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Introduction

As a major risk factor for cardiovascular and cerebrovascular 
diseases, essential hypertension (EH) is the top cause of 
death worldwide.1,2 EH is commonly described as a complex 
disease indicated by a chronic elevation of blood pressure 
(BP) with no clear cause. It is a classic example of a multi-
factorial trait caused by the inheritance of susceptibility 
genes and multiple environmental factors.1,3 Efforts to iden-
tify the genes responsible for the occurrence and develop-
ment of EH are useful for understanding the genetic and 
pathogenic mechanisms behind it. However, genetic contri-
butions are difficult to elucidate for EH. Genetic and envi-
ronmental factors are diverse, and vary among populations 
or within a population, which will affect the research find-
ings of linkage and association studies.4 Isolated populations 

with reduced genetic diversity might better facilitate identifi-
cation of susceptible genes for hypertension.5–7
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The Yi population is the largest minority group of 
Yunnan Province and lives in the HongHe and ChuXiong 
Prefecture in northwestern Yunnan, a remote region in 
China. They retain their own language and written sym-
bols. Individuals of the Yi minority commonly share 
similar living environments due to geographic isolation 
and a remarkably stable culture. This minority group 
has a low frequency of migration and intermarriage with 
other groups. The above conditions minimize the 
influence of confounding environmental factors and 
reduce genetic diversity in founder populations.8,9 A 
genetic association study based on such an isolated pop-
ulation could increase the chances of identifying genetic 
factors contributing to EH. We recruited hypertensive 
and normal individuals from the Yi minority population 
in this study, and attempted to explore the association of 
the prolylcarboxypeptidase (PRCP) gene with EH.

The human PRCP gene is on chromosome 11 and is 
part of the renin–angiotensin–aldosterone system 
(RAAS).10 It encodes a product that contains 496 amino 
acid residues and is widely expressed in liver, kidney and 
many other tissues.11–13 PRCP is a serine protease that 
can cleave C-terminal amino acids linked to proline in 
peptides, such as angiotensin (Ang) II and Ang III.14–17 
Besides participating in the metabolic processes of Ang 
II and Ang III, PRCP is also an activator in the production 
of kallikrein, which acts on the complex of high-weight 
kininogen and prekallikrein to release bradykinin.11,18–20 
Ang II, Ang III, kallikrein and bradykinin are all associ-
ated with BP levels. Thus, PRCP is connected to EH 
through several routes. However, studies examining the 
potential of a link between EH and PRCP gene polymor-
phisms have not been performed widely. Using tag sin-
gle-nucleotide polymorphisms (SNPs) as markers, the 
present study aimed to investigate the genetic contribu-
tion of the PRCP gene to EH in the Yi minority in south-
western China.

Methods

Participants

A total of 615 participants were enrolled in the present study 
and all samples were from the Human Genetics Center of 
Yunnan University. There were 303 cases and 312 controls. 
All implicated participants were individuals from the Yi 
minority from Yunnan Province and gave informed consent. 
The study protocol was approved by the ethics committee of 
the School of Medicine of Yunnan University. In this case–
control study, the EH patients and normal individuals were 
selected based on the criteria described previously.21

According to the World Health Organization criteria, 
hypertension was defined as systolic BP (SBP) ⩾ 140 mm 
Hg and/or diastolic BP (DBP) ⩾ 90 mm Hg. Participants 
with secondary hypertension, diabetes mellitus, myocar-
dial infarction, cerebrovascular accident and other serious 
diseases were excluded. Unrelated healthy villagers with 
BP < 140/90 mm Hg were recruited to match EH patients 
for age and gender to serve as the control group. The con-
trol group members were without a history of hypertension 
and other diseases. All participants did not have antihyper-
tensive treatment.

Tag SNP selection and genotyping

SNPs are preferred for studies seeking disease associa-
tions, because of their large abundance in the human 
genome and accessibility to high-throughput genotyping.22,23 
Tag SNPs are a small set of informative SNPs that can 
predict the rest of SNPs, and are sufficient to capture 
most haplotypes. Moreover, the genotyping burden can 
be greatly reduced with sufficient power for associated 
studies based on tag SNPs.24 Here, 11 tag SNPs of the 
PRCP gene were selected according to the criteria and 
method described previously.21 The 11 tag SNPs and 
their relative positions are shown in Figure 1. Based on 

Figure 1.  The structure of the prolylcarboxypeptidase gene and relative positions of 11 tag single-nucleotide polymorphisms.
UTR: untranslated region.
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the selection criterion of tag SNPs (r2 ⩾ 0.8), these 11 
tag SNPs could predict the remaining common SNPs 
with minor allele frequency ⩾ 1%.

