate processing across environ-

ments. Our results suggest that a relatively small number of bacterial genera (i.e., the
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potential degraders), with increased number of GH genes target the substrates expected in

their environment. These degraders display mostly conserved GH content across micro-

biomes. In each ecosystem however, the functional redundancy among potential degrad-

ers allows for slightly distinct communities with similar functional potential. Globally,

linking variations of microbial community structure and function, across ecosystems, pro-

vides insight into how microbial communities may adjust to the supply of carbohydrates.

In the future, this will help predict how change in microbial community composition, in

response to environmental perturbation (e.g., global change), can affect the functional

potential of microbial communities.

Introduction

The complete enzymatic deconstruction of polysaccharides (e.g., cellulose, chitin) involves

many carbohydrate active enzymes (CAZymes) including glycoside hydrolases (GH), polysac-

charide lyases, carbohydrate esterases, accessory activities (e.g., LPMO), and many accessory

domains (e.g., CBM)[1–4]. The glycoside hydrolases (GH) cleave glycosidic bonds in polysac-

charides (e.g., cellulose) and oligosaccharides (e.g., cellooligosaccharides) and release short

metabolizable products (e.g., cellobiose). According to the CAZy database [5], many GH fami-

lies, identified based on their structure, display substrate specificity. For example, most bio-

chemically characterized proteins with domains from GH families 5, 6, 7, 8, 9, 12, 44, 45, and

48 act on cellulose. On the other hand, some GH families display mixed substrate specificity

(e.g., GH16). The identification of specific GH domains in sequenced genomes [6] and meta-

genomes [7] allows for the prediction of the potential for starch, cellulose, xylan, fructan,

chitin, and dextran deconstruction (i.e., the potential to target carbohydrates according to

functional annotation of genes)[2,6,8,9].

To date, most identified GH are from bacteria and their distribution, across sequenced

genomes, is phylogeneticaly conserved within genera [2,9,10]. Most bacteria have the potential

to target starch and oligosaccharides and few lineages are associated with increased potential

for complex carbohydrate deconstruction (i.e., potential polysaccharide degraders) [2,9].

Besides some well-characterized microbial lineages involved in polysaccharide deconstruction

(e.g., Clostridium, Streptomyces), the systematic investigation of sequenced bacterial genomes

has revealed the richness and diversity of GH in poorly-characterized degrader lineages (e.g.,

Actinospica)[6].

Microbial communities exposed to varying parameters, including carbohydrate supply

[11], fluctuate across environments [12–16]. As a consequence, changes in community com-

position have been associated with variations of environmental processes (e.g., plant material

deconstruction, phosphate uptake) [17–19]. Thus, the major challenges are (i) to understand

which bacteria are involved in carbohydrate deconstruction, and (ii) to understand if the over-

all microbial community composition and potential for carbohydrate deconstruction are

linked, across microbial populations and across environments. Does the environment select

for specific GH, specific lineages, or both [10,20]? In the first case, microbial communities

would adapt through selection of adequate potential for carbohydrate processing indepen-

dently of the lineage (e.g., by lateral gene transfer or other ways of convergent evolution). In

the second hypothesis, microbial communities would adapt through selection of phylogeneti-

cally defined lineages endowed with specific potential for carbohydrate processing [20]. The

first hypothesis implies that changes in functional potential and community composition are

not connected whereas the opposite is the case for the alternative hypothesis. In order to
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address these questions, we investigated how changes in the potential for carbohydrate pro-

cessing correlates with the change of bacterial communities composition across 13 broadly

defined environments and across 1,934 sequenced microbiomes.

Despite the lack of consistent quantitative estimation of the carbohydrate composition

across environments, ecosystem-types are associated with specific supplies of carbohydrates.

In soil [21], sludge and wastewater (referred to as sludge below) [22], and in the phyllosphere

[23], microbes are exposed to an abundant—and varying—complex mixture of carbohydrates

(e.g., cellulose, xylan, and fructan from plant material and chitin from fungi and arthropods).

