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ABSTRACT
The significant worldwide increase in obesity has become a major health problem. Excess adiposity has been extensively linked to inflammation.
Recently, studies have shown that dietary intake and microbiota dysbiosis can affect the health of the gut and lead to low-grade systemic
inflammation, worsening the state of obesity and further exacerbating inflammation. The latter is shown to decrease iron status and potentially
increase the risk of anemia by inhibiting iron absorption. Hence, anemia of obesity is independent of iron intake and does not properly respond to
increased iron ingestion. Therefore, countries with a high rate of obesity should assess the health impact of fortification and supplementation with
iron due to their potential drawbacks. This review tries to elucidate the relation between inflammation and iron status to better understand the
etiology of anemia of obesity and chronic diseases and wisely design any dietary or medical interventions for the management of anemia and/or
obesity. Curr Dev Nutr 2021;5:nzab032.
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Introduction

Over the past decades, obesity has become a major public health prob-
lem. The prevalence of obesity has increased dramatically, and it has
been described as an epidemic. The increase in weight and adiposity
has been shown to decrease the quality of life and is associated with
many noncommunicable diseases (NCDs) such as cardiovascular dis-
eases, type 2 diabetes, cerebrovascular diseases, asthma, and cancer (1).
Surprisingly, despite the low status of micronutrients among patients
with obesity (2), little attention has been given to iron deficiency and
anemia in obesity.

In 2019, the prevalence of anemia was estimated to be 22.8%
globally (3). Anemia is most commonly caused by nutritional de-
ficiencies of iron and vitamins and results in microcytic erythro-
cytes (4), making iron supplementation a predictable and first-line
intervention in case of anemia. However, not all anemias are nu-
tritional ones, and iron supplementation might not always be the
answer. This review addresses anemia in the case of obesity and
presents evidence that iron supplementation should be carefully
administered.

Iron Metabolism, in Brief

Iron is an essential mineral that is vitally needed by the body for a
number of fundamental functions, including transport of oxygen in the
blood, mitochondrial energy production, and DNA synthesis (5). Iron
metabolism starts when the molecules enter the stomach and the small
intestine, where they are directly broken down by acid and proteolytic
enzymes (6). Maximal absorption of iron occurs in the small intestine,
where homeostasis is tightly regulated. In fact, the control occurs at the
level of absorption (7), and no regulation takes place at the level of ex-
cretion (8). For instance, iron absorption is shown to increase in cases
of deficiency through the upregulation of the duodenal iron ferroportin
(FPN), divalent metal transporter 1 (DMT1), and duodenal cytochrome
b (DCYTB) (9), which are involved in the transport, uptake, and reduc-
tion of ferric iron (Fe3+) to the ferrous form (Fe2+), respectively.

Obesity, a State of Low-Grade Inflammation

It has been widely accepted that obesity is a state of low-grade inflamma-
tion in both white and brown adipose tissues that are actively involved in
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FIGURE 1 The interaction between inflammation-triggering factors.

immunity (10–12). In fact, the accumulation of activated macrophages
in the adipose tissues eventually results in an increase in inflammatory
responses (13–17); this was observed with a high-fat diet (HFD) that is
associated with an upsurge in the expression of adhesion molecules in
adipose tissues, leading to leukocyte accumulation (18).

Adipocytes are known for their endocrine function, which is tightly
involved in the regulation of inflammation through the release of proin-
flammatory cytokines (19). This is the reason why studies have focused
on adipocytes as inflammatory mediators in obesity (11, 17). In fact,
adipocyte hypertrophy, usually seen in obesity, further secretes proin-
flammatory cytokines, adipokines, lipokines, and other molecules such
as TNF-α, IL-6, leptin, and resistin (19, 20) that exacerbate the existing
inflammation. This increased release is caused by the state of hypoxia
induced by the reduced blood supply to the multiplied adipocytes (17).
Interestingly, IL-6 concentrations were reported to correlate with BMI
significantly, and the concentrations were reduced in patients post–
bariatric surgery (21).

Other than the proinflammatory markers secreted, adipose tissue re-
leases fatty acids. Free SFAs accumulate in the liver and other organs,
which, in turn, activate the Toll-like receptor (TLR) family, leading to an
increased inflammatory state and susceptibility to further develop non-
communicable chronic diseases (nonalcoholic fatty liver disease and in-
sulin resistance) (22). The activation of TLR4 was reported to induce
inflammation and increase adiposity (23). These mechanisms are regu-
lated by the inflammatory pathways c-Jun N-terminal kinase/inhibitor
of κB kinase (JNK/IKK) and nutrient sensor mammalian target of ra-
pamycin (mTOR), along with the serine/threonine kinase Akt pathway
(22, 23). In addition, IL-6, along with free fatty acid drainage, is one of
the most prominent modulators of C-reactive protein (CRP) produc-
tion in the liver, which is in itself linked to obesity (24, 25).

