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Permutation-based identification of important
biomarkers for complex diseases via machine
learning models
Xinlei Mi 1, Baiming Zou2, Fei Zou 2 & Jianhua Hu 3✉

Study of human disease remains challenging due to convoluted disease etiologies and

complex molecular mechanisms at genetic, genomic, and proteomic levels. Many machine

learning-based methods have been developed and widely used to alleviate some analytic

challenges in complex human disease studies. While enjoying the modeling flexibility and

robustness, these model frameworks suffer from non-transparency and difficulty in inter-

preting each individual feature due to their sophisticated algorithms. However, identifying

important biomarkers is a critical pursuit towards assisting researchers to establish novel

hypotheses regarding prevention, diagnosis and treatment of complex human diseases.

Herein, we propose a Permutation-based Feature Importance Test (PermFIT) for estimating

and testing the feature importance, and for assisting interpretation of individual feature in

complex frameworks, including deep neural networks, random forests, and support vector

machines. PermFIT (available at https://github.com/SkadiEye/deepTL) is implemented in a

computationally efficient manner, without model refitting. We conduct extensive numerical

studies under various scenarios, and show that PermFIT not only yields valid statistical

inference, but also improves the prediction accuracy of machine learning models. With the

application to the Cancer Genome Atlas kidney tumor data and the HITChip atlas data,

PermFIT demonstrates its practical usage in identifying important biomarkers and boosting

model prediction performance.
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W ith the advancement of high-throughput technologies,
massive amounts of high-dimensional omics data have
been generated and made available through large

public databases due to great data sharing efforts by the research
community, such as The Cancer Genome Atlas (TCGA)1. These
data are valuable in elucidating the molecular mechanisms of
disease phenotypes2,3. However, study of complex human disease
remains challenging due to convoluted disease etiologies and
underlying intricate molecular mechanisms at genetic, genomic,
and proteomic levels. Many popular machine learning algo-
rithms, such as non-linear kernel support vector machines
(SVMs), random forests (RFs), and deep neural networks (DNNs)
in artificial intelligence areas, have been developed to build more
powerful predictive models for biomedical and bio-omics data
regarding clinical outcomes, e.g. drug response4, and medical
imaging classification5. While enjoying the modeling flexibility
and robustness, these model frameworks suffer from non-
transparency and difficulty in interpreting the role of each indi-
vidual feature due to their sophisticated algorithms, compared
with those more interpretable parametric models, such as linear
regressions, logistic regressions, and decision trees. Nonetheless,
identifying important biomarkers associated with complex
human disease is a critical pursuit towards assisting researchers to
establish novel hypotheses regarding prevention, diagnosis and
treatment of complex human diseases. Accurate identification of
important biomarkers associated with complex human disease
not only provides valuable insights into their underlying genetic
architecture and disease etiology but also offers great potentials
for early disease diagnosis, improved precision medicine, inno-
vative treatment development, and accurate disease risk and
progression prediction6.

To address the non-transparency in the association study
between disease outcomes and predictors using machine learning
models, the feature importance score strategy has been proposed
and extensively investigated7–13, including surrogate models7,14,
Shapley value-based methods15,16, conditional randomization
tests (CRTs)10, knockoff models (i.e., model-X)10,12, and
permutation-based feature importance8. Surrogate modeling
methods approximate the complex models by using explanatory
surrogate models, such as linear models or decision trees. While
enjoying the great flexibility in choosing the surrogate models, the
feature importance is still restricted to the selected explanatory
models that might be misspecified13. Shapley value-based meth-
ods, such as SHAP16, provide localized feature characterization
based on game theory, while they are computationally intensive
and do not guarantee a valid test. Both CRT and model-X
knockoff were proposed in Candes et al.10, while CRT is less
preferred due to its expensive computational cost. Model-X
knockoff is more computationally efficient in performing feature
importance test via constructing knockoff features. Recently,
model-X knockoff was adopted for DNN12 models. Tansey
et al.11 proposed the holdout randomization test (HRT) to reduce
the computational cost of CRT via avoiding model refitting.

The overall disadvantage of CRT, HRT, and model-X knockoff
is that they all depend on the assumption of a known covariance
structure10. When the covariance structure is not accurately
estimated, their performance could be severely impacted17.
Although KnockoffGAN18, an extension of model-X knockoff,
does not suffer such disadvantage, it is difficult to train adver-
sarial networks19 and requires more tuning. Another strategy to
avoid suffering from the known covariance structure assumption
is approaches based on Gaussian mirrors20–22. Specifically, Xing
et al.21 proposed individual neural Gaussian mirror (INGM) and
simultaneous neural Gaussian mirror (SNGM). However, INGM
requires repetitive model fitting, which is computationally costly,
while SNGM is efficient but could suffer performance loss21. The