In aquatic systems (i.e., marine, mats, and larger fresh water environments), the carbohydrate

supply is reduced, and chitin is the most common polymer [24–26]. Microbes in digestive

tracts (i.e., human gut, oral, and most animal samples) are exposed to diverse and abundant

substrates including plant polysaccharides and animal glycosaminoglycans found in food and

produced by the host [27–29]. In other parts of the host (e.g., skin), the supply of carbohy-

drates is reduced and mostly composed of animal carbohydrates [30]. In corals and sponges,

the supply of carbohydrates is reduced and reflects the chemical composition of prey (i.e.,

detritus and planktonic cells)[31]. Finally, starch and glycogen, produced to store energy by

many organisms [32,33], and dextran associated with bacterial biofilm (e.g., dental plaque)

[34] are expected to be present in most environments.

Investigating how changes of microbial community composition and changes of potential

for carbohydrate processing correlate across environments will (i) help identify environment-

specific potential for carbohydrate processing, (ii) and highlight new environmental lineages

associated with potential for carbohydrate utilization, and (iii) provide a comprehensive

framework for the interpretation of the mechanisms by which microbial communities adapt to

varying carbohydrate supply.

Results and Discussion

Glycoside hydrolases identification

First, in order to test how the environment affected the potential for carbohydrate utilization

across ecosystems, we identified 130.2×106 sequences encoding putative glycoside hydrolases

(GH, ~0.5% of analyzed sequences) in 1,934 annotated metagenomes from 13 broadly defined

ecosystems (S1 Table) [35]. Across environments, we found that the potential for carbohydrate

utilization varied extensively but, in many cases, matched the expected supply of carbohy-

drates. The frequency of sequences for GH ranged from 1.7 (sponges) to 172 (human gut) per

sequenced genome equivalent (i.e., 3Mbp, SGE) [7,36]. Broadly, the overall frequency of iden-

tified GH was high in most human—associated ecosystems, intermediate in the phyllosphere

and animal samples and low in soil, sludge, mats, marine, fresh-water, coral, and sponge sam-

ples (Fig 1A, S2 Table). Besides enzymes for oligosaccharides and starch, sequences targeting

mixed substrates [i.e., the other plant polysaccharides (OPP), the other animal polysaccharides

(OAP), and other undefined carbohydrate (Mixed)] dominated in most samples (Fig 1B, S3

Table). Next, sequences for cellulose and fructan utilization were abundant in most human

samples, intermediate in the phyllosphere and soil and low in the other ecosystem types. Xyla-

nases were abundant in the human gut and intermediate in animal and phyllosphere samples

only. Chitinases were abundant in mats and human skin samples whereas sequences for dex-

tran utilization were abundant in human mouth and gut. Environments with expected abun-

dant and diverse supply of carbohydrates (e.g., human gut, animal, phyllosphere, soil) were

associated with sequences for GH targeting many different substrates. Furthermore, the poten-

tial for carbohydrate processing was skewed in environments with a specific carbohydrate sup-

ply. In aquatic environments and the human mouth, the relative frequencies of sequences for
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GH targeting chitin and dextran were found to be higher than in other ecosystems, respec-

tively (Fig 1B, S3 Table). In some environments however (e.g., human skin and vagina), the

prevalence of sequences for GH targeting specific substrates (e.g., cellulose and fructan) did

not systematically matched with the expected presence of substrates.

When accounting for both the presence/absence and frequency of sequences for GH, across

ecosystem-types we observed three clusters (Fig 1C). The first cluster contained metagenomes

from aquatic environments, sponge, and coral samples. In these ecosystems, the frequency of

GH was extremely reduced. The second cluster contained metagenomes from soil, sludge,

mats, and—more distantly related- animal samples. These ecosystems displayed intermediate

Fig 1. A and B, frequency, per sequenced genome equivalent (SGE), of sequences for GH across environments. Polysaccharides

are cellulose, xylan, fructan, other plant polysaccharides (OPP), chitin, dextran, other animal polysaccharides (OAP), and mixed substrates;

Starch stands for both starch and glycogen. P-values are from the overall ANOVA on square-root transformed data (P>0.05, Tukey post-hoc

test). C, environments clustering according to the frequency (median) of identified sequences for each GH families, across ecosystem-

types.

doi:10.1371/journal.pcbi.1005300.g001
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and diverse GH frequency. Finally, the third group, composed of human samples and the phyl-

losphere, displayed abundant and diverse GH.