Other Factors Affecting Inflammation

Other than adiposity, the inflammatory status is known to be associ-
ated with several factors (10), such as physical activity and lifestyle (26),
HFD (27, 28), environmental factors (e.g., temperature) (discussed be-
low), microbiome dysbiosis (discussed below), chronic diseases (insulin
resistance, cardiovascular diseases, pulmonary arterial hypertension,

Alzheimer disease, and others) (29–32), and some micronutrient sup-
plementation including iron (discussed below). An interplay between
these factors exists (Figure 1), which increases the severity of the in-
flammation, hence complicating the situation and the potential treat-
ment. The following sections describe how some of these factors con-
tribute to inflammation.

Environmental factors
The incidence of infections is known to be affected by seasonal vari-
ations, in which the majority of infections increase with elevated am-
bient temperatures (33). It has been stated that, during the summer
season—hence, under conditions of high temperature and humidity—
there is an increase in gram-negative bacteria (such as Escherichia
coli) in the bloodstream (34), in addition to other types of bacte-
ria that cause several enterically transmitted diseases (33). The oc-
currence of these infections is highly correlated with the induction of
inflammation.

On the other hand, other than the outdoor atmospheric condi-
tions, environmental and industrial toxicants also contribute signifi-
cantly. The rapid change and rise in urbanization over the last centuries
brought a sudden and severe increase in exposure to xenobiotics, in-
cluding air pollutants, hazardous waste products, and industrial chem-
icals (per- and polyfluoroalkyl, bisphenols, polycyclic aromatic hydro-
carbons, etc.) (10). The inflammatory activity is promoted through in-
duced oxidative stress by cytotoxins (35).

Gut microbiota
Both genetics and diet have been shown to affect microbiota composi-
tion, impair gut barrier function, and eventually lead to gut inflamma-
tion. However, scientific data have suggested that the quality of the diet
influences the quality of the gut bacteria more than weight and genetic
status do (36). Indeed, the gut microbiota plays a pivotal role in energy
harvest, storage, and expenditure (37, 38). Furthermore, the gut micro-
biota alters lipid metabolism by enhancing the storage of liver-derived
triglycerides and increasing the activity of lipoprotein lipase (LPL) (39–
41). This illustrates how an HFD alters gut microbiota and leads to diet-
induced intestinal inflammation (42). It has been suggested that the
consumption of an HFD, even prior to the development of weight gain,
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adiposity, and insulin resistance, can induce changes in the intestine,
further exacerbating inflammation (11, 43).

In fact, emerging evidence from animal models has highlighted the
contribution of the gut microbiota to obesity-associated inflammation
(11, 44). Among moderately obese Danish people (45) and severely
obese French women (46), gut microbiome composition showed sig-
nificant changes with higher fat mass, proinflammatory markers, and
insulin resistance (10). The alteration of the bacteria composition and
the increase in LPS are associated with intestinal permeability, mucosal
damage, and endotoxemia and are proposed to be activated through
TLRs (10, 47, 48). The latter would cause an increased release of en-
dotoxins and cytokines (TNF-α, NF-κB, IL-1, IL-6, IL-17, etc.) (49, 50)
in the circulation, worsening the inflammatory state and ultimately in-
creasing the risk of adiposity, metabolic disorders, and poor iron status.

Mediators between Iron and Inflammation

Ferritin and hepcidin are key mediators for the regulation of iron hom-
eostasis (51, 52), and they both happen to be acute-phase reactants (53),
playing important roles in inflammatory processes. Ferritin, the pri-
mary iron storage protein, helps in the transport (54) and the release
of iron in a very controlled fashion (55). Hepcidin, on the other hand,
acts by altering the FPN function and therefore decreases iron release
in the blood (51). The concentration of hepcidin is synergistically re-
lated to ferritin, and their increased concentrations are associated with
reduced iron absorption (56). Together, they decrease under conditions
of low iron availability and increase following iron supplementation (57,
58). Furthermore, the secretion of both hepcidin and ferritin from hep-
atocytes is induced by infection and inflammation, and suppressed by
hypoxia (56, 59). Other than the classical hepatic secretory pathways,
these compounds can derive from several different organs. For instance,
proximal tubule kidney cells and the splenic macrophages form poten-
tial sources of ferritin (60). Hepcidin can also be secreted by adipose
tissues, macrophages, and pancreatic islet cells. Therefore, these pro-
teins can act as a double-edged sword where their constantly elevated
concentrations in the blood, due to reasons other than high iron avail-
ability, can lead to defective duodenal iron absorption (31, 61) and in-
creased macrophage recycling (31, 62).