Using the standard phenol–chloroform method, DNA 
was isolated from all the samples.25 Eleven tag SNPs 
were genotyped by the method of polymerase chain reac-
tion (PCR)-restriction fragment length polymorphism. 
PCR was performed in a volume of 20 μL with 1 μM of 
each primer and 10 μL Premix Taq (TaKaRa TaqTM 
Version 2.0 plus dye, TaKaRa Biotechnology Co. Ltd, 
Japan). PCR conditions were: initial denaturation at 95°C 
for 5 minutes; 35 cycles of denaturation at 95°C for 30 
seconds, at the annealing temperature (annealing) for 30 
seconds and at 72°C (extension) for 30 seconds; and final 
extension at 72°C for 5 min. PCR products were digested 
with restriction enzymes. Genotypes were identified by 
3% agarose gel electrophoresis with ethidium bromide 
staining. The restriction endonuclease digestion results 
of all SNPs are in the supplemental material S1. PCR 
primers, annealing temperatures and restriction enzymes 
are shown in Table 1.

Statistical analysis

The Hardy–Weinberg equilibrium was tested by the chi-
square test. Numerical data of participants were analyzed 
by one-way analysis of variance using SPSS (version 16.0; 

SPSS Inc., Chicago, IL, USA). The haplotypes were con-
structed based on the genotyped data using the SHEsis 
software (http://analysis.bio-x.cn/myAnalysis.php),26 and 
at the same time, frequencies of tag SNPs and haplotypes 
were also calculated by this software. Haplotypes with fre-
quencies > 1% (main haplotypes) were considered for fur-
ther analysis. The genetic impacts of single sites and 
haplotypes on the risk of EH were evaluated by logistic 
regression analysis using SPSS 16.0 adjusted for gender, 
age and body mass index (BMI). A p < 0.05 was consid-
ered statistically significant and the Bonferroni correction 
was performed.

Results

Clinical characteristics of the study population

The general characteristics of the case and control groups 
are given in Table 2. The average ages and the gender 
distributions presented no significant differences between 
the two groups. This balanced distribution of characteris-
tics between the two groups minimized the influence of 
age and gender covariates during logistic regression anal-
ysis. It is beneficial to assess whether the genetic varia-
tion was independently associated with EH. EH patients 
exhibited significantly higher SBP, DBP and BMI than 
normal controls (p < 0.01).

Table 1.  Primers and restriction enzymes used in prolylcarboxypeptidase gene single-nucleotide polymorphism identification.

SNP Primers Annealing 
temperature (°C)

Product 
(bp)

Enzyme

rs12290550 F: 5′-CAGTCTTATGGGGAATAGGGA-3′ 57 189 BamHI
  R: 5′-TAGTCTGCGGTGATAGGGATC-3′  
rs17144371 F: 5′-AAACACTCTTTGCTTTACTGCTA-3′ 56 347 TaqI
  R: 5′-ATGGTCTTTCCGACTTTACTACT-3′  
rs6592086 F: 5′-TGGAAGGAAGGTGGAGTTTAG-3′ 56 129 SacI
  R: 5′-TGCTCTCTGATCTTGTCCGA-3′  
rs7104980 F: 5′-CACGGAGTACTTAGATGGTCGA-3′ 56 117 SalI
  R: 5′-CGTATTTCCAGTTGTTTAGCAC-3′  
rs2298668 F: 5′-AAGTTATCTCACAGTGGGGCA-3′ 57 302 BmgT120I
  R: 5′-GAGTGCTCTTTTTGTTCTGGC-3′  
rs13306597 F: 5′-AGACAGAAGCCAGAAACCTCA-3′ 56 115 VspI
  R: 5′-AAGTGCATTTGTACTGGAGATTAA-3′  
rs10792653 F: 5′-AAGGATAGTCCACCATTGCC-3′ 56 203 HaeIII
  R: 5′-TGTGAAGAATAAATGATCTGTAAG-3′  
rs4084193 F: 5′-CCTCCACCACCAGAAGAAG-3′ 56 184 MboI
  R: 5′-TTTATGATATTTGATTTGTCACAGAT-3′  
rs4759 F: 5′-ATCACCCTCTATTCTATCTCAACT-3′ 56 182 PstI
  R: 5′-GATGAGAGATTTCTATGACACTGC-3′  
rs3750931 F: 5′-CACTTGCTCTTACCGTCATCAC-3′ 57 175 RsaI
  R: 5′-GGGAAAGCAGCACTGAGGTA-3′  
rs7272 F: 5′-GCCAACATCCCAGAACTAAGA-3′ 57 317 MspI
  R: 5′-CCCATTTGTAAGTCCCCATC-3′  

