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Abstract

Glioblastoma Multiforme (GBM) is a highly malignant primary brain cancer with a dreadful 

overall survival and for which treatment options are limited. Recent breakthroughs in novel 

immune-related treatment strategies for cancer have spurred interests in usurping the power of the 

patient's immune system to recognize and eliminate GBM. Here, we discuss the unique properties 

of GBM's tumor microenvironment, the effects of GBM standard on care therapy on tumor-

associated immune cells and review several approaches aimed at therapeutically targeting the 

immune system for GBM treatment. We believe that a comprehensive understanding of the 

intricate micro-environmental landscape of GBM will abound into the development of novel 

immunotherapy strategies for GBM patients.
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Introduction

Primary brain cancer consists of tumors that originate from within of the central nervous 

system (CNS) and comprises a myriad of different tumor types of benign to malignant status 
104. Unlike metastatic dissemination of cancers to the CNS, which are a far more common 

occurrence, primary brain cancer patients typically remain asymptomatic until overt clinical 

manifestation of tumor presence appears. These include headaches, seizures, nausea/emesis, 
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syncope, neurocognitive dysfunction, personality changes, sensory loss, gait imbalance, 

urinary incontinence, hemiplegia, aphasia, hemispatial neglect and visual field dysfunction. 

Of the ∼50,000 newly diagnosed primary brain tumors each year in the U.S., approximately 

50% are histopathologically classified as gliomas of which the most aggressive type is 

Glioblastoma multiforme (GBM). Glioblastomas are clinically classified as either primary 

GBMs (or de novo), i.e. without any prior symptomatic manifestation of the disease or 

secondary GBMs, which are the result of lower grade gliomas that have degenerated in 

malignancy towards a higher grade GBM.

The efforts of The Cancer Genome Atlas (TCGA) have provided a detailed view of the 

genomic landscapes of lower grade gliomas and GBM's 20, 26, 41, 113, 172. TCGA's extensive 

molecular characterization of gliomas has unveiled common genetic mutations and signaling 

abnormalities that are now recognized as drivers of uncontrollable growth, invasiveness, 

angiogenesis and resistance to apoptosis 20, 26, 41, 113, 172.

GBMs are now classified into 3 distinct subtypes (Proneural, Classical, and Mesenchymal) 

based on gene expression profile and preponderance of driver gene mutations 20, 133, 172, 177. 

GBMs of the Neural subtype are now recognized as tumors with excessive adjacent neural 

tissue and this subtype is currently regarded as artifactual 177. The clinical relevance to this 

classification, in terms of response to treatment and overall survival has yet to be 

demonstrated. GBM tumors of the Classical subtype are characterized by aberrant 

expression of wild type or mutated epidermal growth factor receptor (EGFR) in 100% of the 

cases, and are associated with homozygous deletion or mutation in the INK4a/ARF 

(CDKN2a) locus (in >90% of cases) and loss of PTEN function (in ∼37% of cases) 20, 172. 

Genetically engineered mouse (GEM) models based on these events alone have proven 

sufficient to generate GBM tumors in mice 1, 84, 199. The Proneural subclass of GBM is 

subdivided into two groups, those characterized by 1) over expression of the receptor 

tyrosine kinase PDGFRα and loss of the p53 tumor suppressor gene and those with 2) 

recurrent mutations within the genes coding for isocitrate dehydrogenase (IDH1 and IDH2) 
26, 41. The latter GBMs are associated with a global hypermethylated genome (known as G-

CIMP or glioma-CpG island methylator phenotype) and IDH mutant patients tend to have 

significantly prolonged survivals when compared to non-G-CIMP IDH wild type Proneural 

GBMs 20. IDH mutant GBMs are mostly secondary GBMs 26. GEM models using genetic 

drivers corresponding to these events have recently been described 14, 126. Overexpression of 

PDGF-A was shown to be sufficient to trigger gliomagenesis 126 but mutant IDH1 was not 
14, reflecting our limited understanding of how IDH mutation can lead to glioma formation. 

Finally, the Mesenchymal subtype GBMs tend to be characterized by loss of Nf1 tumor 

suppressor gene function and several mouse models of Nf1 loss have demonstrated the 

driving nature of this lesion in GBM 3, 64, 129, 201, 202. These models thus provide powerful 

platforms for advancements in genotype-specific treatments.

Despite our profound appreciation of the molecular drivers of GBM, targeted therapies 

against drivers of GBM have remained excessively inefficient (reviewed in 124, 137). This is 

best exemplified by the use of EGFR kinase inhibitors in clinical settings. These clinical 

disappointments strongly support a precept by which oncogenic drivers are required for 

tumor initiation and maintenance of tumor growth but either do not confer oncogenic 
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addiction properties to GBMs 67 or there are significant pharmacokinetics barriers to CNS 

delivery 173 in addition to the blood brain barrier. Thus far, there are no treatment modalities 

based on or specific to a given subtype or mutation status, and virtually all patients are given 

a standard of care treatment that consists of debulking surgery (when anatomically possible) 

followed by concomitant fractionated radiation (XRT) and temozolomide (TMZ) 

chemotherapy followed by adjuvant TMZ. With few exceptions, virtually all patients 

undergo surgical excision procedures. As such, post-surgical patients are administered 

steroids (dexamethasone) for neurological symptomatic relief 125. In addition, 20% to 40% 

of GBM patients are diagnosed after the sudden onset of seizures 59, 170, making the use of 

anticonvulsants (levetiracetam being a preferred agent due to its low toxicity profile) 

necessary and almost uniform for these patients. Despite this aggressive regimen, the median 

survival of GBM patients is ∼15 months and less than 3% of patients survive longer than 5 

years post diagnosis 20. This devastating prognosis is the product of neoplastic cells 

colluding with an intricate and highly heterogeneous tumor microenvironment, making 

neoplastic cell-centric therapeutic approaches unattainable.

It is clear that seeking alternative treatment approaches is of high priority for glioma. As 

new treatment paradigms are contemplated, significant considerations should be given to the 

effects that dexamethasone, levetiracetam and XRT/TMZ may have on the efficacy of the 

various treatments under development. Moreover, this cautionary statement also reinforces 

the need to study both tumor cells and the various components of the microenvironment in 

the context of standard of care.

Composition of the Glioma Tumor Microenvironment

Surgically resected GBM tumor tissue consists of neoplastic cells and also contains non-

transformed stromal cells. Estimates are that upwards of 30-40% of the cellular tumor bulk 

is composed of non-neoplastic stromal cells. There are many non-neoplastic cell types that 

contribute to the tumor stroma, including astrocytes, oligodendrocytes, endothelial cells, 

pericytes and the multiple type of cells of the innate and adaptive immune system, all of 

which are present within a heavily modified extracellular matrix (ECM) (Figure 1). During 

normalcy, these cells uniquely fulfill specific roles for proper brain functions. However, in 

cancer, the overarching principle is that transformed neoplastic cells coerce their 

surrounding cellular environment into enablers of cancer progression by acting on the 

various cellular components to alter their physiology towards pro-tumorigenic features. 

Glioma cells can produce and secrete a variety of cytokines and growth factors capable of 

promoting the infiltration of various cells including astrocytes, pericytes, and endothelial 

cells. In addition, expanding tumors also trap different cell types and exert paracrine and 

physical influences on them. In this manner, bi-directional intercellular communications are 

established between neoplastic cells and the various components of the tumor 

microenvironment.

Astrocytes

Astrocytes are the most abundant non-neuronal cells in the brain contributing upwards to 

∼50% of all cells in the cortex. They are generally viewed as essential for proper healthy 
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brain function and physiology given their role in formation and maintenance of the blood 

brain barrier, neurotransmission (synaptogenesis and support of synaptic transmission), 

nutritional and metabolic support and regulation and maintenance of homeostasis 111, 117. 

Astrocytes perform these multifaceted functions through a complex orchestration of 

localized proliferation and functional maturation.

The effects that normal non-neoplastic astrocytes may have on glioma physiology are likely 

to be significant but have received relatively little attention. Astrocytes can trigger a 

physiological process called reactive gliosis in response to CNS injury such as stroke, 

cancer, neurodegenerative diseases and BBB damage to support neuronal viability and repair 

of brain tissue. This process involves the upregulation and phosphorylation of the 

intermediate filament protein glial fibrillary acidic protein (GFAP), and secretion of 

extracellular matrix proteins, inflammatory cytokines as well as several growth factors 

(reviewed in 135). In CNS injury models reactive astrocytes have been show to be harmful by 

inhibiting axonal regeneration after injury and by producing pro-inflammatory cytokines that 

exacerbate spinal cord injuries 194. On the other hand, reactive astrocytes are critical for 

recovery after CNS trauma, ischemia and in models of autoimmune encephalomyelitis 194. 