Iron Metabolism under Inflammation

Iron metabolism is affected by both dietary factors and inflammation.
Under conditions of inflammation, anemia of chronic diseases (ACD),
also known as anemia of inflammation, may develop. This makes it the
second most common type of anemia following iron deficiency anemia,
leading to abnormal intracellular sequestration of iron and a decrease in
circulating iron (63, 64). ACD is thought to be a consequence of the host
defense response mediated by inflammatory cytokines and TNF (29).

Anemia of chronic diseases
ACD is characterized by iron restriction, reduced iron absorption,
diminished erythropoiesis (decreased erythrocyte production), and
shortened erythrocyte lifespan (65). Iron restriction, when the amount
of iron available for the synthesis of hemoglobin is restrained, is influ-

enced by a systemic immune activation where iron trafficking changes,
leading to retention of iron in the cells and reduction in intestinal iron
absorption (63, 64). Iron sequestration in macrophages and other cells,
a hepcidin-independent regulatory mechanistic response to inflamma-
tion through the activation of TLR2 and TLR6 (66), is a hallmark of
ACD (63, 67). The TLR pathways inhibit macrophage iron release via
direct interaction with FPN, the protein iron transporter (68), hence
leading to a reduction in iron export from cells into the plasma (69).
This phenomenon is considered protective and defensive against bacte-
rial growth and the development of oxidative damage that would other-
wise aggravate inflammation (67). This status leads to iron overload and
thus increases the rate of tissue injury and organ failure (70) that would
contribute to the development of chronic diseases and complications.
The mechanisms are stimulated by LPS, through the release of lipocalin-
2 from macrophages (71) and multiple inflammatory cytokines, such
as IL-6, which enhances the activity of hepcidin via the signal trans-
ducer and activator of transcription 3 (STAT3) (63, 64). Another path-
way involved in ACD is the suppression of the hormone erythropoietin
and, thus, erythropoietic activity (64), resulting in a decrease in RBC
count. In addition to their reduced production, erythrocyte numbers
are further diminished due to their destruction. The lifespan of ery-
throcytes decreases through erythrophagocytosis by hepatic and splenic
macrophages (64).

ACD can be inferred by several indicators, including elevated neu-
trophils, monocytes, and platelets (64). Serum iron and transferrin sat-
uration can also be used as signs of ACD because their concentrations
tend to decrease in this type of anemia as well, indicating limited iron
supply to erythrons (72, 73). Due to the boost in inflammatory markers,
the increase in the positive acute-phase reactants, hepcidin and ferritin,
constitutes one of the strongest trademarks in ACD.

In case of obesity
Figure 2 illustrates the vicious cycle that takes place between obesity,
inflammation, and low iron status. The association between the above-
mentioned indicators and low iron status or anemia has been explored
in the context of obesity (30, 74–76). The increase in the size and num-
ber of adipocytes in obesity stimulates the secretion of leptin, CRP, IL-
6, and other proinflammatory cytokines, which amplify hepcidin re-
lease from hepatocytes and lipocalin-2 synthesis from adipocytes and
mononuclear cells, restricting the production of erythrocytes (69, 71,
77, 78). In support, hepcidin concentrations were reported to be related
to children’s and adolescents’ BMI (79). In addition to those of CRP, the
concentrations of hepcidin were found to increase with BMI in adults
(80, 81). Similarly, it has been shown that the low iron status of over-
weight children was associated with an increase in hepcidin concentra-
tions despite high dietary iron intake (78).

Moreover, marked central adiposity is associated with increased
serum hepcidin concentrations, hence causing a greater impairment in
iron homeostasis and reduced iron absorption from supplements (76).
In support, low iron status among obese Mexican children and women
was found to be the result of inflammation rather than low dietary iron
intake (69). Indeed, adiposity has also been associated with reduced iron
absorption in response to iron fortification (82, 83). Data from Thai
women and Indian and Moroccan children confirmed the inverse as-
sociation between BMI and iron absorption (82). Higher adiposity was
accompanied by less improvement in iron status upon fortification or
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FIGURE 2 The vicious cycle between obesity, inflammation, and low iron status.