F: forward primer; R: reverse primer; SNP: single-nucleotide polymorphism.

http://analysis.bio-x.cn/myAnalysis.php
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Single-SNP analysis

There was no significant deviation from the Hardy–
Weinberg equilibrium for each SNP in the control group. 
Table 3 shows that both the genotype and allele frequen-
cies of PRCP rs12290550 exhibited significantly different 
distributions between the control and EH groups after 
Bonferroni correction (p < 0.0045, 0.05/11). The associa-
tion analysis also showed that the rs12290550 T allele car-
riers had higher average BP levels than participants with 
the GG genotype after Bonferroni correction (p < 0.0045, 
0.05/11) (Table 4). There were no statistically significant 
associations between other SNPs and BP level following 
Bonferroni correction (p > 0.0045, 0.05/11).

Logistic regression analysis was performed to evaluate 
the risk impact of SNPs on the occurrence of EH under 
genetic models (Table 5).27 By adjusting for gender, age 
and BMI, both the rs12290550 T allele and the TT geno-
type were tightly linked to the risk of EH after Bonferroni 
correction (dominant model GT + TT vs. GG: odds ratio 
(OR) =2.05, 95% CI (confidence interval) 1.48–2.84, p = 
0.2×10−4; recessive model TT vs. GG + GT: OR = 2.20, 
95% CI 1.29–3.76, p = 0.004; multiplicative model T vs. 
G: OR = 1.85, 95% CI 1.44–2.39, p = 0.2×10−5).

Haplotype analysis

A total number of 12 main haplotypes with frequencies > 
1% were constructed with 11 tag SNPs of the PRCP gene 
(Table 6). The haplotype of H2 GAGCACTAACA was the 
most prevalent type among all participants. Haplotypes of 
H1 GACGCTGCGCG, H2 GAGCACTAACA and H10 
GAGGACGAGCA had higher frequencies (0.068, 0.365 
and 0.031) in the control group compared to the EH group 
(0.040, 0.291 and 0.012) (p = 0.040, 0.009 and 0.031, 
respectively), but without the statistical significance after 
Bonferroni correction (p > 0.004, 0.05/12). Two other hap-
lotypes, H7 TAGCACTAACA and H8 TAGGACGAGCA, 
showed increased risk contribution to EH, but only H7 
retained statistical significance after Bonferroni correction 
(OR = 4.53, 95% CI 2.29–8.93, p = 0.2×10−5).

Table 3.  Genotype and allele distributions of single-nucleotide polymorphisms between hypertension patients and controls.

Variant Allelea 
1/2

Group Genotype (frequency)a p Allele (frequency)a p

1/1 1/2 2/2 1 2

rs12290550 G/T Control 192 (0.615) 97 (0.311) 23 (0.074) 481 (0.771) 143 (0.229)  
  Case 135 (0.446) 123 (0.406) 45 (0.149) 0.5 × 10−4 393 (0.649) 213 (0.351) 0.2 × 10−4

