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Abstract

different groups prior to implementation.

especially for models built with single-centre data.

Cho et al. report deep learning model accuracy for tilted myopic disc detection in a South Korean population. Here
we explore the importance of generalisability of machine learning (ML) in healthcare, and we emphasise that
recurrent underrepresentation of data-poor regions may inadvertently perpetuate global health inequity.

Creating meaningful ML systems is contingent on understanding how, when, and why different ML models work in
different settings. While we echo the need for the diversification of ML datasets, such a worthy effort would take
time and does not obviate uses of presently available datasets if conclusions are validated and re-calibrated for

The importance of external ML model validation on diverse populations should be highlighted where possible —
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We read with great interest the article describing the ap-
plication of deep learning to recognize optic disc tilt,
and the discussion of its importance in considering oph-
thalmic measurements, by Cho et al. [1] The rapid evo-
lution of artificial intelligence in ophthalmic image
recognition has created unprecedented opportunities for
efficient, accurate and cost-effective diagnosis with less
human input — of particular value in resource-poor set-
tings where specialist input is relatively scarcer [2].
While we are encouraged by the model accuracy and
commend the authors for describing strengths and
weaknesses of their study, we would like to highlight a
limitation and subsequent area of further exploration
that would strengthen the utility of their work: the need
to evaluate the generalisability of their model outside
their single-centre, paediatric South Korean population.
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We believe validation of the model developed by Cho
et al. on other populations, particularly those lacking
local imaging repositories, would be of great value.
Sociodemographic disparities in machine learning
(ML) are well described; with recurrent underrepresen-
tation of some populations posing substantial risks of
unknown ML biases. Indeed, a recent report noted that
172 countries (totalling 3.5 billion people) have no pub-
licly available ophthalmic imaging datasets [3], pro-
foundly illuminating the possibility of sampling-bias and
subsequent poor generalisability in global ML studies.
Such disparity in data availability, if left unchecked, may
inadvertently perpetuate global health inequity.
Generalisability is itself not binary, nuancing issues of
sampling bias in clinical applications of ML [4]. A proxy
for validity, generalisability is challenged when translat-
ing findings across different clinical settings — if not by
demographic diversity (as may be the case for Cho et al),
then by unique patient-level differences or local clinical
idiosyncrasies. Creating clinically useful ML systems is
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therefore contingent not only upon demographic and
clinical generalisability, but also on an understanding of
how, when, and why different ML models work in
different settings. Although we echo the need for in-
creased diversification of ML datasets, such a worthy
effort would take time. The need for increased diver-
sity does not obviate the uses of presently available
datasets if conclusions are conscientiously validated
and re-calibrated for different populations prior to
implementation.

For example, a recent study from India outlined the
value of validating ML models on diverse populations;
the model, built with relatively homogenous sociodemo-
graphic data, was demonstrated to be more broadly-
applicable to other populations in disease detection [5].
Indeed, there are myriad publicly-available ophthalmic
imaging datasets, whose algorithms could be broadly val-
idated to assess the extent of their value to populations
in data-poor regions, which may lack the infrastructure
to develop their own repositories [6—13]. As shown by
Gulshan and others, validation of algorithms based on
inevitably imperfect data can identify when and where
these models still hold clinical value. While models may
not be universally generalisable [14], identifying popula-
tions in which they are accurate — and to what degree,
and in what circumstances — still holds importance, par-
ticularly in allowing countries lacking the infrastructure
to build local imaging datasets to still benefit from inter-
national ML findings. Investing in the infrastructure for
local validation and re-calibration will also lay ground-
work for eventual contribution of local data to inter-
national repositories, which may be required to enhance
local validity of models.

While there are no hard and fast rules as regards the
amount of data needed to validate and re-calibrate a
model trained on population A before deploying to
population B, the process of validation and re-calibration
requires certain steps and features [15-17]. Variables in
the original model from population A must be present
in the dataset from population B. Data from population
B for model validation has to be as recent as possible. A
target acceptable discrimination and calibration should
be set by those who will use the model and those who
will be affected by the model. Special attention should
be made in evaluating the accuracy in marginalized
groups. If the model performance is below the set
threshold, then re-calibration is necessary. In general,
the number of patients required should be an order of
magnitude greater than the number of features in the
model. For images, a principal component analysis is
performed to determine which image features are im-
portant. Another crucial factor in determining the mini-
mum cohort size is the prevalence of the diagnosis for a
classification algorithm or the event for a prediction
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algorithm. The less prevalent a diagnosis or event is, the
larger the sample size required.

Although medicine stands to benefit immensely from
publicly-available anonymised data and its applications
in artificial intelligence [18], building equitable sociode-
mographic representation in data repositories is crucial.
In the meantime, conscientious local validation and re-
calibration will elucidate how and when current ML
findings can be applied to heterogeneous populations;
and may help to ameliorate disparities in access to ML-
driven tools. The importance of model validation on
other diverse populations should be emphasised where
possible, especially for models built with single-centre
data.
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ML: Machine learning
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