Association between lifestyle and height growth in high school students

Shahla Vaziri Esfarjani, Marjan Zamani, Seyedeh Soraya Ashrafizadeh, Maryam Zamani

Department of Community Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Introduction: An important indicator that plays a pivotal role in examining the health of individuals living in a community is their height. The aim of this study was to examine the relationship between lifestyle and height among female high school students in Dezful, Iran. **Methods:** This research was a cross-sectional descriptive-analytical study. Participants included 351 female high school students who were selected from public and private high schools in Dezful using random cluster sampling. Miller–Smith Lifestyle Assessment Inventory was used to collect data about students' lifestyles, and their height was measured based on self-report. **Results:** The total lifestyle score of the study participants was 52.23 ± 11.31 . Also, 30.2%, 67.2%, and 2.6% of the students had high, moderate, and low lifestyle scores, respectively. A negative and significant relationship was observed between the total score of lifestyle and its components, that is, nutrition, sleep, exercise, and mental stress, and the height growth of female high school students in Dezful (P < 0.05) according to Pearson's correlation. Results of regression analysis showed that the total lifestyle score and its components with height growth of students. **Conclusion:** Our results are indicative of the relationship between lifestyle and its components with height growth among female high school students.

Keywords: Adolescents, female students, height growth, lifestyle

Introduction

Adolescence is a life-changing stage in life that is associated with the growth and maturation of all organs and physiological systems. On average, adolescents aged 10 to 19 years gain 20% of their final adult height and 50% of their final adult weight at this stage.^[1] There are more adolescents now than ever before in human history. Their growth period, however, is affected by important changes in lifestyle owing to factors such as rapid urbanization, climate change, a tendency toward foods that are high in calories but low in nutritional value, the epidemic of COVID-19, and the increased socioeconomic

Address for correspondence: Dr. Shahla Vaziri Esfarjani, Department of Community Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail: vaziri_esf@yahoo.com

Received: 02-01-2023 **Accepted:** 01-06-2023 **Revised:** 05-03-2023 **Published:** 21-12-2023

Acce	ss this article online
Quick Response Code:	Website: http://journals.lww.com/JFMPC
	DOI: 10.4103/jfmpc.jfmpc_8_23

inequality.^[2,3] The consequences of these changing conditions have brought about profound effects on the height and weight growth of adolescents. Today, the very low physical activity of adolescents due to lifestyle changes, their reduced mobility caused by excessive use of electronic equipment, and their improper nutrition patterns have increased the prevalence of chronic diseases such as type 2 diabetes, heart diseases, and obesity.^[3]

Human growth in terms of height, weight, and other body dimensions is widely used as the most important health indicator in environmental epidemiology and public health. Social, economic, and political differences between communities are often associated with differences in the average height of these groups. This is why researchers describe human growth as a "mirror reflecting the state of society."^[4] Human growth, especially height growth, is

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article: Vaziri Esfarjani S, Zamani M, Ashrafizadeh SS, Zamani M. Association between lifestyle and height growth in high school students. J Family Med Prim Care 2023;12:3279-84.

regulated by genes, nutrition, health, and the socioeconomic status of the individual.^[5] The results of previous studies have shown that children who suffer from malnutrition have a particular illness or are of a poor socio-economic background, and usually have short stature.^[5,6] Also, the results have shown that improving nutrition, public health, socio-economic status, and their lifestyle will lead to improvement in the growth of children and adolescents and their final height.^[1,5-7] Therefore, an understanding of the relationship between lifestyle and adolescent height growth is essential to identify the best time to take action and avoid the potential negative consequences associated with height growth. To this aim, the present study was conducted to determine the relationship between lifestyle and height in female high school students in Dezful, Iran.

