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Summary 
The antigen-specific receptors of T and B lymphocytes are generated by somatic recombination 
between noncontiguous gene segments encoding the variable portions of these molecules. The 
semirandom nature of this process, while desirable for the generation of diversity, has been thought 
to exact a high price in terms of sterile (out-of-frame) products. Historically, the majority of 
T lymphocytes generated in mammals were thought to be useless, either because they generated 
such sterile rearrangements or because the receptors generated did not appropriately recognize 
self-molecules (i.e., positive and negative selection). In the studies described here, we characterize 
the onset of T cell receptor (TCR) ol and fl chain gene rearrangements and quantitate their 
progression throughout T cell development. The results show that T cell production efficiency 
is enhanced through (a) rearrangement of TCR-/~ chain genes early during T cell development, 
with selective expansion of those cells possessing in-frame rearrangements; (b) deletion of sterile 
rearrangements at the TCR-oc chain locus through ordered (proximal to distal) sequential recom- 
bination; and (c) modification of nonselectable ol/B heterodimer specificities through generation 
and expression of new TCR-cr chains. In addition, we demonstrate strict correlations between 
successful TCR-fl gene rearrangement, the onset of TCR-ol gene rearrangement, rapid cell divi- 
sion, and programmed cell death, which together serve to maintain cell turnover and homeostasis 
during T cell development. 

T he lymphoid immune system consists of T and B cells, 
each of which expresses a heterodimeric protein cell sur- 

face receptor of (generally) clonal specificity. The potential 
number of antigens that an organism could expect to en- 
counter during its lifespan is large, such that germline genes 
sufficient to encode proportionate numbers of specific receptors 
would represent a substantial biological burden. To accom- 
modate both genetic simplicity and antigenic diversity, a system 
of somatic gene recombination has evolved (1), whereby fam- 
ilies of similar but nonidentical gene clusters rearrange to 
generate proteins of random and diverse specificity. In de- 
veloping T cells, a heterodimeric TCR pair (designated c~/~, 
or in some cases 3~/8) is generated through recombination 
of V-D-J (TCR-~ or -8) or V-J (TCK-cr or -3') gene clusters. 
Since the final specificity of the receptor depends on both 
c~ and ~/chain gene segment usage, and since the murine 
TCR-fl locus consists of at least 28 V, 2 D, and 12 J gene 
segments, with 70-100 V and 50J gene segments for TCR-o~, 
the potential diversity generated by recombination is thus 
quite large, while the genetic burden is minimized. 

The generation of receptor diversity through semirandom 
recombination of related gene segments is not without lia- 
bility, however. Since amino acids are encoded by triplets of 

DNA bases, the usefulness of any given rearrangement will 
depend on both the sequence and the number of DNA bases 
located between initiation and termination codons. Conse- 
quently, the majority of such random rearrangements are 
thought to result in sterile gene configurations, mainly through 
out-of-frame sequences or premature termination codons. 
Thus, most developing lymphocytes are thought to fail to 
generate an antigen receptor. In the case of developing T cells, 
the assembly of in-frame receptor genes is only the first low 
frequency event. Subsequently, the heterodimers must be ex- 
pressed on the cell surface, and must successfully and appropri- 
ately bind to self-MHC antigens (i.e., positive selection) be- 
fore the cell can fully mature. Only a small fraction of 
receptor-expressing cells are thought to complete this require- 
ment (2). Therefore, the vast majority of T cells generated 
by the thymus have been thought to be wasted, because of 
lack of receptor assembly or failure to be positively selected. 

We have previously demonstrated that the frequency of 
TCR expression on developing T cells is far in excess of that 
which could be predicted on the basis of conventional models 
of gene recombination (3). Based on this and other related 
observations, it has been speculated that the TCR-c~ locus 
might be capable of more than one rearrangement on each 
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aUele (3, 4). In the studies described here, we directly dem- 
onstrate that this is the case, using simultaneous multiprobe 
Southern blotting to quantitate deletion of the Jc~ cluster. 
Furthermore, we show that rearrangements at the TCR-oe 
locus are proximally (V-J) biased, as has been postulated (4, 
5), and that the first rearrangements at this locus occur im- 
mediately subsequent to the generation of an in-frame rear 
rangement at the TCR-3  locus. We also quantitate the rear- 
rangement of the two T C R - 3  gene clusters, both temporally 
and in relation to each other, using simultaneous multiprobe 
Southern blotting. Finally, we demonstrate a tight correla- 
tion between the status of gene rearrangement and the onset 
of  programmed cell death, which serves as a model for 
homeostasis and biological efficiency in T cell development. 