rs17144371 A/C Control 299 (0.958) 13 (0.042) 0 (0.000) 611 (0.979) 13 (0.021)  
  Case 289 (0.954) 14 (0.046) 0 (0.000) 0.784 592 (0.977) 14 (0.023) 0.786
rs6592086 G/C Control 232 (0.744) 71 (0.228) 9 (0.029) 535 (0.857) 89 (0.143)  
  Case 238 (0.785) 62 (0.205) 3 (0.010) 0.169 538 (0.888) 68 (0.112) 0.110
rs7104980 C/G Control 151 (0.484) 127 (0.407) 34 (0.109) 429 (0.688) 195 (0.313)  
  Case 122 (0.403) 144 (0.475) 37 (0.122) 0.126 388 (0.640) 218 (0.360) 0.079
rs2298668 A/C Control 244 (0.782) 62 (0.199) 6 (0.019) 550 (0.881) 74 (0.119)  
  Case 248 (0.818) 51 (0.168) 4 (0.013) 0.504 547 (0.903) 59 (0.097) 0.231
rs13306597 C/T Control 207 (0.663) 90 (0.288) 15 (0.048) 504 (0.808) 120 (0.192)  
  Case 223 (0.736) 75 (0.248) 5 (0.017) 0.033 521 (0.860) 85 (0.140) 0.014
rs10792653 T/G Control 137 (0.439) 136 (0.436) 39 (0.125) 410 (0.657) 214 (0.343)  
  Case 113 (0.373) 150 (0.495) 40 (0.132) 0.238 376 (0.620) 230 (0.380) 0.182
rs4084193 A/C Control 218 (0.699) 84 (0.269) 10 (0.032) 520 (0.833) 104 (0.167)  
  Case 230 (0.759) 69 (0.228) 4 (0.013) 0.120 529 (0.873) 77 (0.127) 0.050
rs4759 A/G Control 85 (0.272) 155 (0.497) 72 (0.231) 325 (0.521) 299 (0.479)  
  Case 86 (0.284) 156 (0.515) 61 (0.201) 0.675 328 (0.541) 278 (0.459) 0.473
rs3750931 C/G Control 274 (0.878) 34 (0.109) 4 (0.013) 582 (0.933) 42 (0.067)  
  Case 264 (0.871) 35 (0.116) 4 (0.013) 0.124 563 (0.929) 43 (0.071) 0.801
rs7272 A/G Control 139 (0.446) 140 (0.449) 33 (0.106) 418 (0.670) 206 (0.330)  
  Case 165 (0.545) 113 (0.373) 25 (0.083) 0.048 443 (0.731) 163 (0.269) 0.019

aThe major allele is referred to as allele 1 and the minor allele as allele 2.

Table 2.  Characteristics of the study groups.

Characteristics Control group Hypertension group

Gender (male/female) 175/137 181/122
Age (years) 42.8 ± 10.4 44.2 ± 9.7
BMI (kg/m2) 21.2 ± 2.1 23.1 ± 2.2*
SBP (mm Hg) 101.3 ± 5.7 147.7 ± 16.1*
DBP (mm Hg) 67.8 ± 3.9 95.8 ± 9.9*

BMI: body mass index; DBP: diastolic blood pressure; SBP: systolic 
blood pressure.
Note: values are expressed as mean ± SD; *p < 0.01, statistical differ-
ence between control and hypertension groups.
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Discussion

Studies have found that starting from an SBP of 115/75 
mm Hg, each elevation by 20 mm Hg may confer a double 
increase of death from stroke and ischemic heart disease.28 
Great effort is necessary to explore the underlying molec-
ular mechanisms and risk factors for hypertension. BP is a 
continuous trait and many pathways are involved in regu-
lating its formation. The important role of the RAAS in 
BP regulation is supported by the fact that it is targeted by 
first-line drugs for antihypertension therapy, for example 
angiotensin converting enzyme (ACE) inhibitors and 
mineralocorticoid receptor antagonists.29 Genes of this 
system, such as ACE, renin, angiotensin receptor type 1 
and angiotensin, have been extensively investigated as 
main candidate targets to explore the pathogenesis of 
hypertension.30–34 In addition to the above well-known 
genes of the RAAS, the human PRCP gene is also worthy 
of further close investigation, and in fact this gene was 

considered to be a candidate gene for EH as early as 
1997.10 In the RAAS, Ang II and Ang III can constrict 
blood vessels and raise BP.35 As a negative regulator of 
the pressor actions of the RAAS, PRCP could counteract 
the effects of Ang II and Ang III by degrading them to 
Ang1-7 and Ang2-7, respectively.14,17 Thus, inhibiting PRCP 
might cause a hypertensive state as a result of elevated 
levels of Ang II and Ang III. Animal models of PRCP-
deficient mice produced via a gene trap method exhibited 
a hypertensive phenotype and had a heightened risk for 
arterial thrombosis,36,37 which demonstrates the important 
role of PRCP in BP regulation.

A missense mutation, rs2298668 (E112D), was studied 
repetitively to explore the association of the PRCP gene 
with hypertension, coronary heart disease and other meta-
bolic syndromes.38,39 Based on two stratified groups, the 
DD genotype of E112D jointly with chronic hypertension 
indicated the highest risk effect for pre-eclampsia in female 
American patients.38 Aiming to evaluate the association 

Table 4.  Associations between single-nucleotide polymorphisms and blood pressure levels in the Yi minority.