A recent genomic analysis of reactive astrogliosis showed that 50% of reactive-mediated 

changes in gene expression profiles were dependent on the nature of the injury or disease 
194, revealing an immense plasticity in the reactive astrocyte's response towards injury and 

suggesting that in GBM, reactive astrogliosis is as unique as the patient's tumor itself.

In response to GBM standard of care treatment, astrocytes have been shown to be able to 

protect neoplastic cells from temozolomide treatment by forming heterotypic connexin43-

positive gap junction with cancer cells to sequester cytoplasmic calcium and prevent 

apoptosis 32, a tactic that is similar to astrocytes' known neuroprotection mechanism 

(reviewed in 162). A question remains whether reactive gliosis unwittingly provides a 

cytokine-rich niche that stimulate neoplastic cell outgrowth and confers resistance to glioma 

therapy. Similarly, the influence that reactive astrocytes may have on the glioma immune 

fauna has yet to be determined.

Neurons and Oligodendrocytes

Neurons are historically viewed as ultrasensitive entities that rapidly undergo cell death upon 

mild injury. In the context of malignant glioma, there is histopathological evidence of a 

much reduced density of healthy neurons within tumor mass. This is supported by 

tractography imaging techniques demonstrating massive loss of white matter neuronal tracks 

originating and projecting from tumors 25. This suggests the presence of injured or 

distressed neurons closely associated with neoplastic cells. In fact, a recent report 

demonstrated that post-synaptic neurons can supply mitogenic signals to neoplastic cells 

through the upregulation of neuroligin-3, inducing a PI3K signaling-mediated proliferative 

activity in glioma cells 171. The effect of neuroligin-3 or the identity of any other growth 

factor or cytokine released by distressed neurons on the immune component of GBMs has 

not been studied.

Oligodendrocytes are support cells that are mainly responsible for the myelination of 

neuronal axons. They are produced from oligodendrocyte precursor cells (OPCs) in response 
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to a variety of stimuli. Given the histopathological observation that neurons are absent 

within GBM tumors, less attention is paid to whether normal oligodendrocytes and OPCs 

are excluded or remain within tumor stroma. Moreover, markers of oligodendrocytes and 

OPCs are often shared with neoplastic GBM cells, rendering unambiguous identification 

difficult. As such, little is known regarding the influence (if any) of oligodendrocytes or 

OPCs on the immune component of GBM.

Endothelial cells, Pericytes and Glioma Stem Cells

The brain vasculature is composed of endothelial cells (ECs) and pericytes, the latter being 

contractile cells that encircle ECs and are responsible to regulate vascular tone and blood 

flow. In addition, neurons and astrocytes make contacts with endothelia, pericytes and other 

components of the microvasculature 10, 55, 160. Studies in mice show that pericytes are 

necessary for vascular morphogenesis, endothelial quiescence in CNS and for the proper 

maintenance of the blood brain barrier (BBB) 9, 38, 69, 70, 99, 100. Brain ECs are different 

from other ECs in that they physically interact with astrocytes making tight junctions, which 

are the physical basis of the BBB 79, 122. The neurovascular unit therefore represents a 

microcosm of various cell types, growth factors and molecules that orchestrate a continuous 

dynamism of transport of oxygen and nutrients, removal of cellular waste and regulation of 

blood flow. Although highly physiologically active, ECs of the normal vasculature are 

mitogenically quiescent (only 0.01% of ECs dividing- 27), a result in part by a balance 

between pro- and anti-angiogenic factors (e.g. VEGF and thrombospondin, respectively). 

Thus, angiogenesis is tightly regulated by growth factors.

In contrast to normal blood vessels, the GBM vasculature is highly proliferative, which 

results in abnormal blood vessel structures, 27, 79. These tumor blood vessels are tortuous, 

often composed of blunted ends leading to significant hypoxic regions. In addition, GBM 

tumor blood vessels are unstable structures, which often causes hemorrhaging 79. Less 

robust increase in blood vessel permeability are associated with increased edema, which is 

routinely observed in GBM 79. Activated GBM ECs tend to express specific integrins that 

have been shown to enhance the capacity of immune cells to bind to the tumor vasculature 

and infiltrate tumor tissue 27.

GBMs' neoplastic cellularity is highly heterogeneous and is composed of neoplastic cells 

with high to low differentiation potential. GBM cells that retain a high differentiation 

potential are commonly referred to as Glioblastoma Stem Cells (GSCs) or Tumor Initiating 

Cells. These cells express markers of neuronal stem cells and are categorized as stem cells 

through a series of artificial ex vivo assays. They are however capable of tumor formation 

when orthotopically xenografted or allografted in serially diluted inocula when compared to 

“non-GSCs”. In vitro assays also demonstrate that these GSCs are slightly more resistance 

to radiation, DNA damage and other therapeutic insults than non-GSCs are sensitive to. An 

amalgamation of these artificial attributes led to the concept that resistance of GBMs to 

many of the therapeutic options in current usage or under development is the result of the 

presence and/or activities of GSCs that are lurking within GBMs and are responsible for 

“repopulation” of GBMs during and post treatment.
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The existence of a small population of neoplastic cells within GBMs that are endowed with 

unique capacities is undeniable. However, that this population is the source of resistance and 

repopulation at recurrence has yet to be demonstrated in an unequivocal manner in an in 

vivo system. Until then, the concept of GBM GSCs role in resistance remains circumstantial. 

However, it is nevertheless interesting that the GBM perivascular space has been shown to 

represent a niche where GSCs reside (reviewed in 81). An interplay of cell surface receptors 

and membrane-bound and secreted ligands along with other factors secreted by ECs (e.g. 

nitric oxide) contribute to this area being optimal for GSCs residence. One of the major 

pathways involved is Notch 200. GSCs express Notch 1 and Notch 2 receptors and ECs 

express the Notch ligands JAG1 and DLL4 200 and in vitro organotypic explant cultures 

confirmed the importance of Notch signaling in the interaction between GSCs and ECs 74. 

Other growth factors and signaling pathways have been shown to create and maintain this 

GSC nurturing micro-environment (reviewed in 30, 95).

Because of their unique characteristics, GSCs have been investigated for how they modulate 

the immune response to GBMs. Evidence for GSCs' role in immuno-modulatory reaction to 

GBM came from ex vivo studies demonstrating that GSCs but not their paired serum-grown 

counterparts cell lines, inhibited T cell proliferation and activation, induced T regulatory 

cells (Tregs) and triggered T cell apoptosis. These effects were mediated by the activation 

status of STAT3 in GSCs 39, 179 and by hypoxia 180. Similarly, GSCs were observed to 

influence innate immunity by inducing immunosuppressive characteristics of TAMs, a 

capacity that depended on activated STAT3 188. Although shown to be immunosuppressive, 

GSCs are still recognized and destroyed by NK and CD8+ cytotoxic T cells, perhaps due to 

their ability to process and present neo-antigens 5, 22, 28. In patient derived xenograft, 

periostin has been shown to be secreted by GSCs, which promote the recruitment of tumor-

promoting M2-like polarized macrophage progenitors from the peripheral circulation 198. 

Abrogation of periostin expression led to increased survival, mediated by a decreased in 

TAM density. Together, these studies demonstrate that GSCs, when compared to non-GSCs 

GBM cells, have a very different relationship with the immune system that is geared towards 

immunosuppression. Perhaps GSCs' true role in GBM biology is to abate immune 

recognition thus enhancing tumor growth.

Extracellular Matrix

The healthy brain ECM composition differs considerably from that of non-CNS tissues. The 

primary ECM components of the normal brain parenchyma primarily consist of a family of 

proteoglycans (known as lecticans [versican, aggrecan, neurocan and brevican]) and two 

glycosaminoglycans to which they bind, hyaluronic acid (HA) and tenascins (TNC) 149. The 

ECM of glioma tumors differs quite considerably from that of normal brain due to the effect 

of ECM remodeling factors expressed and secreted by neoplastic cells and their complement 

of reprogrammed stromal cells. In fact GBMs highly invasive abilities reside in their 

heighten capacity to remodel the ECM and expression of cell-ECM adhesion molecules. 

How far ahead of the invasive front is the ECM remodeled is unknown and comprehensive 

analyses of ECM components (tumoral and peritumoral) and across GBM subtypes still 

remain limited. In other cancers, ECM regulated mechanisms have been shown to contribute 

to T cell exclusion (reviewed in 83). This represents a major challenge to immunotherapy-
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based treatments and similar principles are likely to be present in glioma. For example, high 

levels of TNC secreted by glioma have been shown to prevent T cell migration in vitro 75. 

However the significance of this observation remains to be determined in vivo.