Materials and Methods 
Mice. The origin of the bcl-2-transgenic strain 36 has been de- 

scribed (6). The mice used in these studies have been back-crossed 
onto the C57BL/6 background for at least eight generations by 
the authors. Nontransgenic C57BL/6 mice were either purchased 
from a commercial breeder (Jackson Laboratory, Bar Harbor, ME) 
or were the nontransgenic littermates from heterozygous breeding 
of bcl-2-transgenic mice. 

Isolation of Defined T Cell Subsets. The fundamentals of the cell 
staining and sorting procedures used here have been described in 
detail previously (3, 7). For the purification of CD3-4*8 +, 
CD31~ + 8 +, CD3 + 4 + 8-,  or CD3 § 4- 8 § thymocytes, freshly pre- 
pared single cell suspensions of thymocytes were first treated with 
anti-CD3 antibody (clone KT3). Cells were then washed and stained 
with PE-conjugated goat anti-rat immunoglobulin (Biomeda, 
Foster City, CA). The cells were again washed and then treated 
first with rat Ig blocking reagent, followed by FITC-conjugated 
anti-CD8 (CALTAG Laboratories, South San Francisco, CA) and 
allophycocyanin (APC)*-conjugated anti-CD4 (CALTAG Labora- 
tories). For the purification of lymph node T or B cells, fresh single 
cell suspensions were prepared from pooled axillary, brachial, and 
superficial inguinal lymph nodes and stained with FITC-conjugated 
anti-TCR-3 chain (H57-597, CALTAG Laboratories) and PE- 
conjugated anti-heat-stable antigen (HSA; PharMingen, San Diego, 
CA). Subsets of triple negative CD3-4-8-  (TN) thymocytes were 
prepared as previously described (3, 7). Briefly, single cell suspen- 
sions of freshly isolated thymocytes were depleted of CD3-, CD4-, 
and CDS-expressing cells by two rounds of depletion. The first 
round included treatment with anti-CD4 (clone RL172.4) and anti- 
CD8 (clone 3.155) antibodies, followed by lysis using rabbit serum 
complement. The second round of depletion involved treatment 
with anti-CD3 (clone KT3), anti-CD4 (clone GK1.5), and anti- 
CD8 (clone 53-6.7) antibodies, followed by depletion of positively- 
stained cells using anti-Ig-coated paramagnetic beads (Dynal, Oslo, 
Norway). The resulting depleted cells were then stained with FITC- 
conjugated anti-CD44 (PharMingen), PE-conjugated anti-HSA 
(PharMingen), and biotin-conjugated anti-CD25 (PharMingen), 
followed by APC-streptavidin (Biomeda). All preparations for cell 
sorting contained propidium iodide (500 ng/ml) for the identifica- 

1 Abbreviations used in this paper: APC, allophycocyanin; DP, double posi- 
tive (CD4 + 8 +); HSA, heat-stable antigen; TD, triple dull (CD31o41o81o); 
TN, triple negative (CD3 - 4- 8- ). 

tion and exclusion of dead cells. Cell sorting was performed on 
a FACStarP l~| cell sorter (Becton Dickinson & Co., Mountain 
View, CA) equipped with argon ion and rhodamine dye lasers. 

Cell Culture. The culture system for analysis of gene rearrange- 
ments in vitro was essentially as previously described (3). CD31~ 
(double positive; CD4+8 +) thymocytes or CD3 + LN cells from 
bcb2-transgenic mice were resuspended at 0.3-1.0 x 106 ceUs/ml 
in RPMI-1640 medium containing 5% fetal bovine serum, I mM 
glutamine, 10 mM Hepes buffer, and 5 x 10 -s M 3-ME. 1-2-ml 
aliquots were then dispensed to the wells of 24-well tissue culture 
trays. Cultures were incubated for 3 d at 37~ in a humidified at- 
mosphere containing 8% CO2 in air. 