permutation-based feature importance learning method, another
popular approach for feature selection, measures the change of
prediction errors due to the shuffling of a feature. The larger the
increase of prediction errors is, the more impact a feature makes
on the outcome of interest. However, unlike CRT, HRT, or
model-X knockoff, permutation-based feature selection does not
require prior knowledge of feature distributions and thus it is
more statistically robust. Several permutation-based feature
importance methods have been proposed, with applications
mainly on random forests and DNNs8,9,23. These methods either
do not conduct any statistical inference or cannot offer valid
inference on the feature importance. For example, Putin et al.23

applied permutation-based importance scores to DNNs to iden-
tify biomarkers associated with human aging, but provided no
formal statistical testing. Notably, Altmann et al.9 proposed a
corrected permutation-based importance score approach for
random forest, which however, is difficult to be generalized to
other machine learning model frameworks.

To overcome the aforementioned challenges, we propose a
general permutation-based feature importance test (abbreviated
as PermFIT), for complex machine learning models, which takes
advantage of (i) permutation test coupled with cross-fitting to
obtain a valid importance score test that properly controls the
type-I error; and (ii) selecting important features from PermFIT
to further improve the accuracy of these predictive models. We
implement PermFIT for the following machine learning models,
including DNN, RF, and SVM. More specifically, PermFIT first
approximates the function that maps features to the outcome,
based on which, PermFIT then evaluates the importance score of
each feature, defined as the expected increase of prediction errors
due to the permutation of the feature. Computationally, the
PermFIT framework does not require refitting the models. In
order to reduce the bias of important score estimation from the
potential model overfitting, we adopt cross-fitting to ensure the
validity of the test statistics. PermFIT is motivated by two
benchmark data: the Reverse Phase Protein Arrays (RPPAs) data
from three kidney cancer studies in The Cancer Genomic Atlas
(TCGA) and the HITChip Atlas microbiome data regarding body
mass index (BMI). However, PermFIT has broad applicability to a
wide variety of biomedical data and more.

Results
To evaluate the performance of PermFIT, we first conduct
comprehensive simulation studies under various scenarios with
different sample sizes and correlation structures among features.
Moreover, it is applied to two real-world datasets: the Reverse
Phase Protein Arrays (RPPA) data from three kidney cancer
studies in TCGA and the HITChip Atlas microbiome data. We
apply PermFIT to three commonly used machine learning
methods: DNN24,25, RF8, and SVM26, denoted as PermFIT-DNN,
PermFIT-RF and PermFIT-SVM, respectively. We also compare
PermFIT with several existing popular feature selection methods
for DNN, RF, and SVM: SHAP16, LIME14, holdout randomiza-
tion test11, and simultaneous neural Gaussian mirror21 with DNN
(denoted as SHAP-DNN, LIME-DNN, HRT-DNN, and SNGM-
DNN, respectively), RF importance evaluation of Breiman8

(denoted as Vanilla-RF, i.e., an ensemble approach based on
decision trees), and SVM with recursive feature elimination27

(denoted as RFE-SVM). SHAP-DNN, LIME-DNN, and RFE-
SVM utilize an importance score to rank input features, from
which top features are selected. For each feature, Vanilla-RF
provides an importance score estimate and its associated standard
error, with which the statistical significance of the feature
importance can be tested. HRT provides a p-value for each fea-
ture without importance scores. We evaluate these methods as
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follows: (i) we apply each method to the training data with all the
input features, estimate the feature importance scores, p values,
and assess the type-I error; (ii) we refit each model with its
corresponding top ranked important variables, and re-evaluate its
goodness-of-fit and prediction improvement.

Simulation studies. We examine the performance of the pro-
posed methods with the following simulation scenarios. First, we
generate the continuous data from the following model,

Y ¼ X1 þ 2 log
�
1þ 2X2

p0þ1 þ
�
X2p0þ1 þ 1

�2�þ X3p0þ1X4p0þ1 þ ϵ; ð1Þ

where X is a p-dimensional random variable drawn from MVN(0,
Σ), p= 10p0, p0= 10, Σ= diag{Σ1, . . . , Σ10}, is a block-diagonal
matrix, Σ1 ¼ ::: ¼ Σ10 ¼ fσ ijg0< i;j≤ p0

, are p0 × p0 matrices, σij= 1

for i= j and σij= ρ for i ≠ j, and ϵ ~ N(0, 1). N independent
observations are drawn from the distribution of (Y, X) in the
training set and 10,000 in the test set, which is used to evaluate
model fitting performance. To mimic the real-world data, we
introduce correlations among variables by blocks, and let one
variable from each of the first 5 blocks have a signal. We define S0
and S1 as the sets that contain all the null features that are cor-
related and uncorrelated with the causal features, respectively, i.e.,
S0= {Xj: j ≤ 5p0 and j ≠ 1, p0+ 1, 2p0+ 1, 3p0+ 1, 4p0+ 1}, S1=
{Xj: j > 5p0}. We consider various simulation settings with differ-
ent values of ρ∈ {0, 0.2, 0.5, 0.8}, and N∈ {1000, 5000}. Each
simulation scenario is replicated 100 times.