supplementation (82, 83). Furthermore, ferritin is also increased in ane-
mia of obesity due to high adiposity (72). The constantly elevated fer-
ritin concentrations (due to high adiposity) are considered a trade-
mark of dysregulated iron homeostasis in the presence of inflamma-
tion, obesity, and metabolic syndrome (84, 85). Therefore, the inflam-
mation caused by adiposity can play a role in the hypoferremia of obesity
(69). This type of metabolic syndrome is referred to as the dysmetabolic
iron overload syndrome (31). A recent work elicited the differences
in iron concentrations between metabolically healthy and metaboli-
cally unhealthy prepubertal children with obesity (75). In their study,
the authors showed that metabolically unhealthy obese children have
higher ferritin concentrations than metabolically healthy obese chil-
dren, which could possibly be linked to liver function and injuries (75).
This has also been confirmed in previous studies that showed a positive
association of BMI with plasma ferritin but negative with serum iron
(85–87).

On the other hand, weight loss was shown to reduce hepcidin con-
centration and improve the iron status of obese children (88) and adults
(89). Both iron status and inflammation were improved by weight re-
duction, and the improvement in inflammatory markers during weight
reduction was independently associated with enhanced iron status (13).
In brief, low iron status and anemia of obesity seem to be highly at-
tributed to inflammation rather than iron intake. In fact, iron intake
was reported to be equal, if not higher, among people with obesity com-
pared with people with normal weight (69, 78). Thus, it is crucial to
understand the potential sources of inflammation in order to address
the problem.

A reciprocal relationship
The association between chronic diseases and iron metabolism is re-
ciprocal; the markers of iron status, when elevated, affect normal
physiology, and vice versa some conditions may directly disrupt iron
metabolism. Elevated concentrations of hepcidin in obese subjects can
potentially increase the risk of NCDs, such as cardiovascular diseases,
through the increased level of inflammation, which is a primary causal
factor in NCDs (29, 30). In fact, iron has the ability to accelerate the ox-
idation of LDLs, which are taken up by the receptors on macrophages,
leading to the development of foam cells, and eventually atherosclerosis
(72, 90).

In addition, elevated concentrations of ferritin, as well as other iron
markers such as transferrin, serum iron, and non–transferrin-bound
serum iron (NTBI), have been associated with peripheral insulin re-
sistance at the level of the adipose tissues (91) and the skeletal mus-
cles (32)—thus, with type 2 diabetes, blood pressure, and high choles-
terol concentrations (31). An interesting review illustrated the impor-
tance of NTBI in iron homeostasis (92). In fact, the inflammation caused
by adiposity can affect macrophage-mediated iron recycling (29). The
metabolism of iron by macrophages (93) increases the risk of cardio-
vascular mortality (90) and carotid atheroma (94). Furthermore, high
iron stores among women with polycystic ovarian syndrome were at-
tributed to hyperinsulinemia and insulin resistance rather than reduced
menstrual losses (95). Therefore, iron metabolism and chronic diseases
are deeply intertwined, and they grossly influence one another due to
several pathways, including the involvement of oxidative stress, where
iron plays a key role as a pro-oxidant when it is found in excess.
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Iron Supplementation under Inflammation

Iron supplementation was reported to be coupled with several unfavor-
able consequences, especially in areas with a high rate of infectious dis-
eases, like malaria, as well as in subclinical inflammation (96, 97). Iron
supplementation was associated with increased rates and severity of in-
fections, hospital admissions, and mortality in young children (98, 99).
In a study examining the role of iron on production of proinflammatory
markers, it has been reported that iron supplementation increases neu-
trophil counts and proinflammatory cytokine production in the colon
of IL-10 knock-out mice (100). These results are thought to be linked to
the increased reactive oxygen species release through the Fenton reac-
tion, which is mediated by NF-κB, a transcription factor that regulates
the gene expression of many inflammatory markers (100). A follow-up
study in Sri-Lankan women looking at the change of baseline iron con-
centrations post–iron supplementation showed that women with low-
grade inflammation and a BMI (kg/m2) >25 did not benefit from iron
supplementation (101). The interplay between iron fortification and
obesity is elucidated among the low-socioeconomic-status populations
with high obesity rates (102), whose diets are high in carbohydrates
(103). They are more likely to consume more iron from the subsidized
iron fortification of wheat flour. In addition, iron fortification of anemic
African children was reported to produce a potentially more pathogenic
gut microbiota profile, which, in turn, was associated with increased gut
inflammation (104), a suggested contributor to the increased risk of de-
veloping diarrhea upon oral iron administration (105). Similar results
were found in a study conducted in African infants (106); iron forti-
fication increased the abundance of specific enteropathogens (such as
E. coli) and fecal calprotectin concentrations in infants. These conse-
quences may have been partially attributed to the increased iron avail-
ability for bacterial growth. In line with these findings, researchers con-
cluded that iron administration might impair intestinal integrity due to
the pro-oxidative characteristics of iron (107). The oxidative damage in
the gut increases its permeability, hence increasing the susceptibility to
infectious diseases (107). The same concept was supported by the E. coli
sepsis outbreak in the 1970s that affected New Zealander children who
received intravascular iron supplementation over a short-term period
(99). However, most cases recovered only after the cessation of the sup-
plementation (99).