DNA Preparation. To minimize the numbers of cells required 
as sources for DNA for Southern blotting, DNA was isolated in 
agarose plugs as described (8). Briefly, cells of interest were all- 
quoted at 2.5-3.0 x 10 s cells per 1.5-ml microfuge tube and cen- 
trifuged at 400g. All of the supernatant was removed, and the cells 
were washed in Dulbecco's PBS without divalent cations and with 
20 mM EDTA (PBSE). Washed cell pellets were resuspended in 
30/zl of 1% low melting point agarose (FMC Corp., Rockland, 
ME) in PBSE at 37~ and solidified on ice. Plugs were then over- 
laid with 200/zl of 50 mM, Tris, pH 8.0/20 mM EDTA containing 
1% sodium lauryl sarcosine and 1 mg proteinase K/ml, and in- 
cubated overnight at 50~ The supernatant was then removed, 
and the plugs were washed for 8-10 h in 1 ml of 10 mM Tris/1 
mM EDTA (TE). Digestion and washing steps were repeated one 
to two additional times. Plugs were then treated for 30 min at room 
temperature with 0.5 mM Pefabloc (Boehringer-Mannheim Corp., 
Indianapolis, IN) in 50 mM Tris/20 mM EDTA and stored at 4~ 
in TE until use. 

RNA Preparation and Northern Blotting. Total ILNA was ex- 
tracted from sorted cells as described (8). Formaldehyde gel elec- 
trophoresis was performed as described (3). RNA was blotted onto 
GeneScreen Plus (DuPont-NEN, Boston, MA) by capillary transfer 
overnight in 10x SSPE (1.8 M NaC1, 0.1 M Na2HPO4, 0.1 M 
EDTA). Blotted membranes were baked for 30 rain at 80~ wetted 
in 2x SSC, and prehybridized for 2 h at 42~ in 5x SSC/0.5% 
SDS/50% formamide/lx Denhardt's reagent containing 100 #g 
herring sperm DNA/ml. An EcoRI fragment of clone Ncm-4 (9) 
was labeled with [Oe-32p]dCTP by random hexamer priming and 
used as a probe for bcl-2 expression. Hybridization was carried out 
overnight at 42~ in fresh buffer as described for prehybridiza- 
tion. Hybridized blots were washed with decreasing concentra- 
tions of SSC/0.5% SDS until background noise was sufficiently 
reduced, and they were imaged using a Phosphorlmager (Molec- 
ular Dynamics Inc., Sunnyvale, CA). RNA from equivalent cell 
numbers (m2 x 106) were loaded in each lane. Equal loading was 
confirmed by visualization of ethidium bromide staining of 
ribosomal RNA bands (not shown). 

Probes for Southern Blotting. The complete sequence of the J re- 
gion cluster of the TCR-Oe locus, including the 5'-flanking C-6 
region and the 3' flanking C-oe region, has been published (10). 
Using this data, it was possible to select a restriction endonuclease 
combination (BamHI/HindlII) that yielded DNA fragments of 
sufficiently different sizes to be discriminated by agarose gel elec- 
trophoresis, and that spanned the Joe cluster at approximately equal 
distances (Fig. 1). In addition, fragments selected for analysis were 
chosen to have extensive (>500 bp) noncoding regions located 5' 
to most Joe coding sequences within that restriction fragment, such 
that this noncoding region would be deleted by rearrangements 
to those Joe segments. Oligonucleotide primers for PCR amplifica- 
tion of "~500 bp products within this 5' noncoding region were 
then designed and synthesized. The primer sequences (5'-3') and 
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Figure 1. Strategy for simultaneous multiprobe Southern blotting of the Jot cluster. A general representation of the TCR.-ot locus is shown on the 
top strand (not to scale). The bottom strand shows an expanded view of the J~x cluster (with S' flanking Cfi and 3' Col regions), drawn approximately 
to scale. Black ovals represent the location of Jol (or in one case, Vg) coding sequences. Black vertical bars represent the locations of Ccr or Cg introns. 
Restriction enzyme sites (B, BamHI; H, HindlII) are shown above the lower strand. Restriction sites flanking specific DNA fragments analyzed by 
Southern blotting are circled; the fragments themselves are highlighted by shaded rectangles. Approximate locations for hybridization of the Jol probes 
are indicated by arrows below the strand. 