SNP Genotype (n) SBP p DBP p

rs12290550 TT (68) 130.63 ± 20.83 86.49 ± 15.87  
  GT (220) 127.48 ± 26.38 83.52 ± 16.61  
  GG (327) 120.49 ± 25.20 0.001 79.33 ± 16.26 0.0005
rs17144371 AC (27) 123.33 ± 24.11 83.26 ± 17.29  
  AA (588) 124.15 ± 25.55 0.871 81.54 ± 16.50 0.598
rs6592086 CC (12) 115.83 ± 25.19 74.00 ± 12.00  
  CG (133) 123.05 ± 24.72 81.51 ± 16.90  
  GG (470) 124.62 ± 25.69 0.430 81.84 ± 16.49 0.267
rs7104980 GG (71) 123.69 ± 24.75 81.83 ± 16.43  
  CG (271) 126.41 ± 26.84 82.76 ± 16.94  
  CC (273) 121.94 ± 24.11 0.122 80.43 ± 16.10 0.259
rs2298668 CC (10) 121.10 ± 23.51 78.50 ± 17.33  
  AC (113) 122.97 ± 26.80 80.84 ± 17.88  
  AA (492) 124.43 ± 25.23 0.801 81.86 ± 16.20 0.701
rs13306597 TT (20) 108.55 ± 20.00 73.8 ± 16.32  
  CT (165) 122.05 ± 25.24 80.97 ± 17.21  
  CC (430) 125.62±25.53 0.006 82.23±13.21 0.070
rs10792653 GG (79) 123.61±24.42 81.34±17.09  
  GT (286) 125.70±25.77 82.81±16.22  
  TT (250) 122.45±25.42 0.331 81.62±16.52 0.220
rs4084193 CC (14) 112.93±23.83 71.36±11.83  
  AC (153) 122.41±24.78 80.64±16.87  
  AA (448) 125.04±25.69 0.137 82.27±16.43 0.036
rs4759 GG (133) 122.29±25.33 80.47±16.50  
  AG (311) 124.74±25.98 81.91±17.29  
  AA (171) 124.38±24.69 0.640 81.98±15.11 0.666
rs3750931 GG (8) 124.63±24.48 86.63±19.21  
  CG (69) 124.33±24.19 80.25±15.06  
  CC (538) 124.07±25.68 0.995 81.72±16.67 0.541
rs7272 GG (58) 119.45±25.16 80.41±17.86  
  AG (253) 122.27±25.25 80.62±16.83  
  AA (304) 126.53±25.53 0.049 82.68±15.97 0.290

DBP: diastolic blood pressure; SBP: systolic blood pressure; SNP: single-nucleotide polymorphism.
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Table 5.  Logistic regression analysis under genetic models.

Variant Allelea 1/2 Genetic model ORb (95% CI) p

rs12290550 G/T Dominant model ½ + 2/2 vs. 1/1 2.05 (1.48–2.84) 0.2 × 10−4

  Recessive model 2/2 vs. 1/1 + 1/2 2.20 (1.29–3.76) 0.004
  Multiplicative model 2 vs. 1 1.85 (1.44–2.39) 0.2 × 10−5