Materials and Methods

This was a cross-sectional, descriptive-analytical study investigating the relationship between lifestyle and height growth of female high school students in Dezful, Iran. After the necessary permits were obtained to conduct this study, 351 female students from public and private high schools in Dezful were recruited using the random cluster sampling method. Data related to lifestyle were collected using the Miller-Smith Lifestyle Assessment Inventory through interviews, and the height of the students was measured by self-report. The Miller-Smith Lifestyle Assessment Inventory includes 20 items in four dimensions of nutrition, sleep, exercise, and mental stress. Each item is scored based on five options (always: 1, often: 2, sometimes: 3, rarely: 4, never: 5). Higher scores indicate an unpleasant and unhealthy lifestyle. Scores within the range of 20-45, 46-75, and 76-100 indicate high, moderate, and low lifestyles, respectively.^[8]

The validity and reliability of the Miller–Smith Lifestyle Assessment Inventory were confirmed by the faculty members of the Isfahan University of Medical Sciences after open translation. Its reliability in a pilot study on 20 patients with lung disease was 0.86, and Cronbach's alphas for each question were higher than 0.5.^[9] The height of the students was measured by the lead researcher. After data collection, the data were analyzed using SPSS version 22.

Statistical analysis

Quantitative data are presented by mean and standard deviation, whereas frequency and percentage were used to describe qualitative variables. The data were analyzed based on statistical tests such as *t*-test, one-way analysis of variance, and Pearson's correlation coefficient using SPSS version 22.

Results

In this research, the participants included 351 high school female students, 33.2% of whom were 16 years old, 32.8% were 17 years old, and 33% were 18 years old. Also, 71% of the students were

studying at public high schools, whereas 29% were recruited from private high schools [Table 1].

As can be seen in Table 2, the mean and standard deviation of the height and weight of the studied students were 161.65 ± 6.99 cm and 56.15 ± 7.48 kg, respectively.

The mean and standard deviation of the total score of lifestyle and its components are reported in Table 3, and the overall lifestyle status of the participants is shown in Table 4. According to this table, 30.2% of the students had a high lifestyle, 67.2% had a moderate lifestyle, and 2.6% had a low lifestyle.

The results of Pearson's correlation coefficient showed that there was a negative and significant relationship between the total score of lifestyle status and height growth of the participants (P = 0.001, R = 0.671). It was also observed that overall, lifestyle status accounts for 45% of height growth variances ($R^2 = 0.450$). The results of the analysis of variance (ANOVA) showed that the prediction of participants' height growth based on the total lifestyle score is significant (F = 285.55 and P < 0.001). According to the reported coefficients of the prediction equation, the total lifestyle score could significantly predict the height growth of students (B = -0.671 and P < 0.001) [Table 5].

The results of Pearson's correlation coefficient showed that there was a negative and significant relationship between nutrition and height growth of the participants (P = 0.001, R = 0.527). Because higher scores in the nutrition component indicate

Table 1: Frequency distribution of students according to										
age										
Percentage	Frequency	Age	Variable							
33.2	120	16-year-old	Age							
8.32	115	17-year-old								
33	116	18-year-old								
100	351	All students								
71	249	Public	Type of high school							
29	102	Private								
100	351	Total								
33	116	Governmental	Father's occupation							
67	235	Self-employed								
100	351	Total								
4.3	12	Very low	Family income							
39.3	138	Low								
42.7	150	Moderate								
14.5	51	High								
100	351	Total								

Table 2: Descriptive indices of the studied samples in
terms of height (centimeters) and weight (kilograms)

Maximum	Minimum	SD±mean	Frequency	Variable
180	139	161.65±6.99	351	Height (cm)
81	35	56.15±7.48	351	Weight (kg)

Vaziri Esfariani.	et al.: lifestyle	and height growth	n in hiah schoo	l students
· · · , · · , · · ,				

Table 3: Descriptive indicators of the studied sample according to lifestyle status									
Maximum	Minimum	SD±Mean	Frequency	Component	Variable				
25	5	13.05±4.04	351	Nutrition	Lifestyle				
25	6	13.56 ± 3.90	351	Sleep					
25	5	13.32 ± 3.96	351	Exercise					
24	5	12.29±3.85	351	Mental stress					
81	24	52.23±11.31	351	Total lifestyle score					

Table 4: Frequency distribution of the studied students according to lifestyle status								
Percentage	Frequency	Lifestyle status						
30.2	106	High (20-45)						
67.2	236	Moderate (46-75)						
2.6	9	Low (76-100)						
100	351	Total						

inappropriate and unhealthy nutrition, it can be argued that the better the nutritional status, the higher the students' height growth and vice versa. It was also observed that nutritional status explains 27.7% of the height growth variances of the participants ($R^2 = 0.277$). The results of ANOVA showed that the prediction of participants' height growth based on nutritional status is significant (F = 133.9 and P < 0.001). According to the reported coefficients of the prediction equation, nutritional status could significantly predict height growth (B = -0.527 and P < 0.001) [Table 6].