product sizes were as follows: Jc~19330, gtcacggatgccatctctggagcag/ 
ggaaatggcccgtggatacccagg, 520 bp; Jc~42417, cagactcccaggcgtcct- 
cattctg/gactggccactcactgaaatgtacag, 540 bp; Jol4, gcgggatcctgggct- 
ctggctagg/gcggatccagtgggcatggagctgg, 700 bp; Jcz6, gatcctacagcg- 
agcgagtagagt/gatccagtcatggcaggtagc, 430 bp. The primer sequences 
for Jc~4 and Jcz6 included artificially introduced BamHI sites; these 
were cloned into pBSK- (Stratagene Inc., La Jolla, CA). PCR 
products of Jol19330 and Jc~42417 were cloned directly into a T/A 
cloning vector (pCRII; InVitrogen, San Diego, CA). All plasmids 
were carried in infected Escherichia coll. Plasmids were purified from 
200-ml E. coli cultures using columns (Tip-500; QIAGEN, Chats- 
worth, CA). Inserts were purified by digestion with the appro- 
priate restriction enzyme, followed by agarose gel electrophoresis 
and extraction using Qiaquick spin columns (QIAGEN). 

For TCR-B gene rearrangement analysis, a similar strategy was 
used (Fig. 2), as described previously (11). PCR primers for partial 
known sequences of the intronic regions between D~I  and the 
J~l  cluster (D-J/31) or DB2 and theJB2 cluster (D-J~2) were used 
to amplify 730- or 670-bp products, respectively. Clone D-JB1 in- 
cluded the DB1 coding region and 60 bp of 5' intronic DNA; clone 
D-J~2 included D~2 and 80 bp of upstream DNA. PCR-amplified 
products were ligated into pCRII,  cloned, and purified as above. 

Quantitative Southern Blotting. The system used for DNA diges- 
tion in agarose plugs was essentially as described (8). DNA from 
2-3 x 10 s cells was digested using the appropriate restriction en- 
donucleases: BamHI/HindlII for quantitation of TCIL-c~ gene rear- 
rangement or EcolLI for quantitation of TCIL-B gene rearrange- 
ment. Digested DNA was electrophoresed in 20 x 25 cm gels 

of 0.6% agarose in TBE (90 mM Tris HC1, 90 mM borate, 2 mM 
EDTA). Gels were depurinated in 0.25 N HCI for 17 min and soaked 
in 0.4 N NaOH for 30 min. DNA was then transferred onto 
GeneScreen Plus (DuPont-NEN) in 0.4 N NaOH using a Posi- 
Blotter (Stratagene Inc.). Blotted membranes were washed briefly 
in 2x SSC and baked for 30 min at 80~ before hybridization. 
For quantitation of TCR-cz gene rearrangement, purified inserts 
from clones Jot19330, Jot42417, Jc~4, and Joe6, hybridizing with 
4.4-, 2.2-, 2.8-, or 6.9-kb fragments of BamHI/HindlII-digested 
genomic DNA, respectively, were labeled with [oL-32P]dCTP by 
random hexamer priming and used simultaneously as probes. Also 
included as a genomic probe for comparisons of lane-to-lane DNA 
loading was a 590-bp PstI fragment of a "~9 kb BamHI genomic 
clone spanning the Cot cluster ofexons (10). This probe hybridizes 
2,100 bp 3' of Cc~ exon IV and identifies a 6.1-kb fragment of 
BamHI/HindlII-digested genomic DNA, which is always present 
at genomic levels. For quantitation of TCR-B gene rearrangement, 
purified inserts from clones D-J/31 and D-JB2 (hybridizing with 
10.5- or 2.2-kb fragments of EcolLI-digested genomic DNA, respec- 
tively) were labeled and used simultaneously as probes. The 590 bp 
PstI fragment hybridizing 2,100 bp 3' to Cc~ exon IV was again 
used for genomic quantitation. Hybridization was performed at 
65~ in 4 x SSC/1% SDS/5 x Denhardt's reagent containing 100 
/~g of herring sperm DNA/ml. Hybridized blots were washed in 
decreasing concentrations of SSC/1% SDS at 68~ until back- 
ground hybridization was sufficiently reduced. Blots were imaged 
and quantitated using a molecular imager (model GS-250; Bio-Rad 
Laboratories, Hercules, CA). The percentage of germline DNA 