The results are displayed in Fig. 1 and Table 1. Figure 1a
displays detailed feature importance scores generated from each
method that we consider. Since HRT does not provide
importance scores, we use �log10(p value) instead. Note that
the estimated importance scores from PermFIT methods and
Vanilla RF are in the same scale, while the ones from SHAP-
DNN, LIME-DNN and RFE-SVM are not. For X1 whose effect is
linear, the importance scores from PermFIT-DNN and PermFIT-
SVM are higher, compared with those from RF-based framework
due to the restricted tree-based modeling nature of RF. In
addition, the RF-based framework can barely detect the
interaction between X3p0þ1 and X4p0þ1 because the split rule in
tree-based methods is less effective in dealing with such
interactions. Expectedly, as the within-block correlation ρ
increases, the estimated importance scores from all methods
deviate further away from their estimands. However, PermFIT-
SVM remains high power in detecting the true positive features.
As ρ increases, it’s noticeable that Vanilla-RF and PermFIT-SVM
tend to identify the null features that are correlated with the
causal features. Compared with Vanilla-RF, PermFIT-RF has
fewer false positive discoveries. Overall, PermFIT-DNN provides
the most precise and stable importance measure in differentiating
the true positive from null features.

The frequency (percentage) of the important variables detected
by each method is presented in Table 1. For Vanilla-RF and
PermFIT methods that provide p values, the significance level is
controlled at 0.05, while for RFE-SVM, the top 10 features with
the largest importance scores are selected. First of all, at ρ= 0,
PermFIT controls the rate of significance findings across all null
features at around 0.05, suggesting that the type-I error is well
controlled by PermFIT, while Vanilla-RF has the type-I error of
0.09, nearly double of PermFIT. When N= 1000, the type-I error
of HRT-DNN is slightly inflated. Besides, LIME-DNN and
SNGM-DNN show a limited ability in identifying features with
nonlinear effects, such as Xp0þ1, X3p0þ1, and X4p0þ1. On the other
hand, SHAP-DNN is able to assign high rankings to the
important features based on the importance scores. However, it
fails to offer a valid test for its importance scores; specifically, its

type-I error and power depend on correctly specifying the
number of important features. When ρ increases to 0.5 or 0.8,
RFE-SVM tends to select the null features that are correlated with
the true causal features, or those in S0 more frequently than
X3p0þ1 and X4p0þ1, the two causal variables that interact with each
other, demonstrating its limited capability in detecting variables
with interaction effects when correlation exists. In contrast,
PermFIT-SVM is capable of identifying X3p0+1 and X4p0+1

consistently at a much higher frequency than all the null features.
Compared with PermFIT-RF, Vanilla-RF has a higher power in
detecting X3p0+1 and X4p0+1, but also produces remarkably more
false positive findings among features in S0. For example, as ρ
goes to 0.8 and N= 1000, it results in >80% false positive rate in
S0, suggesting a far inferior feature selection performance. In all
these scenarios, PermFIT-DNN can consistently identify causal
features while controlling false positive findings at a much lower
rate than those of Vanilla-RF, PermFIT-RF, and PermFIT-SVM.

Posterior to important feature selection, the prediction
performance of the comparing models almost all gets improved.
Figure 1b displays the mean squared prediction error (MSPE) of
each model, (i) with full input features, respectively denoted as
DNN, RF, and SVM; and (ii) with top selected features from
PermFIT methods and HRT-DNN at the significance level of 0.1,
and top 20 features from SHAP-DNN, LIME-DNN, SNGM-DNN
and RFE-SVM. Selected features help boosting the prediction
accuracy of all models, except RFE-SVM, LIME-DNN, and
SNGM-DNN, across all simulation scenarios. However, LIME-
DNN and SNGM-DNN fail to identify certain important features,
which leads to deterioration of the model performance. In
addition, at ρ= 0.8 corresponding to high correlation among
within-block input features, RFE-SVM fails to improve the model
fitting over SVM because of feature selection failure, in particular,
on X3p0+1 and X4p0+1; its inferior performance to PermFIT-SVM
is clearly observed. Moreover, PermFIT-RF outperforms Vanilla-
RF in terms of MSPE, because the latter yields more false positives
and cannot effectively reduce the feature dimension. We note that
PermFIT-DNN and HRT-DNN consistently outperforms all
other methods in comparison, due to its high success rate in
identifying true positive features while maintaining a considerably
low false positive rate at the same time. In particular, PermFIT-
DNN has a lower MSPE than that of HRT-DNN when N= 1000
and ρ ≤ 0.2, while similar MSPE values in other scenarios.