The results of Pearson's correlation coefficient showed that there was a negative and significant relationship between sleep and height growth of participants (P = 0.001, R = 0.432). Because higher scores in sleep indicate inappropriate and unhealthy sleep patterns, improved sleep patterns are associated with higher height growth rates, and vice versa. It was also observed that sleep status explains 18.7% of the variances in students, height growth ($R^2 = 0.187$). The results of ANOVA showed that the prediction of the height growth of students based on sleep status was significant (F = 1.80 and P < 0.001). According to the reported coefficients of the prediction equation, sleep status could significantly predict height growth (B = -0.432 and P < 0.001) [Table 7].

The results of Pearson's correlation coefficient showed that there was a negative and significant relationship between exercise and height growth of the participants (P = 0.001, R = 0.472). Because higher grades in exercise indicate inappropriate and unhealthy exercise, the more the condition of exercise is improved, the higher the height growth will be, and vice versa. It was also observed that exercise explains 22.3% of the variances in height growth of students ($R^2 = 0.322$). The results of ANOVA showed that the prediction of height growth of female students based on exercise was significant (F = 1.100 and P < 0.001). According to the reported coefficients of the prediction equation, exercise could significantly predict the height growth of students (B = -0.472 and P < 0.001) [Table 8].

The results of Pearson's correlation coefficient showed that there was a negative and significant relationship between mental stress and height growth of the participants (P = 0.001, R = 0.494). Because higher scores in mental stress indicate more mental pressure, the students) reduced mental stress was associated with higher height growth and vice versa. It was also observed that mental stress accounts for 24.2% of the variances in students; height growth ($R^2 = 0.242$). The results of ANOVA showed that the prediction of height growth of students based on mental stress was significant (F = 112.7 and P < 0.001). According to the reported coefficients of the prediction equation, mental stress could significantly predict height growth (B = -0.494 and P < 0.001) [Table 9].

Discussion

According to the results of the present study, the total score of lifestyle and its components, including nutrition, sleep, exercise, and mental stress had a negative and significant relationship with the height growth of female high school students in Dezful, Iran. According to the Miller-Smith Lifestyle Assessment Inventory, higher scores in lifestyle and its components indicate an unpleasant and unhealthy lifestyle. In the present study, we observed that lower scores in the students' lifestyle scores, which represent a better lifestyle, are associated with higher height growth rates among these students. In other words, our results showed that the total lifestyle score could significantly predict the height growth of students. Consistent with the results of the present study, Hermanussen et al. (2015)^[10] stated that due to the reduced everyday physical activities, individuals' skeleton has become thinner, and in addition to changes in skeletal morphology, height has also decreased in countries including Germany. In other studies, it has been reported that the decrease in physical activity along with the mechanization of everyday life has caused reduced elbow width among children.^[11,12] In Japan, in contrast, these changes have been in a different direction. Due to the modification of lifestyle, food patterns, and genetic makeup in this country, the height of individuals has relatively increased at every age.^[10] As mentioned earlier, dietary styles and physical activity are important factors affecting adolescent growth during puberty; however, it should be born in mind that not only does low physical activity has negative effects on adolescent growth but also sports reinforcing strict weight control, and high energy production may also lead to developmental disorders. Malnutrition is one of the most common causes of growth restriction worldwide.^[13] Sleep is another factor affecting growth. In Zhou et al.'s (2015)^[14] study, sleep duration was significantly

Vaziri Esfarjani, et al.: lifestyle and height growth in high school students

		Tab	le 5: Corre	elation betwo	een total lifest	yle score and	height growth	
		Correlati	on matrix of	the relationsh	ip between the t	otal lifestyle scor	re and height growth	
			Height	growth			Frequency	Variable
				Р	Pearson's coeffic	correlation cient R		
			0.0	001	-0.671		351	Total lifestyle score
	Result	s of the regre	ssion analysi	s of predictin	g the height grov	wth of students l	pased on the total lifestyle	e score
Р	Coef	ficients	ANOVA		Model summary		Predicting	Criterion variable
	t	В	Р	F	R^2	R	variable	
0.001	-16.89	-0.671	0.001	285.5	0.450	0.671	Total lifestyle score	Height growth