rs17144371 A/C Dominant model 1/2 + 2/2 vs. 1/1 1.14 (0.52–2.47) 0.748
  Recessive model 2/2 vs. 1/1 + 1/2 — —
  Multiplicative model 2 vs. 1 1.13 (0.53-–2.44) 0.751
rs6592086 G/C Dominant model 1/2 + 2/2 vs. 1/1 0.80 (0.55–1.16) 0.231
  Recessive model 2/2 vs. 1/1 + 1/2 0.32 (0.09–1.22) 0.095
  Multiplicative model 2 vs. 1 0.76 (0.54–1.07) 0.112
rs7104980 C/G Dominant model 1/2 + 2/2 vs. 1/1 1.46 (1.06–2.02) 0.021
  Recessive model 2/2 vs. 1/1 + 1/2 1.18 (0.72–1.94) 0.515
  Multiplicative model 2 vs. 1 1.28 (1.01–1.62) 0.043
rs2298668 A/C Dominant model 1/2 + 2/2 vs. 1/1 0.81 (0.54–1.20) 0.289
  Recessive model 2/2 vs. 1/1 + 1/2 0.69 (0.19–2.49) 0.574
  Multiplicative model 2 vs. 1 0.81 (0.56–1.17) 0.260
rs13306597 C/T Dominant model 1/2 + 2/2 vs. 1/1 0.72 (0.51–1.01) 0.060
  Recessive model 2/2 vs. 1/1 + 1/2 0.32 (0.11–0.89) 0.029
  Multiplicative model 2 vs. 1 0.69 (0.51–0.93) 0.016
rs10792653 T/G Dominant model 1/2 + 2/2 vs. 1/1 1.34 (0.97–1.85) 0.080
  Recessive model 2/2 vs. 1/1 + 1/2 1.04 (0.65–1.67) 0.868
  Multiplicative model 2 vs. 1 1.17 (0.93–1.48) 0.177
rs4084193 A/C Dominant model 1/2 + 2/2 vs. 1/1 0.74 (0.52–1.06) 0.097
  Recessive model 2/2 vs. 1/1 + 1/2 0.39 (0.12–1.27) 0.118
  Multiplicative model 2 vs. 1 0.73 (0.53–1.00) 0.051
rs4759 A/G Dominant model 1/2 + 2/2 vs. 1/1 0.95 (0.66–1.35) 0.771
  Recessive model 2/2 vs. 1/1 + 1/2 0.83 (0.56–1.22) 0.334
  Multiplicative model 2 vs. 1 0.92 (0.73–1.15) 0.455
rs3750931 C/G Dominant model 1/2 + 2/2 vs. 1/1 1.03 (0.64–1.67) 0.903
  Recessive model 2/2 vs. 1/1 + 1/2 1.03 (0.25–4.19) 0.964
  Multiplicative model 2 vs. 1 1.03 (0.66–1.60) 0.900
rs7272 A/G Dominant model 1/2 + 2/2 vs. 1/1 0.65 (0.47–0.90) 0.009
  Recessive model 2/2 vs. 1/1 + 1/2 0.76 (0.44–1.31) 0.320
  Multiplicative model 2 vs. 1 0.73 (0.57–0.94) 0.014

CI: confidence interval; OR: odds ratio.
aThe major allele is referred to as allele 1 and the minor allele as allele 2.
bOR estimated by logistic regression analysis, adjusted for gender, age and body mass index.

Table 6.  The distributions of haplotypes and logistic regression analysis.

Name Haplotype Control (frequency) Case (frequency) OR (95% CI) p

H1 GACGCTGCGCG 42 (0.068) 24 (0.040) 0.59 (0.35–0.98) 0.040
H2 GAGCACTAACA 228 (0.365) 176 (0.291) 0.71 (0.55–0.92) 0.009
H3 GAGCACTAAGA 7 (0.012) 10 (0.017) 1.47 (0.57–3.80) 0.424
H4 GAGCACTAGCA 13 (0.020) 15 (0.025) 1.30 (0.61–2.77) 0.500
H5 GAGCACTAGCG 62 (0.100) 43 (0.070) 0.69 (0.46–1.05) 0.081
H6 GAGCATGCGGG 15 (0.025) 10 (0.016) 0.66 (0.29–1.50) 0.320
H7 TAGCACTAACA 11 (0.017) 43 (0.071) 4.53 (2.29–8.93) 0.2 × 10−5

H8 TAGGACGAGCA 54 (0.086) 77 (0.128) 1.61 (1.11–2.34) 0.011
H9 TAGGACTAACA 10 (0.016) 9 (0.015) 0.99 (0.40–2.46) 0.988
H10 GAGGACGAGCA 19 (0.031) 8 (0.012) 0.40 (0.17–0.95) 0.031
H11 GAGCACTAACG 8 (0.013) 7 (0.012) 0.96 (0.35–2.62) 0.935
H12 TAGCACTAACG 9 (0.015) 5 (0.008) 0.55 (0.19–1.65) 0.281