Globally each ecosystem-type displays a specific potential for polysaccharide deconstruc-

tion matching the assumed carbohydrate supply. Sequences for GH were more frequent in

human, animal, and phyllosphere samples than in “open” environments. These fluctuations

could reflect variations in the actual GH abundance and/or variations of the average genomes

size across environments. Indeed, for example, many lineages derived from the soil have large

genomes (e.g., Streptomyces, phylum Actinobacteria) whereas many host associated microbes

have smaller genomes (e.g., Mycobacterium, phylum Actinobacteria) [37,38].

Within ecosystems, extensive variations were also observed. These variations, likely reflect

environmental fluctuation in microbial community composition [e.g., human microbiome

[39], animals [27], soil [40], and marine ecosystems [41]] in response to specific environmental

conditions (e.g., moisture, carbohydrate supply) in sub-ecosystem types. For example “soil”

represents many types of ecosystems (e.g., desert and forest) associated with distinct carbohy-

drate supply and host to different communities [11]. Alternatively, these variations could

reflect the variable GH content among functionally equivalent, and potentially interchange-

able, lineages. For example, not all the potential cellulose degraders display the same GH con-

tent [6].

Identification of potential carbohydrate degrader lineages

Next, we defined microbial communities of degraders as the collection of identified bacterial

genera associated with the potential to target cellulose, xylan, fructan, dextran, chitin, OAP,

OPP, or Mixed substrate. In order to identify the degrader communities, we used the taxo-

nomic annotation of the detected GH sequences. As expected [2], GH sequences for starch

and oligosaccharides processing were associated with many genera. Traits for cellulose,

xylan, and chitin were associated with tens to hundreds of genera. Finally the diversity of

genera with the potential for metabolizing dextran and fructan was further reduced (Fig 2).

The degrader community in human and animal metagenomes was strongly skewed toward

few taxa from the Bacteroidetes, Actinobacterium, and Proteobacteria phyla. In both human

gut and in animal samples, the pool of sequences for GH was dominated by sequence associ-

ated with Bacteroides whereas Streptococcus dominated in the human mouth, Propionibacter-
ium in human skin, and Lactobacillus in human vagina. In corals and sponges, the few

identified GH sequences were also derived from a reduced number of bacterial genera. In

metagenomes from sludges, the community of degraders was moderately skewed toward few

genera depending of the considered substrate (e.g., Clostridium for chitin and xylan). In the

other environments the contribution of identified degraders to the pool of GH was more

evenly distributed. Some of the identified degrader genera were detected in most ecosystem-

types (e.g., Bacteroidetes, Bacillus) whereas some were restricted to specific environments

(e.g., Xylella).

Across samples, sequences for the degrader community accounted for ~2 to ~82% (median

value) of taxonomically identified sequences, in coral and vagina samples, respectively (S1

Fig). In addition, variation in the composition of the degrader community correlated with the

composition of the non-degrader community (rSpearman = 0.69, p = 0.001, S2 Fig). This sug-

gested that the environmental parameters are affecting both the degraders and the non-

degraders. However, the carbohydrate supply, being a major factor affecting microbial com-

munity composition in terrestrial ecosystems [11], is likely to act directly on the degrader com-

munity and indirectly on the non degraders through intergeneric association and competition

[42].
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Although similar numbers of degrader lineages are found across ecosystems, except in coral

and sponge samples, host associated metagenomes displayed strong bias toward reduced num-

ber of degrader genera. These ecosystem-types constitute stable environments with constant

supply of nutrient and little spatio-temporal variation. These stable and nutrient rich ecosys-

tems promote the selection of specific lineages whereas “open” ecosystem-types, experiencing

spatial and temporal variation of the nutrient supply harbor more diverse communities of

degrader lineages [38]. This increased diversity likely results from spatial and temporal hetero-

geneity of open-environments and is likely to buffer the impact of fluctuating microbial com-

munity [43–45]. In contrast, in human and animal associated metagenomes, microbial

communities are skewed towards few genera with increased GH-content and reduced genome

size [46,47], thus increasing the overall frequency of GH sequences. In these communities,

Fig 2. Relative contribution (%) of major potential degrader genera (i.e., >8% identified GH) to the pool of

sequence targeting specific substrate, in each environment. Numbers represent the total number of identified

bacterial genera endowed with potential to target the substrate.

doi:10.1371/journal.pcbi.1005300.g002
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carbohydrate processing, and thus the entire environment functioning, is more vulnerable to

perturbation affecting degraders [29,48,49].