Immune Landscape of Glioma

Several components of the immune system are present within malignant gliomas. These are 

microglia, peripheral macrophages, myeloid-derived suppressor cells (MDSC), Natural 

Killer (NK) cells, leukocytes, CD4+ and CD8+ T cells, helper T cells and regulatory T cells 
57. These intratumoral immune cells are exposed to various cytokines and chemokines that 

are produced within GBMs and that are responsible to reprogram these infiltrating immune 

cells to acquire unique functional phenotypes and coax the immune system to perform 

inflammatory or anti-inflammatory functions with drastic consequences on glioma 

progression, invasion and resistance to therapeutic intervention.

Tumor-Associated Microglia/Macrophages (TAMs)

By far, the majority (up to ∼30% of the tumor mass) of immune cells within gliomas are 

macrophages that arose from distinct ontogeneticity 62. Brain tissue-resident microglia, bone 

marrow-derived macrophages (BMDMs) and extra-parenchymal macrophages are all 

observed within the TME 19, 65.

Microglia are yolk sac-derived myeloid cells 58, 61 that are found within the CNS and 

represent the major component of the innate immune system for the CNS. Microglia are not 

replenished after birth and maintenance in healthy adults is hypothesized to be achieved 

through localized proliferation and extended cellular longevity 2, 43, 61. Extra-parenchymal 

macrophages represent another post-natally stable population of macrophages 60, however, 

they are restricted to within the perivascular spaces, meninges and are associated with the 

choroid plexus. Together with microglia, they function to protect the CNS tissue integrity 

and functionality through a variety of local immunological responses (recently reviewed in 
85). Microglia responds to local tissue injury through dramatic changes in physiology called 

polarization, a contextual process that results in pro inflammatory or anti-inflammatory 

outputs 89.

In addition, changes in brain tissue homeostasis and pathological conditions recruits 

circulating monocytes to the brain parenchyma that give rise to BMDMs 159. Unlike 

microglia, they are replenished via monocytes, especially in the context of glioma where the 

integrity of the BBB is compromised and rendered more permeable 181. Peripheral 

macrophages are functionally flexible and can quickly adapt to various environmental cues 

by changing their phenotypes (a.k.a polarization). Macrophages can alter their effector 

mechanisms along a spectrum comprised between a pro-inflammatory ‘M1’ phenotype 

(portrayed by inflammatory, antitumor responses), and a cytoprotective, immunosuppressive 

‘M2’ phenotype (displayed by tissue repair and anti-inflammatory responses) 120. Typical 

markers of M2 polarized macrophages include high levels of IL-10, transforming growth 

factor (TGF)-β and low levels of IL-12. In addition, expression of Arg1, Mrc1, Chi3l3, 

Socs2, CD163, Fizz-1, and Ccl2 mRNAs are associated with M2 activation, whereas Nos2, 

IL12b, and Ciita are preferentially expressed in M1 macrophages 120. Ex vivo M2 
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macrophages can be further induced to display discrete functional states (M2a, b, c) using 

specific cytokine stimulation 119, to varying degrees of cytoprotective properties and 

immunosuppression. In recent years, such simplification of macrophage polarization 

distinction has been waning and rather a definition of discrete states of a spectrum is better 

accomplished using a set of functional features and gene expression profiles 52.

Similar to macrophages, microglia also exhibit remarkable plasticity, capable of polarization 

into M1 pro-inflamatory or M2 cytoprotective and immunosuppressive phenotypes 

depending on different stimulatory inputs. Soon after non-cancerous brain injuries, microglia 

are activated and adopt mostly an M1 phenotype. They release compounds such as nitric 

oxide (NO), reactive oxygen species (ROS) in addition to excitatory amino acids. They also 

produce and secrete the pro-inflammatory cytokines IL-1β, IL-12, TNF-α, and IL-6. On the 

other hand, M2 activated microglia produce and secrete high levels of CCL22, Arginase-1 

(Arg1), CCL17, mannose receptors and scavenger receptors, and produce of anti-

inflammatory cytokines such as: IL-10, IL-4, and TGF-β and low amount of IL-12 and NO 

(reviewed in 87, 176).

Several studies in both humans and mouse model systems have demonstrated that gliomas 

are massively infiltrated with microglia and peripheral macrophages, collectively termed 

Tumor-Associated Microglia/macrophages (TAMs). The CD11b and Iba1 antigens are 

typically used as a common cell surface marker for microglia in both human and mouse 

tissues 76. However, peripheral macrophages bone marrow-derived macrophages (BMDM) 

and myeloid-derived suppressor cells (MDSCs) also express CD11b and Iba1. Thus 

distinguishing between the two cell types once they have infiltrated GBMs is hard to achieve 

experimentally and rely on a combination of markers. The most widely used combination to 

discriminate microglia from peripheral macrophages relies upon CD11b positivity together 

with levels of CD45 expression. CD11b+CD45high cells are considered BMDMs and CD11b

+CD45low cells considered microglia 12, 48, 51, 156, 157. This combination is adequate in 

murine models but does not accurately discriminate microglia from macrophages in human 

GBM samples. Until recently there was no microglia-specific marker identified that did not 

recognize macrophages in human. A recent report demonstrated however that the CD49d 

cell surface marker appears to discriminate between TAM microglia and peripheral 

macrophages in both human and murine GBMs 19.

Using immunohistochemical approaches, a few studies have shown higher abundance of 

TAMs in higher grade gliomas when compared to lower grade tumors, prompting the 

authors to correlate prognosis with TAM infiltration 54, 115, 118, 184. In fact, a recent study 

has identified transcriptomic signatures of immune and myeloid/macrophage gene 

expression that are associated with pathology, response to treatment and overall survival 169. 

However, given their ability to polarize, TAM numbers do not necessarily equate function 

and more recent flow cytometry studies with markers capable of deciphering polarization 

status of TAMs have better assessed functionality of GBM TAMs 52, 76, 77. In human GBMs, 

TAMs were found to express significant levels of Toll-like receptors (TLRs) but engagement 

of TLR-4 did not result in TAM-mediated T-cell proliferation. TAMs also do not produce 

any of the pro inflammatory cytokines IL-1β, IL-6, and TNF-α. TAMs express major 

histocompatibility complex class II (MHC II) however, they do not express the 
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costimulatory surface molecules CD86, CD80, and CD40, which are critical for T-cell 

activation.

The outcomes of TAM depletion or targeting strategies in gliomas appear to be model and 

context dependent, which sometime leads to controversial outcomes. Nevertheless, the 

majority of studies support the concept that TAMs promote glioma growth by secreting 

growth and angiogenic factors as well as immune-suppressive cytokines (recently reviewed 

in 36). Moreover, depletion strategies have also demonstrated a pro-tumorigenic role for 

TAMs 53, 121, 196 and recent studies have ascribed a significant role for colony-stimulating 

factor-1 receptor (CSF-1R) in glioma TAM biology. Depending on the mouse model, 

pharmacological inhibition of CSF-1R either depolarizes 140, 141 or depletes TAMs 34, both 

of which have the overall effect of reducing glioma growth and invasion.

It appears that while TAMs retain a few intact innate immune functions such as 

phagocytosis, cytotoxicity and TLR expression, their capacity to be stimulated via TLRs, 

secrete cytokines, upregulate costimulatory molecules, and in turn activate antitumor 

effector T cells is not sufficient to initiate anti tumor immune responses 76, 77. A more recent 

and detailed characterization of CD11b positive TAMs from GBM patients reveal that 

microglia and MDSCs represented higher percentages of TAMs than peripheral 

macrophages 52. More importantly, the report shed light on long held beliefs that TAMs are 

mostly M2 (anti-inflammatory) polarized, demonstrating rather that TAMs assume 

phenotypes along a continuum of M1-M2 polarization with closer alignment to an 

undifferentiated or unpolarized M0 myeloid cell phenotype 52. This observation is somewhat 

corroborated in different murine models of GBM where mouse TAMs do not fit into 

canonical model of M1- and M2-polarization 140, 165, however whether murine TAMs 

display M0 non-polarized features remains to be established. Overall, the observations made 

so far indicate that GBM TAMs display an attenuated pro-inflammatory response, thus 

acting as pro tumorigenic in de facto. This concept opens the possibility of channeling 

TAMs towards a pro inflammatory phenotype through pharmacological interventions that 

target M2 myeloid cells. In fact, ground-breaking work demonstrated the feasibility of such 

approach 140, 192, which has recently resulted in novel clinical treatment strategies for 

gliomas 24 (NCT02829723, phase I/II and NCT01790503, phase Ib/2).