In this same context, it has been shown that anemic patients with
chronic kidney disease have low responsiveness to erythropoiesis-
stimulating agents, including intravenous iron administration (56),
which supports the recommendation of the assessment of ferritin and
hepcidin concentrations before any pharmacological supplementation.
High iron administration elevates concentrations of ferritin and hep-
cidin, which inhibit iron absorption and macrophage recycling, and
consequently reduce iron availability for use (56). This leads to a fur-
ther increase in the inflammatory markers and exacerbation of the de-
ficiency.

Fate of Unabsorbed Iron

Whether due to obesity or any other reason, inflammation reduces the
percentage of iron absorption and increases the concentration of un-
absorbed iron in the gut under conditions of supplementation or for-

tification, rendering it as a substrate for bacterial growth (108). This is
one of the reasons why arbitrary iron supplementation should be care-
fully adopted, as it can be inefficient or even have undesirable effects
(109). Several studies have highlighted the fate of unabsorbed iron on
bacteria. It has been stated that iron serves as an essential substrate for
microbial pathogen growth, acts as a gastric irritant, and increases in-
flammatory markers (110). Iron uptake in the upper intestine is lim-
ited; thus, any additional unabsorbed amount will eventually enter the
colon and be available for gut microbiota (111). In addition, some bac-
teria have the capacity to store iron within their entities. For instance,
an oligomeric protein in bacterioferritin contains heme in the form of
protoporphyrin IX and helps the bacteria store iron for later energy pro-
duction and biosynthesis (112).

Once the gut microbiota changes by excess iron, the responsiveness
of the immune system may be altered. Several studies have proved the
latter concept. It has been shown that the expression of antimicrobial
agents such as lipocalin-2 was reduced during infection episodes only
when the person was receiving iron supplementation (111). Note that
lipocalin-2 plays a crucial role in iron homeostasis and innate immunity
by withholding iron from bacterial pathogens (111). In addition, the al-
teration of the bacterial composition and the increase in LPS are asso-
ciated with intestinal permeability, mucosal damage, and endotoxemia,
and are proposed to be activated through TLRs (10, 47, 48). The latter
would cause an increased release of endotoxins and cytokines (TNF-
α, NF-κB, IL-1, IL-6, IL-17, etc.) (49, 50) in the circulation, worsening
the inflammatory state and ultimately increasing the risk of adiposity,
metabolic disorders, and poor iron status.

Studies conducted in Pakistani (113) and African (106) children
have all concluded that iron supplementation increases the colonic
iron concentration and reduces the concentrations of beneficial barrier
commensal gut bacteria such as bifidobacteria and lactobacilli, while
it increases the count of the pathogenic bacteria, including the en-
teropathogenic E. coli (68, 108). Evidence shows that iron fortification
establishes a pathogenic ground for gut inflammation (104). In this re-
gard, an in vitro study confirmed that pathogenic overgrowth is induced
upon increasing iron availability; this includes the growth of Salmonella
Typhimurium (114). However, in this study, iron did not affect the count
of the nonpathogenic Lactobacillus Plantarum (114). Hence, it has be-
come clear that unabsorbed iron promotes the virulence and replication
of enteric pathogens, favors dysbiosis, exacerbates existing inflamma-
tion, and contributes to the development of obesity (69).

Conclusions

Low iron status is known to be treated through iron supplementation.
However, this approach has to be carefully recommended in case of
obesity as it holds potential side effects. People with obesity, a state of
chronic low-grade inflammation, suffer from a type of anemia similar
to ACD characterized by poor iron absorption, diminished erythro-
poiesis, and short erythrocyte lifespan. When iron is not properly ab-
sorbed, a significant fraction goes into the gut and serves as nutrients
for the bacteria. Consequently, the supplementation in this particular
case alters the gut microbiota, stimulates the release of proinflamma-
tory markers, and further exacerbates the former inflammation that
can also trigger and aggravate the status of obesity. In conclusion, iron
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supplementation should be carefully recommended and closely moni-
tored in case of obesity. Ideally, we suggest that people with obesity treat
their prevailing inflammation before curing their anemia.
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