Interestingly, in environments where the GH distribution and the assumed carbohydrate

supply do not match, identifying the degrader lineages highlighted two trends. First, in the

human vagina, the high frequency of GH32 and 68, targeting fructan, is associated with abun-

dant Lactobacillus (phylum Firmicutes). These enzymes are potentially involved in the biosyn-

thesis and metabolism of fructose-derived exopolysaccharides and biofilms [2,39,50]. Next, in

human skin, the high frequency of cellulases matched with abundant GH5 found systemati-

cally in Propionibacterium (phylum Actinobacteria)[2,9]. Although secreted by P. acnes isolates

[51], the exact function of these potential cellulases remains to be elucidated as the skin is not

expected to contain large amount of cellulose. Thus, the prevalence of GH in a specific envi-

ronment reflects the adaptation to nutrient supply, the requirement of GH for biosynthetic

pathways (e.g., biofilms), and the phylogenetic conservatism of functional traits.

Conservatism of GH across environments

Next, we essayed the conservatism of GH sequences in environmental potential degraders in

order to test if the observed variation of the GH content across ecosystems mirrored the phy-

logeny or the environment. In total 493 identified bacterial genera with GH genes were identi-

fied. Most had the potential to degrade starch and oligosaccharides and just 77 major potential

carbohydrate degraders were associated with GH for cellulose, xylan, fructan, dextran, chitin,

OPP, OAP, and mixed substrates (when excluding rare genera, i.e. <0.2 SGE/metagenome)

(S3 Fig). Most of these genera contained known degraders (e.g., Clostridium, Xanthomonas)
[2,3,9]. In addition, several poorly-characterized genera were also identified (e.g., Basfia, Novo-
sphingobium, Leeuwenhoekiella). Some degraders were cosmopolites (i.e., detected in most

ecosystems, e.g., Bacillus, Bacteroides), some were intermediate cosmopolites, identified in few

environments (e.g., Caulobacter), and few were restricted to specific environments (e.g., Bas-
fia). Next, among the identified lineages, some were specialists with GH for a reduced number

of carbohydrates (e.g., Atopobium, a vaginal commensal, and Exiguobacterium, an environ-

mental cosmopolite) whereas some were generalists with the potential to target many sub-

strates (e.g., Bacteroides, Bacillus, and Streptomyces)(S3 Fig).

Among the major potential degraders, most cosmopolites and intermediate cosmopolites,

except some Bacteroidetes, displayed conserved GH/SGE across environments (Fig 3A). This

suggested that, in most genera, the phylogeny strongly affects the GH content and this sup-

ported the phylogenetic conservatisms of GH at the genus level in sequenced bacterial

genomes [2,9]. Conversely, in variable Bacteroides, Parabacteroides, and Flavobacterium, the

environment is likely strongly affecting the GH content. This suggested that, depending on

the phylum, both the phylogeny and the environment could explain the lineage-specific GH

content.

Thus, we next investigated the relative contribution of ecosystem and taxonomy on the

genus specific GH content, across bacterial phyla (S4 Fig). In most phyla, the taxonomic ori-

gin, not the ecosystem, was a major source of variation of the potential for carbohydrate

degradation (e.g., >40% of the observed variation in Fusobacteria and Planctomycetes).