Figure 2. Strategy for simultaneous multiprobe Southern blotting of D-Jfl intronic regions. A general representation of the TCP,-fl locus is shown 
(not to scale). The location of V, D, and J coding sequences are represented by black ovals; the two Cfl clusters of exons are represented by white 
rectangles. The approximate locations of the two EcoP, I genomic DNA fragments analyzed by Southern blotting are indicated by shaded rectangles; 
the locations of cloned probe sites are shown by arrows above the strand. 
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remaining for any given locus was calcuhted using the following 
equation: percent of germline remaining = {IX' (C/IC')]IX~} • 100, 
where C represents Cc~ band intensity, X represents J~ or D-JB 
band intensity, and g and t represent germline and T cell DNA 
samples, respectively. 

Results 

TCR-cr Chain Gene Rearrangement during T Cell Develop- 
ment. The progression of TCR-c~ gene rearrangement, as 
assessed by quantitative Southern blotting across the Jc~ cluster, 
is depicted in Fig. 3; actual values are shown in Table 1. No 
rearrangements are detectable before the CD25-441~ 
(triple dull; CD31~176 l~ stage, which correlates with the 
transition from TN to DP cells (7) and an in-frame TCR-/3 
gene rearrangement (11). Immediately upon completing this 
transition, the first (proximal) V-J rearrangements are seen. 
By the next stage of development (i.e., CD3-DP) ,  substan- 
tial rearrangements (representing a deletion of 75 % of germline 
sequences) are seen at the 5' end of the Jot cluster. Deletions 
of germline sequences are also seen one and two thirds of 
the way across the Jol cluster by this stage. However, the 
number of rearrangements located 3' of these probe sites is 
proportionately less than their distance across the locus. To- 
gether, these results demonstrate that recombination at the 
TCR-ot locus is ordered and proximally (V-J) biased, sug- 
gesting that the distance between recombining elements may 
be a factor in the regulation of TCR-ot gene rearrangement. 
This is consistent with the finding that both alleles of the 
TCR-oz gene tend to rearrange simultaneously to approxi- 
mately equivalent sites (4, 5). 

Multiple Sequential Rearrangements at the TCR-ot Locus. 
CD3/TCRI~ thymocytes represent a population of cells 
that possess functional rearrangements at both the TCR-ot 
and -/3 loci (as is evidenced by the expression of the hetero- 
dimer on the cell surface), but have failed to undergo, or have 
not yet undergone, positive selection. The demonstration that 
noncycling cells of this phenotype expressed high levels of 
RAG-1 and -2 (3) suggested that such cells may be contin- 
uing to rearrange their TCR genes, possibly in an attempt 
to generate proteins of a new specificity. Thymocytes of this 
phenotype from k/-2-transgenic mice also possess the capacity 
to survive extended periods in culture (3, 6). These charac- 
teristics allowed us to assess whether the TCR-c~ locus was 

capable of being rearranged more than once on each allele, 
by analyzing changes in the distribution of rearrangements 
in TCR-expressing immature cells; secondary rearrangements 
should be detectable as 3' shifts in the representation of the 
Jc~ cluster (as well as 5' shifts in Vc~). Using the same quan- 
titative Southern blotting strategy shown in Figs. 1 and 3, 
we found that the pattern of rearrangement after culture (i.e., 
the nonselecting environment) is substantially shifted toward 
the 3' end of the locus when compared with the same cells 
ex vivo (Fig. 4). Similar analyses of RAG-l -  and -2- pe- 
ripheral T cells did not demonstrate such a shift (not shown). 
These experiments directly demonstrate the widely held as- 
sumption that the TCR-ol locus is capable of multiple, se- 
quential rearrangements at each allele. 