Myeloid-Derived Suppressor Cells (MDSCs) in Gliomas

In both human and mice, MDSCs represent a heterogeneous population of myeloid 

progenitors and precursors found at various stages of differentiation towards granulocytes, 

macrophages or dendritic cells. Experimentally, they are defined based on specific cell 

surface markers that are specific for each species (reviewed in 109). In general, the 

immunosuppressive functions of MDSCs are multipronged. They have been shown to act on 

NK cells and to suppress their cytotoxic activities. MDSCs can also suppress the adaptive 

immune response of CD4+ and CD8+ T cells in an antigen dependent or non-dependent 

manner. MDSCs have also been shown to induce apoptosis is subsets of T-cells. MDSCs are 

also capable of producing and secreting immunosuppressive cytokines and inducing Treg 

progression 109.
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The functional role of MDSCs in gliomas has not often been addressed and their 

characterization remains mainly descriptive 56, 143. There is a growing need to better define 

this type of cell in glioma since there's increasing evidence that the mechanism of action of 

MDSCs is tumor type dependent. Efforts should be invested in determining abundance of the 

different subsets of MDSCs in different cancer types, including gliomas and even on a 

patient individual basis. Furthermore, systematic studies on functional impact MDSCs have 

on adaptive immune cells are required. Finally, transcriptomic characterizations of MDSCs 

need to be carried out separately from microglia and macrophages to ascertain their 

suppressive function and mechanisms of differentiation. These will reveal to be useful to 

determine if targeting MDSCs in glioma patients has significant clinical value.

Tumor Infiltrating Leukocytes (TILs) in Gliomas

T Helper (Th), T Cytotoxic (Tc) and T Regulatory (Treg) Cells—The 

microenvironment of gliomas is infiltrated with CD4+ helper T cells, CD8+ cytotoxic T 

cells, and CD4+CD25+FoxP3+ regulatory T cells 4, 46, 103, 175. A few studies have 

demonstrated a correlation between percentages of CD4+ and CD8+ tumor infiltrating T 

cells and tumor grade and prognosis, importantly with regards to the extent of presence of 

CD8+ (and not CD4+) associating with prolonged survival 4, 68. Although TILs are present 

within the tumor microenvironment, they are lacking an anti tumor T cell response due to 

the suppressive function of TGFβ and IL-10 cytokines that are secreted by glioma and other 

microenvironment cells. In addition, glioma cells tend to not express the co-stimulatory 

CD80/86 molecules thus lacking in their ability to fully engage T cell receptor and T cell 

function. Glioma cells also have been shown to overexpress PD-L1, which strongly inhibits 

CD4+ and CD8+ T-cell activation through engagement of the inhibitory checkpoint 

molecule PD-1 (reviewed in 132).

Glioma cells also promote the infiltration and accumulation of immunosuppressive cells 

including Tregs and regulatory dendritic cells within the microenvironment. Tregs are potent 

suppressors of the adaptive immune response through their capacity to inhibit the 

proliferation of any cytokine-secreting effector T cells. In normalcy, they are essential to 

confine and resolve the activation of the immune system. In glioma, accumulation of 

intratumoral Tregs correlates with poor prognosis 92 and both flow cytometry and 

immunohistochemical studies reported upward to 14% of CD4+ T cell population consisting 

of Tregs 78, 174. These results are in sharp contrast to reports showing a lack of association 

between Tregs and prognosis 78, 103. Other reports also revealed lower contribution (<1%) of 

Tregs to the total T cell population 92, 103, perhaps reflecting variances in outcome when 

different methods and markers are used for cell type detection.

Natural Killer (NK) Cells—NK cells are highly effective cytotoxic lymphocytes of the 

innate immune system. The activation of NK cells is tightly regulated by a sophisticated 

network of activating and inhibitory cell surface receptors. This network allows NK cells to 

distinguish normal from abnormal within seconds and target cell lysis is carried out through 

perforin-rich and granzyme-rich granules, when activating signals exceed inhibitory signals 

(reviewed in 98). Normal cells express MHC class I molecules, which interact with NK cell 

inhibitory receptor KIR and inhibits self recognition and effective NK cell-mediated killing. 
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In glioma, neoplastic cells express MHC class I and are therefore resistant to recognition and 

destruction from NK cells 183. In addition, GBM patients display reduced percentages of NK 

cells among peripheral blood mononuclear cell 44 and NK cells make up a minor portion of 

GBM infiltrated CD45+ cell population 68, 136. Those infiltrating NK cells were found to be 

non-functional, prompting the authors to suggest potential role of TAMs, MDSCs and Tregs 

in negatively regulating NK cells 136. Recently, a feasibility study of CAR NK cells against 

ErbB2 for targeted therapy of GBM has been performed 197, bringing closer the clinical 

applications of NK cell-based treatments for gliomas.

The Effects of Standard of Care Treatment on the Immune Landscape of 

GBM

Following surgical removal of the tumor, GBM patients are exposed to an aggressive 

treatment regimen that consists of concomitant fractionated radiotherapy with temozolomide 

(TMZ, a DNA alkylating agent) chemotherapy, followed by adjuvant TMZ 163. Craniotomy 

and tumor debulking neurosurgical procedures necessitate that patients be administered 

dexamethasone to control post-surgical edema and anticonvulsants to prevent seizures. 

Therefore, the majority of patients undergo chemo and radiotherapy treatments in the 

presence of those additional medications. There are few studies that address the effects of 

dexamethasone on glioma biology and its standard of care treatment modalities and there are 

virtually no studies that include anticonvulsants (e.g. levetiracetam) in patient outcomes.

A significant number of chemotherapeutic agents have immunosuppressive effects when 

administered systemically and thus represent a major challenge for effective anti-cancer 

immunotherapy-based strategies. Most of our knowledge on the effect of radiation and TMZ 

treatment on the immune landscape of glioma microenvironment come from studies in the 

GL261 glioma mouse model. Curtin et al., have demonstrated that radiation or TMZ-treated 

glioma cells undergoing apoptosis release the high mobility group box 1 (HMGB1) protein, 

a Toll-like receptor 2 (TLR2) agonist that acts on Dendritic Cells (DCs) to cause their 

activation, which stimulate tumor antigen-specific T cell clonal expansion and anti-GBM 

immune response 35. In another study, a single radiation dose increased the ratio of CD8+ 

effector T cells to Tregs, an indirect measure of anti tumor immune response. The treatment 

however had no statistically significant effect on survival 195.

Mathios and colleagues have reported the immunosuppressive effects that systemic BCNU 

(Carmustine) alkylating agent chemotherapy treatment has on survival. Although BCNU 

treatment led to systemic and intratumoral lymphodepletion, survival was prolonged when 

compared to untreated controls 110, perhaps reflecting an unsuspected positive effect of 

BCNU on the innate immune system in this model or a minimal involvement of the adaptive 

immune system. BCNU is rarely used in clinical settings and therefore the significance of 

these observations to GBM patients remains debatable. BCNU is, however, used locally in 

the form of biocompatible wafers that are surgically positioned lining the surgical cavity 

during surgical removal of the tumor. Locally delivered BCNU in the GL261 model has 

been shown to have much less immuno-toxicity (modest to no lymphodepletion) 110. 

However, much like in patients 128, the effects on overall survival were very modest 110. The 
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effect of systemic TMZ treatment on the intratumoral immune fauna has yet to be assessed. 

Kim et al., have studied the effect of low dose TMZ treatment on CD4+ and CD8+ T cells 

from the spleen of GL261-bearing animals and showed that TMZ led to an increase in the 

secretion of INFγ from both cell types and also led to a decrease in the frequency of 

peripheral Tregs 91. Although these studies demonstrate that radio and chemotherapy do 

affect the immune system, a thorough and exhaustive examination of the effects of IR, TMZ 

and combination of IR/TMZ -the standard of care for human GBM- on peripheral and 

intratumoral immune fauna has yet to be conducted.

A series of recent clinical and animal model studies have demonstrated that chemo-

radiotherapy (TMZ/XRT) synergize with tumor vaccination immunotherapy to significantly 

increase survival. In some of these studies, TMZ-induced lymphopenia was observed but did 

not seem to negatively affect outcomes 8, 45, 151, 182. These results are in contrast to those 

reported by Litterman et al, who showed that alkylating chemotherapy promotes deleterious 

effects on vaccination-induced immune reponses 102. It is possible that these discrepancies 

relate to the types of vaccines that target specific tumor-associated neo-antigens that do not 

rely on Treg depletion, in contrast to TMZ 91.

The effects of TMZ on other immune cells of GBM have also been reported. For example, 

DC and macrophages but not their precursor monocytes have been observed to be resistant 

to TMZ. Monocytes were shown to undergo apoptosis following TMZ-treatment due to low 

levels of ATM/ATR pathway activation and inability to repair double-strand breaks (DSBs) 

whereas DC and macrophages were more capable to repair TMZ-induced DSBs 15. Current 

TMZ treatment for patients with GBM consists of sustained regimens. A few groups have 

studied the effects of low-dose metronomic TMZ regimen on Treg depletion in melanoma 
147 and GBM 13 and demonstrated the beneficial advantages of Treg depletion.