However in some phyla (e.g., Thermotogae and Tenericutes) the taxonomic affiliation

accounted for <5% of observed GH/SGE variation. The environment-type and interactive

effect between environment and taxonomy, also significantly affected the distribution of the

GH in bacterial genera, accounting respectively for 1.5–17% and 0.7–13% of the observed

variation (S4 Fig). Thus, overall, our data suggested that first the taxonomy, and the associate

phylogeny, and next the environment affected the genus-specific GH content. This was

Glycoside Hydrolases in Environment
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further confirmed by the significant correlation between overall community composition

and the variation in functional potential for carbohydrate processing across environments

(n = 13 environment types, rmantel = 0.42, p = 0.001) (Fig 1C, S5 Fig) and across samples

(n = 1,934 metagenomes, rmantel = 0.55, p = 0.001). Thus, despite variation across

Fig 3. A, genus-specific frequency (per SGE) of sequences for GH targeting all carbohydrates but starch and oligosaccharides (median

value) across environments. B, coefficient of variation of the genus-specific frequency of sequences for GH targeting all carbohydrates but

starch and oligosaccharides. “Conserved” mirrors constant GH/SGE within ecosystem whereas “Variable” reflects variation of GH/SEG

within ecosystem for each individual genus.

doi:10.1371/journal.pcbi.1005300.g003
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environments, the genus specific GH content is best described by the taxonomic affiliation

of the considered lineages, at the genus level. Functional traits for carbohydrate processing

are not randomly distributed among environmental bacterial genera.

Connecting community structure and potential for carbohydrate

deconstruction

Next, we investigated the connection between the overall microbial community composition

and the potential for carbohydrate processing, across metagenomes (Fig 4). This analysis

highlighted the taxonomic and functional proximity of microbiomes within most environ-

ments (Fig 4A and 4B). In addition, microbial communities from distinct environments but

exposed to supposedly similar carbohydrates (e.g., animal vs. human gut), also overlapped

structurally and functionally. This suggested that the overall microbial community composi-

tion and the potential for carbohydrate processing were linked. In order to test this connec-

tion, we assayed the dissimilarities in the potential for carbohydrate processing (FBC) and the

overall taxonomic composition (CBC) across pairs of metagenomes (Fig 4C). First, even some

completely different communities (i.e., CBC~1) shared potential for carbohydrate processing

(i.e., FBC<1). This highlighted the central function of GH enzymes, their broad distribution

across bacteria and environments [2,7,9] and converging functions in environmental commu-

nities regarding carbohydrate processing [52,53]. On the contrary, even taxonomically identi-

cal communities (i.e., CBC~0) displayed variation in their GH content (i.e., FBC>0). This

suggested that, although conserved in most bacterial genera, closely related lineages (e.g., spe-

cies) could possibly display variation of their potential for carbohydrate utilization [13]. Next,

communities were more similar, compositionally and functionally, within the same environ-

ment than across environments. This supports ecosystem-specific GH composition (Figs 1

and 4A) and suggests that microbial community composition is a major factor affecting the

overall potential for carbohydrate processing. Finally, within environments, compositional

and functional dissimilarity correlated, the higher FBC being associated with higher CBC.

Fig 4. Non-metric multidimensional scaling ordination based on Bray-Curtis dissimilarities depicting the variation in frequency of sequences

for GH targeting all carbohydrates except oligosaccharides and starch identified in microbial communities (A) and overall microbial

communities composition (B), and color coded by environments (average/environment and SD, the number of datasets is in parentheses).

C, Kernel density-plot for the relation between taxonomic and functional (based on identified GH sequences for all carbohydrate except

oligosaccharides and starch) dissimilarities in pairs of communities.

doi:10.1371/journal.pcbi.1005300.g004
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Prospectus

As described here, shotgun metagenomics provided a path to depict the taxonomy and func-

tional potential for carbohydrate processing of complex environmental microbial communi-

ties. Nevertheless, many limitations have been associated with this technique [7,13].

Specifically, we recognize that, fungi and other microeukaryotes, although important members

of microbial communities, were not included in this study. Second, accurate annotation of

individual sequences in databases depends on the availability of biochemically-characterized

homologs. GH are among the most characterized enzymes and their predicted substrate speci-

ficity was derived from biochemically characterized bacterial homologs [2,5]. However GH

sometime display broader substrate specificity than described here and although GH are essen-

tial for carbohydrate processing, many other enzymes are involved in this process. Third,

DNA extraction and sequencing procedures are known to affect the distribution of identified

sequences. However, these bias were shown to have limited impact on discrimination of

microbial communities from distinct environments [54]. These issues are invariably associated

with metagenomics and can affect our conclusions in unknown direction. We also recognize

that GH, although central for the processing of carbohydrates, are not the only CAZymes

involves in this process. Indeed GH are known to act synergistically with other CAZymes (e.g.,

LPMO) and accessory domains (e.g., CBM) in order to fully deconstruct complex substrate

(e.g., plant cell wall)[4,6].