TCR-~ Chain Gene Rearrangement During T Cell Develop- 
ment. Transition from the TN to DP stage of T cell devel- 
opment requires an in-frame rearrangement at the TCR-/3 
locus (11). However, TCR-/3 chain gene rearrangement during 
T cell development has not been well characterized; in par- 
ticular, the significance of duplication of the D, J, and C 
clusters, and their relationship to one another, is not known. 
Gene rearrangements between D and J segments precede those 
between V and D (12). Thus, it is possible to assess the initi- 
ation of TCR-/3 gene rearrangement by quantitative mea- 
surement of the intronic regions between D- and J-/3. Using 
the approach depicted in Fig. 2, we have quantitated the ini- 
tiation of rearrangement at each duster of the TCR-/3 locus. 
No detectable deletions ofD-J intronic regions were seen be- 
fore the CD25+441~ stage of development (Fig. 5). On 
reaching the CD25 +441~ stage, substantial deletions are 
seen in both D-J intronic regions. No further deletions in 
either D-J/31 or D-J/32 introns are detected at the next stage 
of development (i.e., CD25-441~ where complete (V-DJ) 
and in-frame gene rearrangements are required (11). Since the 
D-J/31 intronic region should also be ddeted during com- 
plete recombination of V to D-J/32, this suggests that not 
only does all D-J/3 recombination occur rapidly and wholly 
at the CD25+441~ stage, as has been suggested (13), but 
that D-J and V-DJ recombination probably occur very rap- 
idly in succession. In addition, the D1-J1 intron is always 
present at approximately half the level of the D2-J2 intron. 
Since V-DJ/32 recombination deletes the D-J/31 site, this pat- 
tern suggests that duster usage in TCR-/3 gene rearrange- 

Figure 3. Quantitative assessment of TCR.-c~ 
gene rearrangement among developing T cells. 
(A) A representative Southern blot showing the 
relative intensities and locations of the DNA frag- 
ment analyzed. DNA samples are from C57BL/6 
mice as follows: (lane 1 ) CD25 +441oTN; (lane 
2) CD25-441oTD; (lane 3) CD3-DP; (lane 4) 
CD31~ (lane 5) CD3 + thymocytes; (lane 6) 
CD3 + LN; (lane 7) LN B cells (genomic con- 
trol). (B) quantitation ofJo~ gene rearrangement; 
bars represent mean _+ SE for at least three 
Southern blots, each containing DNA from be- 
tween one and five mice per sample of sorted cells. 
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Table  1. Quantitation of TCR-ot Gene Rearrangement during T Ceil Development 

CD25 +441~ CD25-441~ C D 3 - D P  CD31~ CD3 § thymocytes C D 3  § LN 

Jcd9330 102 + 5* 90 _+ 7 34 -+ 9 26 + 3 19 + 4 14 -+ 1 

J~42417 101 _+ 9 99 _+ 2 79 + 9 65 _+ 8 58 _+ 4 57 _+ 8 

Jot6 98 _+ 8 101 _+ 11 87 _+ 9 80 _+ 18 81 _+ 13 76 _+ 6 

Jc~4 106 _+ 5 105 _+ 5 98 _+ 7 101 _+ 4 93 _+ 3 96 _+ 6 

* Values represent means _+ SE for at least three separate Southern blots, as described in the legend to Fig. 3. 

ments is nonpreferential, and that both D-J clusters on a given 
allele rearrange independently and simultaneously. 