To further investigate the small sample performance of these
methods, we conduct additional simulations with (N= 300,
p= 100) and (N= 500, p= 200), and report the results in Table 2.
The type-I errors of PermFIT-based methods are not affected
much by the change of N and p in these more challenging cases,
while those for HRT-DNN are severely inflated, which is likely
because, for more challenging data with a smaller N or a larger p,
HRT-DNN fails to make an accurate estimation of the covariance
matrix of the input features.

We further conduct a simulation study on binary outcomes
generated from the following model:

PðY ¼ 1jXÞ ¼ expit
�
4X1 þ 8 log

�
1þ 2X2

p0þ1 þ
�
X2p0þ1 þ 1

�2�þ 4X3p0þ1X4p0þ1 � 11
�
;

ð2Þ
where expitðxÞ ¼ 1=ð1þ expð�xÞÞ. All the other data structures,
including X, are generated in the same way as in the continuous
case. Similar conclusions are observed with the details presented
in Supplementary Table 1 and Supplementary Fig. 1.

TCGA kidney tumor data. A large collection of clinical and
multiple omics data have been made publicly available by TCGA
research project1. In our analysis, we included three studies of
kidney-related cancer types from TCGA research network: kidney
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renal clear cell carcinoma (KIRC, N1= 537), kidney renal papil-
lary cell carcinoma (KIRP, N2= 291), and kidney chromophobe
(KICH, N3= 113). We defined long-term survivor (LTS) as
patients who survived more than five years after diagnosis, and
short-term survivor (STS) as patients who died within 5 years.
We aimed to predict the probability of a patient being in the LTS
group and to identify significant biomarkers that contribute to
classification of the LTS/STS status. We included 188 LTS and
178 STS subjects with the known survival status in our analysis.
We focused our analysis on expression data of 118 proteins

extracted from reverse phase protein arrays (RPPAs)—a highly
sensitive, reproducible, and high-throughput proteomic method
for protein expression profiling28.

The negative log10(p value)s and the estimated importance
scores from each method are presented in Fig. 2 and
Supplementary Fig. 3. HRT-DNN, Vanilla-RF and PermFIT
models control the FDR at 0.1, and SHAP-DNN, LIME-DNN,
SNGM-DNN and RFE-SVM selects 10 features with the
largest importance scores. We notice that moderate correlations
generally exist among the proteins (see Supplementary Fig. 2).
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However, six proteins, SRC, RAF1, RB1, RPS6, YWHAZ, and
EGFR, are highly correlated and clustered together by hierarchical
clustering in Fig. 2. Among them, EGFR, YWHAZ, RPS6, RB1,
and SRC are identified by Vanilla-RF, and RPS6, RB1 and SRC
are selected by RFE-SVM, while none of these biomarkers are
selected by any PermFIT procedures. According to our observa-
tions in simulation studies, both Vanilla-RF and RFE-SVM tend
to identify false positive biomarkers in the presence of high
correlation among features, casting some doubts on the validity
of their biomarker selection results. In addition, LIME-DNN
identifies a very different set of important biomarkers compared
to SHAP-DNN, HRT-DNN, SNGM-DNN, and PermFIT-DNN.

Since the underlying genetic truth is unknown, we alternatively
use the model performance improvement estimated via 5-fold
cross-validation, randomly repeated for 100 times (see Fig. 3a, b;
Supplementary Table 2) as a surrogate measure for evaluating the
relative quality of the selected features. Similar to the simulation
study, we set the feature inclusion criteria on p values smaller
than 0.1 for HRT-DNN, Vanilla-RF, and PermFIT methods, and
top 20 features for SHAP-DNN, LIME-DNN, SNGM-DNN, and
RFE-SVM. PermFIT-RF improves the accuracy from 0.694 to
0.732 on average, while Vanilla-RF only improves to 0.713.
Moreover, PermFIT-SVM elevates the accuracy from 0.69 to
0.744, outperforming RFE-SVM (0.709). Similar to the simulation

Fig. 2 Negative log10p values for TCGA kidney cancer data. Important features selected by each method is marked in red. Since SHAP-DNN, LIME-DNN,
SNGM-DNN, and RFE-SVM do not produce a p value, its importance is presented instead, and 10 features with top importance scores are marked. The
highly correlated features (see details from the dendrogram on the right) selected by RFE-SVM, Vanilla-RF, and SNGM-DNN, but not by PermFIT methods,
are highlighted. Source data are provided as a Source Data file.
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results, PermFIT-DNN and HRT-DNN achieve the highest
accuracy (0.751 and 0.750, respectively), better than those from
SHAP-DNN (0.731), LIME-DNN (0.650) and SNGM-DNN
(0.723). The same conclusion is further confirmed by area
under the ROC curve (AUC) results. In summary, it is evident
that PermFIT procedures consistently perform more efficient
and accurate feature selection across various machine learning
frameworks.