	Table	e 6: Correlati	on between	total nutrition	n score and heig	ght growth in	participants	
	C	orrelation matr	ix of the relation	onship between	the total nutrition	n score and heigl	nt growth	
	Height growth							Variable
			j	Р	Pearson's coeffic	correlation cient R		
			0.0	001	-0.527		351	Total nutrition
								score
	Results	s of regression	analysis of pre	dicting height g	growth of student	s based on total	nutrition score	
Р	Coeff	icients	AN	OVA	Model s	summary	Predicting	Criterion
	t	В	Р	F	R^2	R	variable	variable
0.001	-11.57	-0.527	0.001	133.9	0.277	0.527	Nutrition	Height growth

		Table	7: Correlat	ion between	total sleep scor	e and height gr	rowth	
		Correlatio	on matrix of th	ne relationship h	between total slee	p score and heigl	ht growth	
			Height g	rowth			Frequency	Variable
			j	р	Pearson's coeffic	correlation cient R		
			0.001 -0.432		432	351	Total sleep score	
	Res	ults of regressi	ion analysis of	predicting heig	ght growth of stu	dents based on to	otal nutrition score	
Р	Coefficients		ANOVA		Model summary		Predicting	Criterion
	t	В	Р	F	R^2	R	value	variable
0.001	-8.95	-0.432	0.001	80.91	0.187	0.432	Sleep	Height growth

		Table 8	8: Correlati	on between	n the total score o	f exercise and h	eight growth	
		Correlation	n matrix of th	e relationshi	p between the total	score of exercise a	nd height growth	1
			Heigh	t growth			Frequency	Variable
			-	Р	Pearson's correl	ation coefficient R		
			0.0	001	0.4	0.472		Total score of exercise
	Results of	of the regress	ion analysis	of predicting	the height growth o	of students based of	on the total score	of exercise
Р	Coefficients		ANOVA		Model summary		Predicting	Criterion variable
	t	В	Р	F	R^2	R	variable	
0.001	0.110	0.472	0.001	0.110	0.223	0.472	Exercise	Height growth

associated with height. In Malay children, shorter sleep was associated with higher body mass indexes (BMIs) and shorter heights. In addition, sleeping less than 12 h per day at 3 months of age was associated with higher BMIs and shorter heights in children. In general, growth rates of height, weight, and other body dimensions are widely used as health indicators in environmental epidemiology and public health studies. Social, economic, and political differences between human groups lead to mean height differences in these groups.^[15]

Studies have also shown that factors such as nutrition, infection, and other diseases, mental and emotional state, heredity, as well as genetic and epigenetic changes, affect height growth.^[16-18] Some of these growth regulators affect the growth hormone/

	r	Table 9: Th	ne relation	ship betwee	en the total sc	ore of mental	stress and height	t growth	
		Correlation 1	natrix of the	e relationship	between the to	tal score of mer	ntal stress and heigh	it growth	
		Height growth				Frequency	Variable		
				Р	Pearson's coeffic	correlation cient R			
			0.0	001	-0.	-0.494		Total score of mental stress	
	The resu	lts of regress	ion analysis	of predicting	g height growth	of students bas	sed on the total scor	e of mental stress	
Р	Coeff	Coefficients		ANOVA		Model summary		Criterion variable	
	t	В	Р	F	R^2	R	variable		
0.001	-10.62	-0.494	0.001	112.7	0.242	0.494	Mental stress	Height growth	

insulin-like growth factor-1 (GH/IGF-1) axis directly or indirectly by affecting pathways that alter the physiology of glucocorticoids and insulin.^[15] Hermanussen and Aßmann (2013) observed that growth hormone and insulin-like growth factor-1 (IGF-1) activity is affected by various biological, social, and emotional factors through complex interactions. These researchers stated in their study that human growth, especially height growth, is regulated by genes, nutrition, health, and the state of the individual's social and economic environment and that under favorable physical conditions, individuals are believed to achieve their full genetic potential.^[19]