Temporal Relationship between TCR Gene Rearrangement and 
Programmed Cell Death. Successful and productive rearrange- 
men t  of the TCR-/~ locus marks the onset of a number of 
important developmental functions (see Discussion), among 
which is the characteristic of limited lifespan, and ultimately 
(in the absence of rescue by positive selection) programmed 
cell death. Since bcl-2 gene expression is thought to be an 
important regulator of programmed cell death, it was log- 
ical to evaluate the pattern of endogenous bcl-2 gene expres- 
sion during T cell development, particularly in relation to 
the known stages of TCR-ol and -8 gene rearrangement. The 
results of these studies are shown in Fig. 6. We find that 
bcl-2 is expressed at high levels during the stage at which 
TCtL-~ chain genes are being rearranged. Earlier stages of 
development, while difficult to analyze by Northern blot- 
ting, are likely to express bcl-2 as well, since they are rela- 
tively long-lived in culture (Petrie, H., unpublished observa- 
tions). However, upon generation of an in-frame VDJ 
rearrangement at the TCK-/~ locus (11), and concurrent with 
the onset of TCK-o~ gene rearrangement (Fig. 3), bcl-2 is 
downregulated to approximately fivefold lower levels. During 
the subsequent DP stages of development, while TCK-ol chains 
continue to rearrange, bcl-2 m R N A  is completely undetect- 
able, but is reexpressed upon positive selection. These findings 

are generally in agreement with the related findings of others 
(14, 15), except that Andelejic et al. (15) did not find any 
bcl-2 gene expression in CD25-441~ cells by PCK using 
RNA as template. The reasons for these differences are not 
clear, but may be related to differences in cell purification 
techniques. 

Discussion 

The  historical view of  T cell development  suggests that,  
either th rough  failure to successfully rearrange ant igen  
receptors, or though  inappropriate  receptor specificity, the 
vast major i ty  (>97%)  of  T cells generated by the thymus  
die w i t h o u t  m a t u r i n g  fully (2). Such a concept is unattrac-  
tive from an evolut ionary standpoint ,  where  effcient  systems 
confer a survival advantage and thus are preferentially 
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Figure 4. Secondary TCR-a 
gene rearrangements in T cells al- 
ready possessing an in-frame rear- 
rangement. Using the quantitative 
multiprobe Southern blotting pro- 
cedure described in Figs. 1 and 3, 
and bcl-2-transgenic mice, the abil- 
ity of TCR- and RAG-expressing 
(3) immature cells to make subse- 
quent rearrangements at the TCR-c~ 
locus was examined. A substantial 
shift toward the 3' end of the Jc~ 
cluster was noted, compared with 
the same cells ex vivo, demonstrat- 
ing that more distal V-J gene rear- 
rangements were occurring. Bars 
represent mean -+ SE for two in- 
dividual Southern blots. 
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Figure 5. Quantitative assessment of TCK-B gene rearrangement during 
T cell development. A representative Southern blot indicating the loca- 
tions of the EcoRI-digested genomic DNA fragments analyzed is shown. 
The pooled values for percentage of germline genes remaining in two ex- 
periments are shown above the respective bands of hybridization. DNA 
samples are from C57BL/6 mice as follows: (lane I ) LN B cells (genomic 
control); (lane 2) CD25-44+TN; (lane 3) CD25+44+TN; (lane 4) 
CD25 + 441~ (lane 5) CD25- 441~ a complete and in-frame V-D-J 
recombination is required before transition to the latter stage (11). These 
results show that D-J recombination is both initiated and completed at 
the CD25 +441~ stage. 



Figure 6. The relationship between TCR 
gene rearrangement and the onset of pro- 
grammed cell death. A Northern blot for bcg2 
expression in RNA from progressively more 
mature T cells (L -'* R) is shown. RNA 
samples are from C57BL/6 mice, purified as 
indicated. The arrow indicates the location of 
the primary (7.9-kb) form of bcb2 mKNA (9). 
k/-2 expression is rapidly downregulated at 
the transition from out-of-frame to in-frame 
TCK-~ gene rearrangements; expression re- 

mains depressed thoughout the time of TCK-c~ gene rearrangement, but 
is upregulated after positive selection. Similar results were obtained in at 
least three experiments for each sample indicated. 