On the identified biomarkers, four genes—CDKN1A, EIF4EBP1,
INPP4B, and SERPINE1—are claimed by all the three PermFIT
methods to be significantly associated with the survival status.
Interestingly, all four genes have been reported to be cancer
related. Especially, INPP4B, identified as the most significant
biomarker by all the three methods (p value = 1.3E− 05 by
PermFIT-DNN, 9.1E− 07 by PermFIT-RF, and 4.5E− 05 by
PermFIT-SVM), encodes inositol polyphosphate-4-phosphatase,
type II, a dual specificity phosphatase. Low INPP4B is recently
reported to be associated with shorter survival in kidney clear cell,
liver hepatocellular, and bladder urotheleal carcinomas, and with
long survival in pancreatic adenocarcinoma29. It is also related to
acute myeloid leukemia, breast cancer and bladder cancer30–32.
SERPINE1 encodes plasminogen activator inhibitor-1, which plays
an important role in various diseases, in particular, kidney
pathology and renal cell cancer33–35. In addition, the CDKN1A
encoded protein, CDK-interacting protein 1, was reported as a
prognostic marker for renal cell cancer36, and has an effect on
kidney cancer cell death37 as well as kidney cancer survival38.
Similarly, EIF4EBP1 affects disease progression in renal cell
carcinoma39.

Moreover, the DNA repair protein XRCC1, identified by
PermFIT-DNN and PermFIT-SVM, is shown to be associated
with bladder cancer40. ANXA7, identified by PermFIT-DNN and
PermFIT-RF, is reported to be associated with prostate cancer
and breast cancer41,42, and its encoded protein has an impact on
prostate cancer and breast cancer43,44. Furthermore, MYH9 and
NRG1 are identified by PermFIT-DNN. Myosin-9, encoded by
MYH9, has been discussed for its role as a tumor suppressor45,
and NRG1 is also reported to be related to multiple cancer

types46,47. Last, PermFIT-RF identifies a novel gene, STK11
whose role in kidney cancer is unknown, however, it has been
reported that inactivation of STK11 in lung adenocarcinomas is a
common event48.

HITChip atlas data. In the HITChip Atlas study, the data was
collected from 1006 adults in 15 western countries49 by using the
HITChip, and it is publicly available in R library “microbiome”50.
Besides demographic and clinical variables, the HITChip Atlas
data includes microbiome measurements from 130 taxonomic
groups summarized at the genus level, which covered major types
of human intestinal microbiota bacterial diversity. Many of the
130 taxonomic groups are highly correlated, which is reflected in
the correlation heat map and the hierarchical clustering den-
drogram (see Fig. 4 and Supplementary Fig. 4). We then inves-
tigated the importance of demographic factors, including gender
and nationality, together with 129 microbial genus (1 was
removed due to the use of compositional values), in predicting the
baseline BMI level. Our analysis includes 900 subjects with BMI
measurements.

The feature selection and biomarker identification criteria
remain the same as those in the TCGA example. The
improvement of the model performance from variable selection
is presented in Fig. 3c, d and Supplementary Table 2. Besides the
MSPE, we report the Pearson correlation between the predicted
and the true values. We notice that high correlation among
microbiome features leads to large inflation in importance scores
from Vanilla-RF, corresponding to high false positive rate. As a
result, it fails to improve the model performance and the reduced
model with selected features from RFE-SVM performs worse than
the full model. Again, this is likely due to the fact that highly
correlated biomarkers are falsely selected by RFE-SVM. For
instance, Streptococcus mitis et rel, Streptococcus bovis et rel and
Streptococcus intermedius et rel, highly correlated to each other,
are among top 10 biomarkers identified by RFE-SVM. In
contrast, PermFIT yields the most remarkable improvements in
all these models, reflected in both MSPE and correlation.
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c, d Fivefold cross-validated MSPE and Pearson correlation (between true outcome and prediction) for HITChip Atlas data. Fivefold cross-validation
evaluation is randomly repeated for 100 times. Data are presented as mean values ± s.d. Source data are provided as a Source Data file.
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Figure 4 and Supplementary Fig. 5 show the negative log10(p-
value)s and the importance scores estimated from each method.
Among all the features, as expected, age is identified as the most
significant factor. The nationality is also selected by PermFIT-
DNN and PermFIT-SVM. Among all the microbiome features,
Megasphaera elsdenii is identified by all the PermFIT methods.M.
elsdenii is shown by prior studies as one of the ruminal and
intestinal lacate- and sugar-fermenting species51. M. elsdenii is
also reported to massively reside in patients with an increase in
BMI after bariatric surgery52. In addition, Eggerthella lenta is
identified by PermFIT-SVM. E. lenta is not well-studied, but its
potential role as an emerging pathogen has been increasingly
recognized in years53. Lastly, uncultured clostridiales is identified
by PermFIT-RF.