Previous studies by a number of researchers have shown that the change in lifestyle followed by the increased prevalence of obesity in developing societies is associated with children's restricted height growth. It has also been reported that lifestyle changes such as increased access to low-cost foods with low nutritional value (high in sugar and fat) and high calories play an important role in the progressively increasing obesity epidemic in these societies.^[20] However, other factors related to socioeconomic status, such as exposure to cigarette smoke (in utero and after birth),^[21] reduced physical activity^[22], and inappropriate sleep patterns,^[23] also play an important role in obesity and overweight. As mentioned above, the growth hormone plays a vital role in the height and physical growth of children, and it is maximally released during sleep, and after feeding and doing exercise.^[24] Therefore, it seems that reduced activity, unhealthy nutrition, and improper sleep patterns can directly affect growth hormones, and by bringing about overweight and obesity, they can also affect the height growth and body composition of children.^[24] It has been reported that secretion of growth hormone either spontaneously or as a result of stimulating stimuli is significantly impaired in obese people.^[25] In a study on overweight and obese people, for instance, it was observed that the growth hormone response to the growth hormone-releasing factor has an inverse relationship with the percentage of ideal body weight.^[26] Compared to people with normal weight, overweight and obese people have been characterized by a reduced half-life of growth hormone and a decrease in the frequency of growth hormone secretory episodes and their daily production. In addition, in obese people, growth hormone secretion in response to all stimuli affecting the hypothalamus (that is, hypoglycemia caused by insulin, arginine, galanin, L-dopa, clonidine, and acute glucocorticoid administration) and somatotroph stimulation caused by external growth hormone-releasing hormone (GHRH) is disrupted.^[25] In general, the disruption in the response of growth hormones to various stimulating factors during obesity and under the influence of metabolic and nutritional factors has been well documented. In addition, it has been observed that drugs capable of preventing lipolysis, and thereby reducing non-esterified fatty acids (NEFA), significantly improve growth hormone secretion in obese people. Reducing the intake of calories and losing weight have also been mentioned as two measures to normalize the secretion of growth hormones. In general, it seems that factors related to the hypothalamus, the pituitary, and the environment play a role in reducing growth hormone secretion following obesity.^[27] The results of the current study as well as those of previous studies confirm the role of lifestyle and its components, including sleep pattern, nutrition, physical activity, and mental stress on children's height growth. Therefore, it seems that modifying lifestyles and educating parents in this regard play a significant role in improving the height growth pattern of adolescents.

Conclusion

The total lifestyle score of female high school students living in Dezful was 52.23 ± 11.31 . Of these students, 30.2% had a high lifestyle, 67.2% had a moderate lifestyle, and 2.6% had a low lifestyle. Pearson's correlation showed that the total score of lifestyle and its components, including nutrition, sleep, exercise, and mental stress had a negative and significant relationship with the height growth of female high school students in Dezful city. Based on the results of regression analysis, the total lifestyle score could significantly predict the height growth of students. In other words, improvement in student's lifestyle and its components is associated with higher height growth.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Norris SA, Frongillo EA, Black MM, Dong Y, Fall C, Lampl M, *et al.* Nutrition in adolescent growth and development. Lancet 2021;399:172-84.