GBM patients treated with TMZ/XRT often develop lymphopenia 42, which has been shown 

to negatively affect overall survival in elderly patients 114, presumably due to decrease 

immunity in these patients. In fact, a recent pilot study of GBM patients with lymphopenia 

showed that IL-2Rα blockade depleted Tregs and enhanced immunity, so much so that 

tumor-specific antigen vaccination response was increased 152.

Steroids Use and the Immune System

Glucocorticoids (GCs) are an integral component in the treatment of gliomas 148. GCs do 

not have a direct cytotoxic effect on glioma cells but are used in order to diminish brain 

edema, prevent treatment-related hypersensitivity reactions and suppress adverse effects 

such as nausea, emesis and toxicity induced by chemoradiotherapy and to protect normal 

tissues 150. Studies have demonstrated that GCs compromise survival in GBM 134, 187.

GCs have a well-established potent capacity to kill lymphoid cells of B and T cell origin, 

which has led to their inclusion in all chemotherapy protocols for lymphoid malignancies 
154. In addition to the effects on malignant lymphocytes, it is well established that exposure 

of T cell hybridomas and T cell clones to GCs, particularly dexamethasone (Dex), causes 

programmed cell death 189. Recently, the role of Dex on the expression of checkpoint 

inhibitors has started to be investigated. It has been found that Dex can enhance the 
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expression of cytotoxic T-lymphocyte-associated antigen (CTLA)-4 during T cell activation 
190. Dex can also enhance the expression of PD-1 both in mouse and human activated T cells 

in a dose-dependent manner 191. This effect was mediated via the glucocorticoid receptor 

(GR) and was inhibited by the GR antagonist mifepristone (RU486). In parallel, Dex could 

suppress T cell functions by inhibiting production of cytokines such as IL-2, IFN-γ, TNF-α 
and inducing apoptosis of primary human and mouse T cells. Interestingly, the ability of Dex 

to induce PD-1 expression was distinct among various T cell subsets with the most 

prominent effect in memory T cells. These results are particularly interesting in the context 

of checkpoint immunotherapy, which has been shown to selectively expand memory T cells 
146. These findings suggest that Dex might compromise anti-tumor T cell immunity by 

inducing apoptosis or functional inactivation of tumor-specific T cells.

In addition to T cells, GCs significantly affect the properties and function of myeloid cells. 

Although the impact of steroids on the function of MDSC in the context of cancer has not 

been particularly investigated, studies regarding the effects of GCs in MDSC in 

autoimmunity have provided compelling evidence that the number and function of MDSCs 

is significantly altered. Specifically, GCs can induce a specific monocytic phenotype with 

anti-inflammatory properties in humans and a corresponding subset of monocytes in mice, 

which has been proved to resemble tumor-derived MDSCs 168. High dose Dex treatment in 

patients with immune thrombocytopenia (ITP) was found to increase MDSC numbers and to 

promote MDSC suppressive function. The expression of IL-10 and TGF-β was also 

significantly upregulated in Dex-treated MDSCs, which inhibited the expansion of 

autologous CD4+ T cells and significantly attenuated CTL-mediated function 73. Moreover, 

a 4-day regimen of high dose dexamethasone in patients with ITP also expanded Treg and 

myeloid dendritic cells (mDCs) 101.

Together, inactivation of memory T cells, expansion of Treg and generation of 

immunosuppressive MDSC by Dex, will likely induce an immunosuppressive TME in 

patients with glioma. These findings indicate that Dex might suppress antitumor immune 

responses and facilitate tumor progression by multiple mechanisms. In addition, other than a 

cursory observation of no significant difference in the number of circulating monocytes 

between GBM patients given steroids or not prior to resection 52, there is a complete lack of 

understanding of the effects of Dex on intratumoral immune cells and function. Thus, the 

role of dexamethasone in the treatment of glioma in the era of immunotherapy should be 

fully re-evaluated.

Immunotherapies for Cancer

Anti-cancer immunotherapy is a general term that encompasses various strategies that are 

intended to stimulate the patient's immune system against her/his own cancer and to promote 

immune-mediated anti-tumor responses. Several approaches have been developed over the 

years and they include (but are not limited to) antibody dependent cellular cytotoxicity 

(ADCC), cancer immunization, oncolytic viruses, chimeric antigen receptor T-cell therapy 

(CAR-T), cytokine treatment, dendritic cell therapy, and checkpoint blockade. Most of these 

approaches were originally developed for treatment of cancers other than brain cancer. 

Given the uniqueness of the brain in its accessibility and tissue/cellular composition, a 
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certain degree of caution is warranted when considering application of these therapies and 

perhaps slight modifications in protocols will be necessary to achieve clinical success.

The basic scientific principle of ADCC is the targeting of cancer cells through the use of 

antibodies that recognize a specific antigen on the surface of cancer cells. The antibody's 

Fab portion recognizes the target and cellular cytotoxicity is mediated by the Fc portion, 

which is primarily mediated by NK cells, although neutrophils and macrophages have also 

been shown to play a role. For primary CNS malignancies, antibodies against HER2/neu and 

tumor specific gangliosides are being investigated for the treatment of gliomas 47, 116. There 

is a requirement for knowledge of tumor expression of specific antigens for which optimized 

antibodies are clinically available, which restrict availability for some patients.

Immunization of cancer patients with antigens from their own tumor follows the biological 

principles of standard vaccination. Patients are immunized with specific peptides that are 

derived from his/her tumor and that are conjugated to a carrier protein. The patient develops 

an immune response generating humoral and cellular effects against the peptide epitope on 

the tumor cells. This technique is of great interest for the treatment of cancer often because 

of the uniqueness of tumor antigens, which are specific and thus minimizes side effects. For 

glioma, Rindopepimut (Celldex) is an EGFRvIII peptide vaccine. Early clinical studies of 

rindopepimut demonstrated its safety and immunogenecity in a small cohort of patients. The 

development and optimization of Celldex has been extensively reviewed elsewhere 127. 

Similar to ADCC, immunization using tumor cell specific antigens requires prior knowledge 

of the genetic composition of the tumor and relies heavily on the immunogenic potential of 

the immunogen chosen, a characteristic that is still hard to predict.

The potential therapeutic application of viruses for the treatment of cancer is a mature 

concept. Viruses can hijack host cellular replication machinery upon infection to coax cells 

into amplifying their own genetic code, make progeny viruses and inevitably inducing host 

cell death along with release of/and spread of viral progeny to initiate another cycle. The 

objective is to induce preferential viral infection of tumor cells over normal cells and to 

minimize immunosuppressive responses. There are various types of viruses that have been 

used throughout the year for the treatment of gliomas (recently reviewed in 112) with the 

most popular ones being Herpes Simplex Virus-1, Adenovirus, Poliovirus, Parvovirus, 

Reovirus, Measles Virus, Newcastle Disease Virus and more recently Zika virus. Regardless 

of the approach, successful oncolytic virotherapy must reach a balance between supporting 

viral replication whilst promoting tumor immunity. With the recent emergence of 

immunotherapies in glioma, the research community is quickly gaining a clearer 

understanding of the composition and mechanisms of action of the glioma immune fauna. 

Studies aimed at establishing a better understanding of the immune responses to oncolytic 

viruses will be necessary in order to optimize the anti-glioma effects of oncolytic viruses.

The use of cytokines for the treatment of cancer typically involves systemic administration 

of a cytokine that is capable of stimulating the immune system. IL-2 for example is a critical 

cytokine necessary for antigen specific T-cell proliferation and has been shown to have 

efficacy in melanoma. IL-2 therapy showed only modest anti-tumor benefits in a small 

glioma clinical study 37.
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Dendritic cells (DCs) are myeloid-derived, highly potent antigen-presenting cells (APCs) 

that function to activate naïve cytotoxic CD8+ T cells to recognize and destroy cells with 

specific peptide antigens. Early studies in the brain demonstrated that unlike other tissues, 

DCs are not the predominant type of APCs rather microglia are 66, 71, 106, 167. Nevertheless, 

DC vaccine therapy relies on the isolation of a patient's own DCs that are primed ex vivo 

with tumor-derived antigens, followed with re-implantation back into the host. This priming 

induces an antigen-specific cytotoxic T cell proliferation and when re-introduced into 

patients, boost T cell mediated anti-tumor activities. There are several clinical efforts of 

dendritic cell therapy in gliomas (recently reviewed in 145) with the furthest along (phase III 

trials; NCT00045968) in this respect being DCVax-L, which is an autologous tumor lysate-

pulsed DC vaccine where early clinical trials report significant increases in median survival 

in GBM patients (31.4 months vs 14.6 historical controls) 139.