Discussion
Complex machine learning models are difficult to distinguish the
contribution of individual input features, though they enjoy the
more robustness and flexibility in modeling complex human
diseases as compared with parametric models. In this paper, we
introduce PermFIT, a computationally efficient permutation-
based feature importance test with applicability to various
machine learning models such as DNN, RF, and SVM, to identify
important features. Also, as demonstrated by the applications to
TCGA kidney cancer data and HITChip Atlas BMI data, Perm-
FIT procedures further show the superior performance over all
the other competitors of concern in the paper, which severely
suffer from false positive or negative findings, leading to inferior
prediction performance with top selected features. In contrast,

Fig. 4 Negative log10p values for HITChip Atlas data. Important features selected by each method is marked in red. Since SHAP-DNN, LIME-DNN,
SNGM-DNN, and RFE-SVM do not produce a p-value, its importance is presented instead, and 10 features with top importance scores are marked. The
highly correlated features (see details from the dendrogram on the right) selected by RFE-SVM and Vanilla-RF, but not by PermFIT methods, are
highlighted. Source data are provided as a Source Data file.
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feature selection via PermFIT procedures remarkably improves
the performance of these predictive models. However, it is worth
pointing out that the prediction improvement of PermFIT is
restricted to the capability of each machine learning model fra-
mework. For example, RF is relatively inefficient in modeling
interaction terms, thus the performance of PermFIT-RF may be
limited for complex traits with strong gene-gene interactions.
Overall, PermFIT coupled with DNN consistently shows superior
empirical performance.

The proposed analytical tool, PermFIT, is computationally
efficient and has broad applicability in addressing real-world
problems. It can be implemented and incorporated into a variety
of machine learning models with different types of outcomes,
and without the need of model refitting. PermFIT provides
researchers a useful tool for deciphering complex genetic archi-
tecture and disease etiologies of complex traits.

Methods
PermFIT. We start the case with a continuous outcome. Let X 2 X , Y 2 Y, where
X= (X1, . . . , Xp) is a p-dimensional covariate vector, the observation of the out-
come variable Y is a continuous scalar, E(Y∣X)= μ(X), μ(⋅) is an unknown mapping
from X to Y, the residues ϵ= Y− μ(X) is independent of X and 0 < σ2= E(ϵ2) <∞.

We define the feature importance score Mj for Xj, the jth feature in X(j= 1, . . . ,
p), as the expected squared difference between μ(X) and μ XðjÞ� �

, where XðjÞ ¼
ðX1; :::;Xj�1;Xj0 ;Xjþ1; :::;XpÞ is equal to X with the jth covariate replaced by a
random vector Xj0 whose elements are independently drawn from the distribution
of Xj. The importance score Mj can be expressed as,

Mj ¼ EX;Xj0
μðXÞ � μ XðjÞ� �� �2

: ð3Þ

Assuming X does not have redudant features, Mj is zero only when μðXÞ � μ XðjÞ� �
on X , implying that the jth element of X does not have any impact on μ(X); and is
non-zero otherwise.

To obtain a clear understanding of Mj, we take the linear model as an example
where μ(X)= Xβ+ β0, with β= (β1, . . . , βp) consisting of p parameters. Under the
linear assumption, (3) becomes:

Mj ¼ EX;Xj0
ðXj � Xj0 Þ2β2j ¼ 2β2j Var ðXjÞ: ð4Þ

Here, (4) is proportional to the squared standardized coefficient, which has been
recognized as a popular measure of variable importance in multiple linear
regression.

Furthermore, Mj can be simply decomposed as follows:

Mj ¼ EX;Xj0
Y � μ XðjÞ� �� �2 � EX ½Y � μðXÞ�2: ð5Þ

Ideally, given the true form of μ(⋅), from (5), Mj could be estimated through
permutation. Let (Yi, Xi1, . . . , Xip), (i= 1, . . . ,N) be N independent observations
drawn from the distribution of (Y, X1, . . . , Xp). A permutation on one covariate
Xj= (X1j, . . . , XNj) is to randomly sample the elements in Xj without replacement
to generate a permuted version of X0 ¼ ðXs1 ;j

; :::;XsN ;j
Þ. The empirical permutation

importance score is then,

MðPÞ
j ¼ 1

N
∑
N

i¼1
Yi � μ XðjÞ

i�
� �n o2

� Yi � μðXi�Þ
� 	2


 �
; ð6Þ

where Xi⋅= (Xi1, . . . , Xip) and XðjÞ
i� ¼ ðXi1; :::;Xi;j�1;Xsi ;j

;Xi;jþ1; :::;XipÞ. Let
MðPÞ

j ¼ 1
N ∑

N
i¼1 M

ðPÞ
ij , where MðPÞ

ij ¼ Yi � μ XðjÞ
i�

� �n o2
� Yi � μðXi�Þ

� 	2
, then

E MðPÞ
j

h i
¼ E MðPÞ

ij

h i
¼ N � 1

N
Mj: ð7Þ

When N is large, Mj could be well approximated by MðPÞ
j . Besides, Var MðPÞ

j

h i
�

1
N Var MðPÞ

ij

h i
which can be approximated by the empirical variance of MðPÞ

ij .