propagated. However, random gene recombination and the 
selection of antigen receptor specificities also confer biolog- 
ical advantages, as discussed above. Based on current knowl- 
edge, it is now possible to reconcile these apparently con- 
tradictory concepts based on the following model. Early T 
cell precursors migrate to the thymus, where they divide to 
generate a small pool of cells ( '~2% of all thymocytes; 2) 
that undergo TCK-/3 gene rearrangements (Fig. 5). Since the 
rules for allelic exclusion at the TCK-B locus are fairly strict 
and conventional, ",~56% of these cells can be expected to 
make in-frame rearrangements at the B locus (for review see 
reference 4). Successful cells then undergo a series of divi- 
sions that generate the remainder of all thymocytes (2); thus, 
only 1% of all thymocytes are wasted because of failure to 
successfully rearrange TCR-/3 chain genes. Immediately pur- 
suant to the generation of an in-frame TCR-B chain gene, 
and concurrent with most cell division, the TCR-a  chain 
gene begins to rearrange (Fig. 3). Rearrangement at this locus 
is unconventional in several respects. First, both alleles rear- 
range simultaneously to relatively coincident loci (4, 5); al- 
lelic exclusion, therefore, operates at neither the recombina- 
tion nor the gene expression levels at this locus (3, 16-18). 
Second, through multiple sequential rearrangements, out-of- 
frame configurations on one or both alleles can be replaced 
with new ones (Fig. 4), resulting in a substantial increase 
in the frequency of in-frame rearrangements. Since all cells 
rearranging TCK-ot chain genes already possess in-frame 
TCR-~ chain genes (reference 11; Fig. 3), this mechanism 

would account for the overabundant frequency of TCK- 
acquisition described previously (3). Finally, an increased fre- 
quency of in-frame TCK-c~ gene rearrangements (and thus 
TCR acquisition) is not the only advantage of multiple rear- 
rangements at this locus. Immature cells that already express 
TCR (and thus have in-frame rearrangements at both o~ and 

loci) continue to rearrange TCK-o~ chain genes until posi- 
tive selection (or programmed cell death) occurs (reference 
3; Fig. 4). The newly formed TCR-o~ chains can then pair 
with the preexisting TCR-~ chain to generate a heterodimer 
of entirely new specificity; this serves to increase the frequency 
of positive (and, ostensibly, negative) selection as well. Thus, 
the overall e~ciency of T cell production is maximized by 
a combination of selective expansion of cells with in-frame 
TCR-/3 chain genes, together with multiple rearrangements 
at the TCR-cr locus. 

Based on the phenotypic characteristics of these cells in 
culture, we have previously predicted that the transition from 
CD25 +TN to CD25-TD cells represents an important con- 
trol point in T cell development (7). It is now dear that a 
variety of critical developmental events intersect at this point. 
First, this transition marks the generation of a productive 
TCR-B chain gene (11). Second, low-level surface expression 
of CD4, CD8, and CD3 (hence the TD designation) as weU 
as TCR-B (probably in association with gp33/pTc~; 19) occurs 
at this point (20, 21). Subsequently, these TD cells sponta- 
neously acquire high levels of CD4 and CD8 and typical im- 
mature levels of CD3/TCR-c~/~ (3). Third, this transition 
marks the onset of an enormous burst ofceU division, which 
accounts for the majority ('~98%) of cdls in the thymus (2). 
Finally, initiation of TCR-ol gene rearrangement (Fig. 3) and 
the down-regulation of bct-2 gene expression (Fig. 6) both 
occur at this transition; in fact, an inverse correlation between 
TCR-o~ gene rearrangement and bcl-2 gene expression can 
be seen throughout T cell development. This suggests that 
successful TCR-/3 gene rearrangement may be the factor that 
initiates a "biological clock." Subsequently, rearrangement 
of TCR-ot chain genes and downregulation of kl-2 expres- 
sion work antagonistically, the former to maximize the 
effidency of selection and the latter to limit the time frame 
available to do so. Together, these functions would serve to 
maintain cell turnover and homeostasis in the thymus while 
maximizing thymic output. 
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