- 2. Hargreaves D, Mates E, Menon P, Alderman H, Devakumar D, Fawzi W, *et al.* Strategies and interventions for healthy adolescent growth, nutrition, and development. The Lancet 2022;399:198-210.
- 3. Patton GC, Sawyer SM, Santelli JS, Ross DA, Afifi R, Allen NB, *et al.* Our future: A Lancet commission on adolescent health and wellbeing. Lancet 2016;387:2423-78.
- 4. Bogin B, Hermanussen M, Blum WF, Aßmann C. Sex, sport, IGF-1 and the community effect in height hypothesis. Int J Environ Res Public Health 2015;12:4816-32.
- Aßmann C, Hermanussen M. Modeling determinants of growth: Evidence for a community-based target in height? Pediatric Res 2013;74:88-95.
- 6. Katoch OR. Determinants of malnutrition among children: A systematic review. Nutrition 2021;96:111565.
- 7. Bogin B. Social-Economic-Political-Emotional (SEPE) factors regulate human growth. Hum Biol Public Health 2021;1. doi: 10.52905/hbph.v1.10.
- 8. Gholamalishahi S, Mannocci A, Ettorre E, La Torre G, Okechukwu C. Lifestyle and life expectancy questionnaire: Validation and assessment in an Italian sample. Clin Ter 2022;173:128-34.
- 9. Huang CY, Hou CH, Lin KK, Lee JS, Yang ML. Relationship of lifestyle and body stature growth with the development of myopia and axial length elongation in Taiwanese elementary school children. Indian J Ophthalmol 2014;62:865-86.
- 10. Hermanussen M, Scheffler C, Groth D, Aßmann C. Height and skeletal morphology in relation to modern life style. J Physiol Anthropol 2015;34:41-9.
- 11. Jekauc D, Reimers AK, Wagner MO, Woll A. Prevalence and socio-demographic correlates of the compliance with the physical activity guidelines in children and adolescents in Germany. Bmc Publ Health 2012;12:714-33.
- 12. Rietsch K, Eccard JA, Scheffler C. Decreased external skeletal robustness due to reduced physical activity? Ame J Human Biol 2013;25:404-10.
- 13. Rogol AD, Clark PA, Roemmich JN. Growth and pubertal development in children and adolescents: Effects of diet and physical activity. Am J Clin Nutr 2000;72:521S-8S.
- 14. Zhou Y, Aris IM, Tan SS, Cai S, Tint MT, Krishnaswamy G, *et al.* Sleep duration and growth outcomes across the first two years of life in the GUSTO study. Sleep Med 2015;16:1281-6.

- Bogin B, Hermanussen M, Blum WF, Aßmann C. Sex, sport, IGF-1 and the community effect in height hypothesis. Int J Environ Res 2015;12:4816-32.
- 16. Mortier G, Vanden Berghe W. Genomics, Epigenetics and Growth. Canada: Elsevier; 2012.
- 17. Chrousos GP, Gold PW. A healthy body in a healthy mind—and vice versa—the damaging power of "uncontrollable" stress. J Clin Endocrinol Metabol 1998;83:1842-5.
- 18. Batty GD, Shipley MJ, Gunnell D, Huxley R, Kivimaki M, Woodward M, *et al.* Height, wealth, and health: An overview with new data from three longitudinal studies. Econom Human Biol 2009;7:137-52.
- Aßmann C, Hermanussen M. Modeling determinants of growth: Evidence for a community-based target in height? Pediatr Res 2013;74:88-93.
- 20. Cecil J, Watt P, Murrie I, Wrieden W, Wallis D, Hetherington M, *et al.* Childhood obesity and socioeconomic status: A novel role for height growth limitation. Int J Obesit 2005;29:1199.
- 21. Von Kries R, Toschke AM, Koletzko B, Slikker W Jr. Maternal smoking during pregnancy and childhood obesity. Am J Epidemiol 2002;156:954-61.
- 22. Reilly JJ, Jackson D, Montgomery C, Kelly L, Slater C, Grant S, *et al.* Total energy expenditure and physical activity in young Scottish children: Mixed longitudinal study. Lancet 2004;363:211-2.
- 23. Sekine M, Yamagami T, Handa K, Saito T, Nanri S, Kawaminami K, *et al.* A dose-response relationship between short sleeping hours and childhood obesity: Results of the Toyama Birth Cohort Study. Child Care Health Dev 2002;28:163-70.
- 24. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sport Med 2005;35:339-61.
- 25. Scacchi M, Pincelli A, Cavagnini F. Growth hormone in obesity. Int J Obesit 1999;23:260.
- 26. Williams T, Berelowitz M, Joffe SN, Thorner MO, Rivier J, Vale W, *et al.* Impaired growth hormone responses to growth hormone-releasing factor in obesity: A pituitary defect reversed with weight reduction. N England J Med 1984;311:1403-7.
- 27. Lu M, Flanagan JU, Langley RJ, Hay MP, Perry JK. Targeting growth hormone function: Strategies and therapeutic applications. Signal Transduc Targ Therap 2019;4:3-12.