Let bμð�Þ be the fitted function approximator to μ(⋅), according to (6), we propose
to estimate MP

j by

bMðPÞ
j ¼ 1

N
∑
N

i¼1
Yi � bμ XðjÞ

i�
� �n o2

� Yi � bμðXi�Þ
� 	2


 �
: ð8Þ

If feature Xj is not associated with Y, then μ XðjÞ
i�

� �
¼ μðXi�Þ with corresponding

MðPÞ
j ¼ 0, and Eq. (8) becomes,

bMðPÞ
j ¼ 1

N
∑
N

i¼1
μðXi�Þ � bμ XðjÞ

i�
� �n o2

� μðXi�Þ � bμðXi�Þ
� 	2 þ 2ϵi bμðXi�Þ � bμ XðjÞ

i�
� �n o
 �

:

ð9Þ

With the universal consistency, the three terms are expected to converge to zero
as N goes to infinity. However, for data with a finite sample size, the model bμð�Þ
may become overfit, leading to μðXi�Þ � bμ XðjÞ

i�
� �n o2

> μðXi�Þ � bμðXi�Þ
� 	2

in

estimating MðPÞ
j . To overcome the bias issue, we employ cross-fitting strategy to

separate the input data as the training and validation sets, with one set being

utilized to obtain bμð�Þ and the other set to estimate bMðPÞ
j . Let bμT ð�Þ be the estimate of

μ(⋅) from the training set, and DV ¼ fYi;Xi�gNV
i¼1 be the validation set,

bMðPÞ
j ¼ 1

NV
∑
NV

i¼1
Yi � bμT XðjÞ

i�
� �n o2

� Yi � bμT ðXi�Þ
� 	2


 �
; ð10Þ

dVar bMðPÞ
j

h i
¼ 1

NV
∑
NV

i¼1
Yi � bμT XðjÞ

i�
� �n o2

� Yi � bμT ðXi�Þ
� 	2 � bMðPÞ

j


 �2
: ð11Þ

The one-sided p value can be obtained by assuming normality. To increase the
power of important feature identification, K-fold cross-fitting can be adopted. Here,
we randomly divide the data into K folds, denoted as V1, . . . ,VK. For each of Vk,
k= 1, . . . , K, Vk denote the complementary set of Vk, which is used to fit the modelbμkð�Þ. Then

bMðP;CVÞ
ij ¼ ∑

K

k¼1
I i 2 Vk

� �
Yi � bμT XðjÞ

i�
� �n o2

� Yi � bμkðXi�Þ
� 	2


 �
; ð12Þ

bMðP;CVÞ
j ¼ 1

N
∑
N

i¼1
bMðP;CVÞ

ij ; ð13Þ

dVar bMðP;CVÞ
j

h i
¼ 1

N
∑
K

k¼1
∑
i2Vk

Yi � bμT XðjÞ
i�

� �n o2
� Yi � bμkðXi�Þ

� 	2 � bMðP;CVÞ
j


 �2
:

ð14Þ
The algorithm of PermFIT with cross-fitting is illustrated in Algorithm 1.

Algorithm 1
Algorithms for PermFIT
1: Randomly divide the data into K folds.
2: for k= 1 to K do.
3: Denote the data in kth fold as Vk and the rest of the data as Vk .
4: Build the machine learning model with Vk , denoted as bμkð�Þ.
5: for j= 1 to p do
6: Calculate bMðP;CVÞ

ij for subjects in Dk .
7: end for
8: end for
9: for j= 1 to p do
10: Calculate bMðP;CVÞ

j and estimatedVar bMðP;CVÞ
j

h i
. Calculate p-value by assuming nomality.

11: end for

Binary outcome. For binary outcome Y∈ {0, 1}, we have μ(X)= E(Y∣X)=
Pr(Y= 1∣X) and define Mj as the expectation of binomial deviance,

Mj ¼ EX;Xj0
Y log

μðXÞ
μðXðjÞÞ

� 
þ ð1� YÞ log 1� μðXÞ

1� μðXðjÞÞ

� 
 �
: ð15Þ

The empirical estimate of Mj can be similarly obtained by plugging in the estimate
of μ(X(j)) and μ(X) as in the continuous data scenario.