Nevertheless, quantifying the distribution, the substrate specificity, and the taxonomic ori-

gin of sequences for glycoside hydrolases across 1,934 metagenomes provides an unprece-

dented opportunity for understanding organizing principles of the connection between

community composition and the potential for carbohydrate processing, a key reaction in

many environments [11]. First, a limited number of bacterial genera contribute to the pool of

GH in the environment and their distribution produces ecosystem-specific potential for carbo-

hydrate utilization. This reflects the limited distribution of genes for breaking down carbohy-

drate in bacterial lineages [2,9]. Across microbiomes, fluctuation in the community of the

major degraders correlates with the non-degrader community thus confirming how important

the carbohydrate supply is on the community of degraders [11].

As depicted here, the environment selects for both specific GH and specific lineages. In

consequence, the assembly of microbial communities mirrors both deterministic and sto-

chastic processes [55]. Indeed, in most ecosystems several ecologically similar, yet not

identical, potential carbohydrate degraders can coexist and compete. This functional redun-

dancy among degraders produces functionally similar but structurally distinct communi-

ties. Next, as suggested by Ferrenberg et al., stable microbial communities are more

influenced by stochastic processes [55]. Finally, although conserved in most bacterial

genera, some lineages may display variation of the GH content within genus [56]. Interspe-

cific variation within these genera may result in variable overall functional potential with

little variation in the community structure, when characterized at the genus level [57].

Together, these variations can influence the relation between potential for carbohydrate

deconstruction and the overall microbial community. In consequence, the microbial com-

munity structure cannot be inferred from the identified potential for carbohydrate utiliza-

tion. However, within ecosystems, the potential for carbohydrate utilization is highly

conserved, relative to the overall microbial community structure. This suggests that envi-

ronmental parameters, including carbohydrate supply [11], filter microbial lineages based

on their potential for carbohydrate utilization. However the potential for carbohydrate utili-

zation is constrained to specific lineages, at the genus level. In consequence, microbial com-

munity structure and function correlate and thus, knowing the microbial community

Glycoside Hydrolases in Environment
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composition (at the genus level), one could potentially infer the distribution of traits for car-

bohydrate utilization.

The phylogenetically conserved potential for polysaccharide utilization in bacterial genera

detected in metagenomes in this study, and in sequenced bacterial genera [2,9] suggests that

identifying the composition is essential to understand, and potentially predict, the distribution

of genes involved in polysaccharide utilization in environmental microbial communities.

In the future, increasing the diversity of reference genomes will provide a better under-

standing of the phylogenetic distribution of genes for carbohydrate utilization, especially in

poorly-characterized lineages (e.g., Curtobacterium, Actinospica)[6]. These lineages, even if

poorly abundant, can contribute to the pool of GH [7], and thus might potentially affect the

processing of carbohydrate, an essential reaction in many environments.

Materials and Methods

Metagenomic datasets

Publically accessible SEED-annotated metagenomic datasets (n = 1,934) were downloaded

from the MG-RAST server, using the MG-RAST API (S1 Table) [35,58,59], and datasets

were grouped by features and biomes according to the bioportal ontology (http://bioportal.

bioontology.org/ontologies/). In order to identify all the sequences associated with GH in the

samples, sequences for each GH/CBM family, as defined in the CAZy database [5], were

extracted from the Pfam server and mapped against all sequenced genomes using SEED anno-

tations [9,60]. SEED functional annotation of these traits was then used as a reference to inves-

tigate the SEED-annotated sequences provided by MG-RAST output files (i.e., XXX_650.