This concept of modifying immune components ex vivo and reintroduce them back into 

patients is also the scientific premise in CAR-T based therapies. In CAR-T, the patient's own 

T cells are isolated, genetically engineered to express a chimeric antigen receptor that 

recognize a tumor antigen of interest, expanded ex vivo and re-infused back into the patient. 

There are several chimeric antigen receptors aimed at various tumor-associated antigens. 

Promising results in leukemias and lymphomas 63, 93 have spearheaded investigations into 

the use of CAR-T for GBM. Currently, there are six GBM antigens that are the subject of 

targets for CAR-T cell therapy and are now undergoing clinical trials: epidermal growth 

factor receptor vIII (EGFRvIII) (NCT01454596, NCT02664363, NCT02209376), 

interleukin receptor 13Rα2 (IL-13Rα2) (NCT02208362), epidermal growth factor receptor 

2 (HER2) (NCT02442297, NCT01109095) and ephrin type-A receptor 2 (EphA2) 

(NCT02575261). A case report of a GBM patient who demonstrated regression after 

autologous CAR-T therapy against IL-13Rα2 (intracavitary infusions of IL13BBζ-CAR) 

was recently published 23. The clinical response, including dramatic improvements in 

quality of life, was observed for 7.5 months after initiation of therapy. The use of CAR-T 

cells for solid tumor treatment is associated with challenges including antigen validation, 

tumor heterogeneity, trafficking and infiltration, extensive retrieval protocols and genetic 

manipulation of T cells, and approaches to overcome the immunosuppressive 

microenvironment (reviewed in 86, 138). Nevertheless, CAR-T-based therapies for the 

treatment of GBM is actively being pursued.

In healthy individuals, normal adaptive immunological homeostasis is exquisitely regulated 

by a balance of T cell co-stimulatory activating and inhibitory signals. These signals are 

transmitted to T cells by a series of cell surface receptors that are present on T cells called 

immune checkpoint receptors. The cognate ligands for these receptors are also cell surface 

molecules expressed in a variety of antigen presenting cells such as regulatory Treg cells, T 

helper cells, macrophages and dendritic cells (Figure 2). In concert with an MHC mediated 

activation of the T cell receptors (TCRs), these immune checkpoint receptors, when 

activated, elicit either negative or positive activities or influence on TCR activation and T 

cell physiology. These immune checkpoints therefore play a critical and fine tuning role in 

regulating T cell activation and effector function but also control T cell homeostasis. 

Dysregulation of some of these checkpoints has been reported to be involved in autoimmune 
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diseases, chronic infection and cancer reinforcing their impact on effector T cell responses in 

the context of disease.

In cancer, there is an obligate evasion of immunosurveillance, the mechanistic details of 

which are starting to emerge. It is likely that small indolent tumors are kept from growing 

rapidly by a combination of cancer cell-centric effects (e.g. oncogene-induced senescence) 

and an anti-tumor immune system until a time at which cancer cells are either eradicated or 

develop mechanisms to progress beyond this negative pressure. Conceptually, there appears 

to exist a “biological switch” that converts an otherwise controlled tumor into an 

unrestrained one. Molecular events responsible for this progression are likely a combination 

of tumor cell centric and humoral actions. We now know that tumor cells have evolved 

several strategies to overcome the negative influence of the host immune system by 

exploiting several aspects of the various interactions of tumor cells with the immune system.

The adaptive immune system's efforts to eliminate neoplastic cells are mediated through a 

multi-step response cycle. The cycle starts with the production and release of tumor cell-

associated antigens presumably during neoplastic cell death. Various types of antigen 

presenting cells (APCs) internalize these antigens, process them while migrating to lymph 

nodes to present them (through MHC loading) to resident naïve T cells in order to activate 

TCRs and thus prime T cells against cancer-specific antigens (see 31 for a detailed review). 

The primed CD8+ T cells, now endowed with cytotoxic capacities, migrate towards and 

infiltrate tumor sites, specifically recognize cancer cells, and elicit tumor-cell death, which 

in turn causes the release of more tumor-associated antigens, thereby continuing the cycle. 

This cycle between APCs and T cells and between tumor cells and T cells is intricately 

controlled by many ligand–receptor interactions (also known as checkpoint pathways) that 

are necessary to provide positive and negative signals to stimulate or inhibit T-cell activation, 

and to regulate the duration and intensity of the immune response mounting against tumor 

cells.

So far, mechanistic details are mostly known on two crucial steps that are involved in the 

anti tumor activation of the T-cell response (Figure 2). The first important interaction occurs 

during antigen presentation through the MHC to the TCR in the lymph node. APC's 

CD80/86 ligands simultaneously interact with T cell's CD28 co-stimulatory receptor to 

enhance TCR response and with T cell's CTLA4 co-inhibitory receptor to control the TCR 

activity. The balance between these co-stimulatory and co-inhibitory signals can be shifted 

dramatically by dampening the co-inhibitory CTLA4 signal using approaches (e.g. blocking 

antibodies) that prevent the interaction between CD80/86 and CTLA4. This results in a more 

robust MHC-TCR signal and a stronger priming of T cells. The second step in the process of 

anti-tumor T cell responses occurs at the tumor site. Primed T cells that have migrated to the 

tumor interact with a host of cells, including tumor cells, APCs, macrophages, NK cells and 

astrocytes that are present in the tumor microenvironment (TME). The strength of the 

MHC:TCR engagement between these TME cells and T cells determine the robustness of T 

cell cytotoxic effector function and it is dependent on the activation of co-stimulatory and 

co-inhibitory checkpoints. The co-inhibitory PDL1-PD1 complex has emerged as a crucial 

signal in effector T cell function and inhibition of this complex has been clinically proven to 

be a sound approach to boost the cytotoxic power of T cells.
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Although CD28 serves as the prototype co-stimulatory whereas CTLA-4 and PD-1 serve as 

the prototype co-inhibitory receptors that regulate the outcome of T cell immune responses, 

it is now clear that numerous receptor ligand pairs on the surface of T cells and APC serve 

similar functions (Figure 2) (recently reviewed in 131). The evolutional requirement for the 

multiple checkpoint pathways is not entirely understood but it is possible that such pathways 

differentially dominate responses in the context of different microenvironments, in the 

presence of different antigens or at distinct phases of T cell activation at which they are 

differentially expressed. When the TCR is engaged, tyrosine phosphorylation of the TCR-

associated CD3 chains recruits kinases and scaffold proteins leading to the formation of a 

supra-molecular complex that promotes activation of signaling cascades, generation of 

second messengers, and initiation of transcriptional events, which lead to T cell activation 

and differentiation programs 161. These signaling pathways synergistically promote 

glycolysis and anabolic metabolism to support T cell clonal expansion and effector cell 

generation 108, 142, 155. Costimulatory receptors, engaged simultaneously with the TCR, have 

a major impact on signaling events and a decisive role in the differentiation program of T 

cells.

Our understanding about the functional role of co-stimulation has evolved from the two-

signal model proposed by Lafferty and Cunningham to explain the activation of naïve T cells 
21, 94. Although T cell costimulatory pathways were envisioned as stimulators of T cell 

responses by that model, it is now clear that both stimulatory (costimulatory) and inhibitory 

(coinhibitory) second signals exist and mediate their impact not only in naïve but also in 

effector, memory, and Treg cells 7, 29, 33. These receptors are key regulators of T cell 

activation, tolerance, and exhaustion. As a consequence, these receptors are attractive 

therapeutic targets, which provide effective new treatment strategies in cancer, 

autoimmunity, infectious diseases, and allogeneic transplantation 16, 50, 88. These pathways 

fall into two major families: the Ig superfamily, which includes the B7-CD28, TIM, CD226-

TIGIT-CD96 families as well as LAG-3, and the TNF-TNF receptor superfamily 6, 153, 178. 

Coinhibitory receptors provide a balance on the activation and expansion of antigen-specific 

T cells upon encounter with antigen but also regulate T cell tolerance by restraining the 

initial activation of naïve self-reactive T cells and/or responses of harmful self-reactive T 

cells. Coinhibitory pathways also regulate the generation and function of thymic-derived 

Treg and Treg generated at peripheral sites 49, 185. Ligands for various coinhibitory receptors 

are expressed on antigen-presenting cells (APCs) but also in nonhematopoietic cells 
6, 153, 178. The expression of coinhibitory ligands on nonhematopoietic cells has a key role 

for the maintenance of tissue tolerance by suppressing the expansion and function of self-

reactive T cells.