DNN with bootstrap aggregating. In this paper, we use feedforward and fully-
connected deep neural networks (DNNs) to approximate function μ(⋅). The DNN
model contains L hidden layers of (n1, . . . , nL) hidden nodes that transform the
initial input covariates X to the estimation of the continuous outcome Y. Let θ
denote all the parameters in the DNN model, we essentially have the fitted DNN,bμðX; θÞ, by minimizing the empirical risk function,

argmin
θ

1
N

∑
N

i¼1
‘fYi; μðXi; θÞg þ λΩðθÞ; ð16Þ

where ℓ(⋅, ⋅) is the loss function dependent on the outcome type, Ω(θ) is a penalty
on θ and λ is a hyperparameter that controls the degree of regularization, via mini-
batch stochastic gradient descent algorithm and Adam54 to adjust the learning rate.

To increase the robustness and accuracy of DNNs, bootstrap aggregating
(bagging) is applied55. Besides, due to the randomness of initial parameters, some
DNNs may not converge to a stable solution, hence, perform poorly. In neural
network ensembles, it is argued that “many could be better than all”, meaning that
using a subset of bagged DNNs that well fit the data could be better than using all
bagged DNNs25,56. Therefore, we adopt the scoring system to select the optimal
subset of DNNs in the bagging procedure, following Mi et al.25. DNN with
bagging has been implemented in the R package “deepTL” (available at https://
github.com/SkadiEye/deepTL)57. According to Mi et al.25, for all the reported
numerical analysis in this paper, we set bagging size to 100, batch size to 50, the
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number of hidden layers to 4 with 50, 40, 30, 20 hidden nodes at each layer
subsequently, penalty weight λ to 1E− 4, and reclified linear units as the
activation function.

SHAP, LIME, SNGM, and HRT. Shapley and LIME values are calculated using R
package “iml”. Feature importance scores of SHAP and LIME are defined as mean
absolute values of Shapley and LIME values, respectively. HRT is implemented in
R. SNGM-DNN is implemented in R, following Xing et al.21. To be consistent with
other approaches without providing p values, implementation of SNGM-DNN also
focuses on selecting top features. In SHAP-DNN, LIME-DNN, SNGM-DNN and
HRT-DNN, the above-described bagged DNNs are applied.

RF and SVM. RF is implemented via R package “randomForest”. Vanilla-RF
importance and its standard error is generated from the “randomForest” function
with 1000 trees. SVM is implemented through R package “e1071” with Radial
kernels used. The hyper-parameters in SVMs are searched via fivefold cross-
validation. RFE-SVM was implemented with the function “rfe” in R package
“caret”.

The simulation study and real data applications. In the simulation studies,
PermFIT is performed by randomly splitting the samples into training (80%) and
validation (20%) sets, and the importance score is estimated via (10) and (11). In
real applications, HRT and PermFIT are conducted with 5-fold cross-fitting
through (13) and (14). To eliminate the impact from the randomness of cross-
fitting and other random factors in model fitting, we repeat each method 100 times
and report the mean and standard deviation of MSPE, Pearson correlation, AUC or
accuracy, and the median of the importance scores and p values. Features presented
in figures are ordered by hierarchical clustering, which is implemented in “hclust”
function in R package “stats”, where the dissimilarity is set to one minus the
Pearson correlation.

For the TCGA kidney cancer application, RPPAs at gene level are analyzed. We
first remove the proteins that are not common across all three TCGA datasets
(KIRC, KIRP, and KICH). In addition, we remove the proteins with perfect
multicollinearity, after which 118 are kept for further analysis.

For the HITChip Atlas data, the BMI level was originally grouped into six
groups: underweight, lean, overweight, obese, severeobese and morbidobese, which
we transform into numerical levels from 1 to 6 in our analysis. Total 900 subjects
are left for the analysis after subjects with missing BMI are excluded. Missing
information on nationality is grouped into a new group named “Unknown”.
Missing values in the microbiome data are simply imputed with the median values
across all samples. The analysis on the microbiome data is based on the
compositional values but we remove the cell proportion from the last group due to
the sum to 1 constraint on the compositional values, after which a log-
transformation is applied to the remaining compositions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCGA datasets are available at the LinkedOmics website (http://linkedomics.org),
among which three studies, KIRC, KICH, and KIRP, are used (dbGaP Study Accession:
phs000178). The HITChip Atlas data is available in R package “microbiome” (https://
microbiome.github.io/). We provide final datasets used in our analysis (https://github.
com/SkadiEye/deepTL/tree/master/permfit/code/cleaned-dat.RDS). Source data are
provided with this paper.

Code availability
PermFIT is implemented in our R package “deepTL” (https://github.com/SkadiEye/
deepTL)57. We also provide source code for replicating the simulation studies and real
data applications (https://github.com/SkadiEye/deepTL/tree/master/permfit/code).
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