Superblat.expand.protein) for functional annotations. The resulting hits and their correspond-

ing sequences were then subjected to a Pfam_scan (analysis (PfamA 27.0 db, e-value<1×10−5)

[61] to confirm functional annotations (S4 Table). This approach allowed us to identify short

sequences from metagenomes matching GH from sequenced bacterial genomes. The taxon-

omy of the identified GH, and the overall community composition (at the genus level) for each

dataset, was retrieved using taxonomic annotation of the corresponding sequences using

M5nr database [59,62]

GH substrate specificity

Glycoside hydrolases are among the most characterized enzymes. Many families have specific

structure/function and display narrowed substrate specificity. GH families were assigned to

substrate target categories according to the substrate specificities of characterized enzymes

from bacteria, as stated in the CAZy database. GH families targeting cellulose, xylan, chitin,

starch (and glycogen), fructan, dextran, and oligosaccharides were identified [2,5,8,9]. Some

GH families were identified as targeting Other Plant Polysaccharides (i.e., polysaccharides

other than cellulose, xylan, starch, fructan), Other Animal Polysaccharides (i.e., polysaccha-

rides other than starch-glycogen, chitin), and Mixed when targeting several substrates (S4

Table).

Statistics

Statistical analyses were performed using ‘Stat’ (v3.3.0) and ‘Vegan’ (v2.4–1) packages in the R

software environment (v3.3.0) [63,64]. For clustering of environments, we summarized the

data (i.e., we computed the median frequency of GH sequences per sequenced genome equiva-

lent (SGE), the GH composition, and to community composition) by environment type. Then

Bray-Curtis dissimilarities between pairs of environments were computed and the clustering
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was achieved by hierarchical clustering (S6 Fig). For clustering based on the GH composition,

we first selected metagenomic datasets containing at least 500 identified GH sequences, then

the GH distribution was rarefied and dissimilarity was computed using Bray-Curtis index.

Noteworthy, none of the datasets from Sponge or Coral was included in the analysis. Finally,

for the clustering according to the community composition, datasets with more than 10,000

taxonomically identified hits were considered (no dataset from Coral could be included in this

test). Correlation between environment comparisons was achieved by running Mantel correla-

tion test (999 permutations) [63] on the corresponding distance matrices.

The contribution of genera to the pool of GH sequences was achieved by analyzing the taxo-

nomic origin (at the genus level) of identified GH sequences [2]. Then sequences for enzymes

targeting specific substrate (S2 Table) were tallied by environment and by genus. Then, the

total number of bacterial genera endowed with the potential to target the substrate was

obtained. Major degrader genera were arbitrarily determined, for clarity of purpose, as bacte-

rial genera contributing at least 8% of the identified GH for a considered substrate, in at least

one specific environment.

The impact of environment and taxonomy, and the associated phylogeny, on genus specific

GH content was identified in bacterial genera in datasets with at least one genus-specific

sequenced genome equivalent (i.e., 3Mbp). Next, we computed the median value for each GH

family, in each genus, in each environment, per sequenced genome equivalent. Finally, we ran

a PERMANOVA (GH~Environment�Genus, with 500 permutations)[63], for each phylum.

The results are expressed as percent estimated variance explained by genus, environment, and

the interaction of genus by environment (S5 Fig).

Supporting Information

S1 Fig. Relative contribution of all sequences from potential carbohydrate degraders to the

entire pool of sequences across ecosystems.

(PDF)

S2 Fig. Bray-Curtis dissimilarity in communities of potential degraders and non-degrad-

ers, among pairs of metagenomes.

(PDF)

S3 Fig. A, genus-specific frequency (per SGE) of sequences for GH in potential degraders

(average value) across datasets. B, coefficient of variation of the genu- 515 specific frequency of

sequences for GH.

(PDF)

S4 Fig. Relative contribution of environment and taxonomy on the variation of potential

for carbohydrate utilization in all identified bacterial genera, per phylum. In parentheses

are number of identified genera and the number environments where these genera were

detected, respectively. Plotted values are proportional to the estimates of the variance compo-

nents, all p<0.05. (�Phyla for which the number of identified genera and/or environments was

too small to evaluate the combined effect of environment by genus).

(PDF)

S5 Fig. Environments clustering based on GH frequency (GH/SGE), overall community

composition (identified at the genus level), and GH distribution. Correlation between clus-

tering investigated using Mantel-test (npermutations = 999).

(PDF)
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