CI: confidence interval; OR: odds ratio.
Note: the haplotype structure was rs12290550 (G/T), rs17144371 (A/C), rs6592086 (G/C), rs7104980 (C/G), rs2298668 (A/C), rs13306597 (C/T), 
rs10792653 (T/G), rs4084193 (A/C), rs4759 (A/G), rs3750931 (C/G) and rs7272 (A/G); haplotypes with frequencies < 0.01 were excluded.
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between the PRCP gene and the antihypertensive effect of 
benazepril, Zhang et al. tested the E112D polymorphism in 
hypertensive patients with daily treatment for 15 days and 
found that the D allele carrier patients were more sensitive 
to benazepril.40 In the present study, rs2298668 (E112D) 
showed no association with hypertension. This result is 
consistent with the investigations by Gittleman et al., who 
also showed no association of E112D with hypertension 
and angina.39 To date, reports on the functional implica-
tions of E112D are limited and it is unclear whether this 
polymorphism will lead to a functional change of the pro-
tein. One possible explanation is that E112D may be sig-
nificant in interindividual variation in response to 
benazepril but not significantly related to hypertension. 
Further investigation should be performed to explore the 
functional information for E112D.

Here, our study samples were special. First, being lim-
ited by objective conditions, none of the participants had 
received any antihypertension drugs for treatment. Second, 
one of the most unique features of Yunnan Province in 
China is its ethnic pluralism, which is closely related to the 
geographic environment. Besides the Han population, 
there are 25 ethnic minorities in Yunnan Province. Because 
of the plateau landscape, different altitudes and region-
isolated living conditions, these minorities, including the 
Yi group, usually have their own spoken and written  
languages. Moreover, they tend to not migrate or not inter-
marry with other minorities.8,9 Thus, the genetic back-
grounds of samples in this study were very similar and the 
BP phenotypes were not affected by drugs. The above fea-
tures raise the power of our evaluation of the contributions 
of genetic factors to EH and make our study findings 
much more objective. Logistic regression analysis found 
that the T allele of rs12290550 may be a risk factor for EH 
in the Yi group. Risk correlations between rs12290550 and 
EH under three genetic models all reached statistical sig-
nificance after Bonferroni correction. In the PRCP gene, 
rs12290550 is an intronic mutation and may not cause a 
functional change of the PRCP protein directly. It might 
be merely a marker that is in linkage disequilibrium with  
a true functional variant or may alter the function of a 
nearby regulatory element. The correlation between the 
rs12290550 genotype and the BP phenotype was also esti-
mated here. The average BP levels of rs12290550 T carri-
ers were significantly higher compared to GG homozygous 
individuals, which further confirmed the role of the 
rs12290550 T allele in the risk for EH in the Yi minority.

We further detected the haplotypes of the PRCP gene, 
which were constructed by 11 tag SNPs. Among the 12 
main haplotypes, the highest-frequency haplotype was H2 
GAGCACTAACA. Logistic regression analysis revealed 
that the H1 GACGCTGCGCG, H2 GAGCACTAACA and 
H10 GAGGACGAGCA haplotypes decreased the risk of 
EH, and that none of them contained the susceptible allele 

of rs12290550 T. However, the risk correlations did not 
exist via strict Bonferroni correction. A harmful effect  
of H8 TAGGACGAGCA containing the risk allele 
rs12290550 T regarding EH was detected, although no risk 
association was found after Bonferroni correction. Notably, 
individuals with the H7 TAGCACTAACA haplotype were 
more likely to have EH and this risk correlation reached a 
conclusive level of statistical significance both before and 
after Bonferroni correction. Moreover, the susceptibility 
rs12290550 T allele was contained within the H7 
TAGCACTAACA haplotype. Taken together, our haplo-
type analysis findings suggested that haplotypes contain-
ing the rs12290550 T allele could increase the risk of EH, 
which confirms the risk effect of rs12290550 T for EH in 
the Yi minority.

The participants in the present study resided in a remote 
rural area and, due to the limitation of objective condi-
tions, we could not get complete information about the 
physiological values of participants. This was the limita-
tion of the present study. In summary, the design of the 
present study based on the isolated population could help 
track down genetic factors in EH. The T allele of 
rs12290550 might contribute to the risk of EH in the Yi 
minority. Its susceptibility to EH was confirmed based on 
haplotype analysis. Moreover, the correlation analysis 
between the rs12290550 genotype and BP phenotype also 
indicated its risk effect. The findings consistently demon-
strated a strong association of the PRCP gene with EH, and 
rs12290550 may be a useful genetic predictor of EH in the 
Yi minority. We hope this report will stimulate investiga-
tion of the relationship between the PRCP gene and EH. 
Future work should sequence the whole PRCP gene in 
related samples to find the causal mutations and functional 
examination is required to confirm the association of the 
PRCP gene with EH.
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