Tumor cells heavily exploit these immune checkpoint pathways as a means to evade immune 

detection. However, they provide a plethora of potential targets for the development of anti-

cancer therapeutic agents aimed at boosting the anti-cancer immune responses 16. Much of 

our knowledge on the function of these molecules in cancer has been derived from pre-

clinical models of and clinical data from melanomas, lung and renal cancers. The exact 

participation of checkpoint pathways in primary brain tumor pathogenesis is largely 

unknown and has just recently started to emerge. For many years, the CNS was viewed as an 

immune privileged organ incapable of surveillance by peripheral immunity because of the 
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ostensible lack of a functional lymphatic system. This view has shifted considerably in the 

recent years. Seminal discoveries expanded our views on the role of the peripheral immune 

system and the brain. We now know that the brain is drained by classical lymphatic conduits 

that reside within the meninges 11, 105. Lymphatics are typically designed to drain interstitial 

fluids out of tissues for degradation and removal into the circulatory system. During 

infection (and in cancer), lymphatic transport is essential for supplying antigens and APCs 

to draining lymph nodes, a very important step in the process of establishing a proper 

adaptive immune response. Additionally, there is evidence of a separate process in the brain 

called “glymphatics” whereby CSF (carrying extracellular proteins, antigens and solutes) 

and interstitial fluid exchange extensively. This results in pushing ISF into the perivenous 

space where it can collect and drain into the cervical lymph nodes (for a review see 80). 

Together, these recent advances underscore the notion that the brain is indeed surveyed by 

the peripheral immune system.

Checkpoint inhibitors in GBM

Within the context of cancer treatment, activation of anti-tumor immunity by relieving the 

negative feedbacks exerted by CTLA-4 with a blocking antibody has proven to be 

successful. Several seminal studies have demonstrated that anti-CTLA-4 blocking antibodies 

can stimulate antitumor immune responses leading to regression of tumors and promoting 

long-lived immunity in mouse models of solid and hematologic cancers 96, 158. These led to 

the clinical development of humanized antibodies aimed at efficient blocking of the 

interaction between CD80/86 and CTLA-4. CTLA-4 blockade has recently been approved in 

the U.S. for a spectrum of malignancies including melanoma and NSCLC. Despite 

promising clinical responses, our understanding of the mechanism(s) of anti-CTLA-4 anti-

tumor immunity remains incomplete. The therapeutic effects of anti-CTLA-4 antibodies 

may not only be due to blocking CTLA-4 interaction with its ligands on T cells. In fact, 

recent work suggests that blocking CTLA-4 may also deplete intratumoral Tregs via an Fc 

receptor-mediated, antibody dependent cellular cytotoxicity 158. Further studies are 

necessary to fully understand the mechanism of action of anti-CTLA-4 therapy.

In a preclinical model of GBM, single agent anti-CTLA-4 blockade resulted in enhanced 

survival in the GL261 syngeneic mouse model. Reardon et al. demonstrated that anti-

CTLA-4 mono-therapy leads to a 25% cure rate and increased median survival 144. Although 

positive, these responses to anti CTLA-4 mono-therapy were considered limited and 

treatment efficacy was drastically enhanced when administered in combination with anti-

PD-1 blocking antibody, or radiation 17, 144. Reardon and colleagues demonstrated that dual 

blockade of PD-1 and CTLA-4 increased cure rates to 75%. CTLA-4 blocking therapy has 

also been used in combination with stimulation of 41-BB and radiation to achieve a 50% 

cure rate 17 Anti-CTLA-4 is currently tested in a phase III clinical trial for patients with 

recurrent GBM as a monotherapy or with anti-PD-1 blockade (Trial NCT02017717).

Another prototypical immune checkpoint is the cognate receptor ligand complex 

Programmed Death-1 (PD-1) receptor and its Programmed Death-Ligand 1 and 2 (PD-L1, 

PD-L2). PD-1 is a transmembrane receptor that exerts a major negative regulation in 

immune response by controlling T cell activation, T cell exhaustion and T cell tolerance. 
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PD-1 expression is tightly regulated e.g. it appears at the surface of T cells shortly (<24 

hours) after T cell activation and decreases with the elimination or clearance of antigen. 

Under conditions (such as chronic infection or cancer) of repetitive T cell stimulation by 

antigen, the levels of PD-1 expression remain high and T cells then experience multiple 

epigenetic modifications in addition to changes in transcription factor expression. These 

events result in a form of differentiation, channeling T cells into a state of exhaustion. It has 

been shown that exhausted T cells also can express multiple other inhibitory receptors, 

making them susceptible to blocking antibody inhibition of additional checkpoint pathways 

to recue T cells from exhaustion. Supporting this phenomenon, Kim and colleague have co-

targeted TIM-3 simultaneously with PD-1 and demonstrated a much higher cure rates than 

with each modalities alone 90. However, rescue of exhaustion by inhibition of alternative 

coinhibitory receptor(s) in a sequential manner remains to be addressed.

PD-L1 and PD-L2 are both expressed on APCs in addition to other cell types but PD-L1 

appears to be more broadly expressed than PD-L2. Their expression is induced by pro-

inflammatory cytokines. PD-L1 (or PD-L2) ligand binding to PD-1 results in tyrosine 

phosphorylation of the PD-1 cytoplasmic domain and recruitment of signaling complexes 

including the tyrosine phosphatase SHP-2. This leads to a reduced tyrosine phosphorylation 

of TCR signaling molecules and the attenuation of signaling pathways downstream of TCR, 

and an overall decrease in T cell activation and cytokine production. PD-1 signaling is 

therefore viewed as a negative modulator of T cell function to suppress effector immune 

responses. In normalcy, the PD-1 pathway restrains self-reactive T cells in target organs, 

maintaining tolerance in tissues and protecting them from immunopathology. For instance, 

mice lacking PD-1 or its ligands do not spontaneously develop autoimmune disease but 

rather accelerate or exacerbate autoimmunity, a phenotype that is much milder than that seen 

in the CTLA-4 knockout strain.

In cancer, tumor cells express PD-L1 (and PD-L2) and so do other cell types (e.g., 

fibroblasts, endothelial cells, and other immune cells including TAMs). Experimental 

evidence demonstrates that tumor cells have hijacked this machinery. Tumor cells express 

elevated PD-L1 levels, causing effector function attenuation of tumor infiltrating lymphocyte 

(TIL) activity 40. In addition, several groups have shown that activation of certain oncogenes 

and/or loss of tumor suppressor genes can result in higher expression levels of PD-L1 in 

tumor cells, thus further attenuating TILs. Not surprisingly, antibody blockade of PD-1/PD-

L1 axis have demonstrated positive outcomes in advanced melanoma, lung cancer and renal 

cell carcinoma (reviewed in 16). Anti-PD-1 monoclonal antibodies have been recently 

approved for cancer treatment while anti-PD-L1 is in late clinical stages. Despite the 

promising success of anti-PD-1 blockade in the clinic, responses are varied. Several studies 

are aimed at determining predictors of response to anti-PD-1 blockade. To date, both the 

presence of TILs and high expression of tumor PD-L1 within the tumor microenvironment, 

are main prognostic factors of anti-PD-1 therapy.

In GBM, PD-L1 is expressed at high levels, as determined by western blotting, flow 

cytometry, mRNA and IHC 130, 186. This suggests that anti-PD-1 therapy might be 

applicable. In fact, Parsa and colleagues have demonstrated that PD-L1 expressing glioma 
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cells are susceptible to T-cell lysis, further reinforcing the concept that anti-PD-1 may have 

clinical benefit 130.

In the preclinical GL261 model, the success of anti PD-1 monotherapy is dependent on 

dosage, with the best outcome reported being a cure rate of 50% 144, 195. Not surprinsingly, 

lesser posology appears to result in less robust effects 195. Anti PD-1 blocking antibody 

monotherapy treatments were shown to cause an increase in CD8 T cell to Treg ratio, which 

is indicative of a successful outcome 144, 195. Inclusion of radiation or in combination with 

other checkpoint blockade led to enhanced efficacy of anti PD-1 treatment 144, 195. Although 

radiation has been shown to alter the immunogenicity profile of GL261 cells in vitro 195, the 

precise mechanism of synergism between radiation and anti PD-1 therapy in GL261 and in 

GBM in general has yet to be explored. In melanoma it has been demonstrated that radiation 

promotes an oligo-expansion of T-cell receptors 166.

Currently, there are several ongoing trials utilizing anti-PD-1 or anti-PD-L1 for the treatment 

of GBM. Anti-PD-L1 treatments are in phase II trials with or without radiation and the 

VEGF-A neutralizing antibody bevacizumab (NCT02336165). A phase III trial of anti-PD-1 

treatment in conjunction with temozolomide chemotherapy with radiation in patients with 

newly diagnosed GBM is undergoing (NCT02617589) and a phase II trial of anti-PD-1 as 

neoadjuvant therapy is ongoing (NCT02550249).

Future Directions

Virtually all of the various immunotherapies currently under development for GBM have 

utilized the GL261 syngeneic model for pre-clinical studies (recently reviewed in 193). 

Although popular because of its ease of use, this model falls short of recapitulating critical 

aspects of human GBMs (reviewed in 107, 123, 164). Notably, the genetics of the cell line 

(chemically induced KRas mutation) is not representative of human GBMs since Ras 

mutations are rarely observed in patients (< 1%, 20). More importantly, the composition of 

the immune fauna in other tumors is not representative of that in GBMs 165. Therefore, there 

is a need to conduct pre- and co-clinical studies in genetically accurate model systems and 

given the irrelevance of PDX immunodeficient models to study immunotherapeutics, GEM 

models offer unsurpassed relevance for immuno-oncology research. In addition, the recent 

creation of a comparative (canine to human) brain tumor consortium 97 expands the 

possibilities of pre- and co-clinical studies of immunotherapeutics to an additional species.

In using model systems for pre- and co-clinical studies, one has to incorporate standard of 

care treatments to their study design. Other than surgical resection, XRT/TMZ 

administration in brain tumor bearing mice is relatively easy to achieve. Surprisingly, there 

is no study reported so far that takes into account dexamethasone and levetiracetam in pre-

clinical settings. Given the drastic effects that dexamethasone have on various immune 

functions, attempts at modeling immunotherapies for GBM in models that do not take into 

consideration steroid administration will likely lead to questionable outcomes that might not 

apply to GBM immunotherapy in humans.

Boussiotis and Charest Page 20

Oncogene. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although reports of incidental responses to various types of immunotherapies for glioma are 

emerging, convincing clinical trial data has yet to emerge. The availability of biomarkers has 

greatly enhanced oncological practices and is now the basis of precision medicine for many 

cancers; however, potential predictive biomarkers of immunotherapies are unknown in 

glioma. Recent studies demonstrate a relationship among tumor mutational load, mismatch 

repair deficiencies, checkpoint receptor expression, neo-antigens processing and 

presentation and response to checkpoint inhibitor therapy 18, 72, 82. These observations 

predict that not every glioma patients are likely to benefit from monotherapy immune 

checkpoint inhibition 72. Therefore, it is likely that additional predictor of response will be 

required to optimize treatment strategy.

Tumors are routinely genotyped against an ever-increasing panel of known gene mutations, 

which guide treatment decisions based on the prognostic significance of these genetic 

profiles and in many cases, provides the opportunity for targeted therapeutic agents that can 

be used or are under rapid clinical development. In the case of immunotherapies however, 

this concept remains inexistent. Therefore, the development of cancer immune-therapies 

should include a mechanism for discovery, validation and usage of biomarkers that will 

provide the means for candidate patient stratification for immunotherapy approaches. A 

starting point would be to immunophenotype all gliomas enrolled in clinical trials. This 

would provide information as to what type of immune infiltrate populations are present and 

their activation profiles. In addition, knowledge of the genetic drivers of each patient's GBM 

will be necessary to address the influence of the tumor genotype on the identity of the 

immune fauna. This is a concept that can be molecularly dissected in the controlled 

scientific confine of GEMMs. The development of technological platforms that would 

accelerate tumor immunophenotyping without compromising specificity and sensitivity 

while reducing costs (when compared to standard flow cytometry) will be instrumental to 

successfully generate mechanistic links between immune infiltrates and treatment response. 

The ultimate goal is to stratify patients towards a precision immuno-centric medicine 

tailored to their unique immune fauna.

The future of immunotherapies for glioma is cautiously bright. Analogous to prior new 

therapeutic approaches applied to gliomas in the past, glioma immunotherapies will be 

challenged by obstacles. Ultimately, success in the clinic will likely come from patient-

tailored combination therapies, which can only be achieved through in-depth research on 

immune-tumor cell interactions and their responses to standard of care.
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Figure 1. Cellular Landscape of the GBM Microenvironment
Glioma tumors contain a highly diverse cellularity comprising of various resident and non-

CNS-derived immune cells, each contributing in unique fashion to the tumor physiology.

A) Tumor-associated microglia and macrophages (TAMs) comprise upward of ∼30% of the 

GBM tumor mass. Microglia (MG, CD11b+;CD45low) originate from the yolk sac and 

migrate to the CNS during development. Resting MGs take on a highly arborized anatomy, 

which is designed to constantly survey CNS tissue for damage or disease. Once activated, 

MGs adopt an amoeboid anatomy and assume a polarization phenotype consistent with a 

pro- or anti-inflammatory biochemisty. Bone marrow derived macrophages (BMDMs, 

CD11b+;CD45high) originate peripherally (bone marrow) and migrate to and infiltrate GBM 

tumors responding to tumor-secreted chemokines and cytokines. Similarly, BMDMs have 

polarization capacities according to the identity of the intratumoral cytokines present. TAMs 

participate in substantial bidirectional crosstalk with neoplastic cells, which release 

cytokines and chemokines to recruit TAMs to the tumor microenvironment and to induce 

their polarization. TAMs in turn supply pro-tumorigenic growth factors and pro-survival 

cytokines. A highly exciting new approach to GBM treatment is to target polarization of 
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TAMs using CSF-1R inhibitors, which function by reducing the levels of M2 (anti-

inflammatory) polarized TAMs.

B) Myeloid-Derived Suppressor Cells (MDSCs) originate from progenitor cells in the bone 

marrow and enter the circulation where they further differentiate into granulocytic or 

monocytic MDSCs (G-MDSC and M-MDSC, respectively) responding to tumor-derived 

factors. MDSCs migrate to lymphoid organs and to tumor sites. There, their function varies, 

but overall, MDSCs suppress T cell responses and NK cells cytotoxicity and induce Treg 

differentiation and expansion, all of which contribute to an immunosuppressive environment. 

HSC, hematopoietic stem cells; CMP, common myeloid progenitor and GMP, granulocyte-

macrophage progenitor.

C) Tumor Infiltrating Lymphocytes (TILs) are heavily influenced by the tumor 

microenvironment. Primed cytotoxic CD8+ T cells (TC) recognize neoplastic cells and 

mount anti-tumor responses. However, the presence of Treg cells and M2 polarized TAMs 

can suppress the effector function of TC cells leading to tumor outgrowth.

D) GBM vasculature and Glioma Stem Cells (GSCs). GSCs are transformed glioma cells 

that express neuronal stem cell markers and have acquired some functional aspects of stem 

cell biology. GSCs are located within perivascular areas of the GBM microenvironment, 

which are built to promote self-renewal and maintain stemness. GSCs can promote an 

immunosuppressive environment by inhibiting effector T cell proliferation and activation, 

inducing T cell apoptosis, promoting Treg proliferation and attracting and/or polarizing 

TAMs towards an M2 phenotype.
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Figure 2. Overview of T Cell Receptor Co-inhibitory and Co-stimulatory Pathways
T cells are activated upon engagement of their T Cell Receptor (TCR) by antigen-presenting 

cells (APCs- cancer cells, Dendritic Cells, TAMs etc.) to the T cell receptor (TCR)–CD3 

complex in the presence of B7/CD28 co-stimulation. Many co-inhibitory pathways are 

upregulated upon T cell activation and are designed to attenuate TCR and co-stimulatory 

signals. Some of these ligand-receptor co-stimulatory and inhibitory complexes are 

expressed during initial activation of naïve T cells in lymph nodes, where dendritic cells are 

considered the main APCs, whereas others are expressed in peripheral tissues or tumor cells 

where they regulate the effector responses of T cells. Note that several ligands bind to 

multiple receptors with opposite effects on TCR signaling. Different ligand-receptor 

complexes are expressed on the surface of various APCs as well as in resting, naïve and 

activated T cells. In addition to the distinct kinetics of expression they have distinct affinities 

for their cognate binding partners. The extent of T cell activation is proportional to the 

strength of the TCR signaling, which is dictated by a multitude of factors that are highly 

spatio temporal and context dependent. Binding ligands for VISTA have not been identified. 

Abbreviations: APC, antigen-presenting cell; TIM-3, T cell– immunoglobulin–mucin 

domain 3; B7RP1, B7-related protein 1; BTLA, B and T lymphocyte attenuator; GAL9, 
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galectin 9; HVEM, herpesvirus entry mediator; ICOS, inducible T cell co-stimulator; KIR, 

killer cell immunoglobulin- like receptor; LAG3, lymphocyte activation gene 3; PD1, 

programmed cell death protein 1; PDL, PD1 ligand
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