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The thrombospondins (TSPs) are a family of multimeric extracellular matrix proteins
that dynamically regulate cellular behavior and response to stimuli. In so doing, the
TSPs directly and indirectly affect biological processes such as embryonic development,
wound healing, immune response, angiogenesis, and cancer progression. Many of the
direct effects of Thrombospondin 1 (TSP-1) result from the engagement of a wide
range of cell surface receptors including syndecans, low density lipoprotein receptor-
related protein 1 (LRP1), CD36, integrins, and CD47. Different or even opposing
outcomes of TSP-1 actions in certain pathologic contexts may occur, depending on the
structural/functional domain involved. To expedite response to external stimuli, these
receptors, along with vascular endothelial growth factor receptor 2 (VEGFR2) and Src
family kinases, are present in specific membrane microdomains, such as lipid rafts or
tetraspanin-enriched microdomains. The molecular organization of these membrane
microdomains and their constituents is modulated by TSP-1. In this review, we will
describe how the presence of TSP-1 at the plasma membrane affects endothelial cell
signal transduction and angiogenesis.
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INTRODUCTION

Like most biological processes, formation of the vasculature is temporally and spatially regulated
by a balance of the signals that are elicited by stimulators and inhibitors. The temporal changes
in the levels of these factors in the microenvironment determines endothelial cell behavior. In
normal adult tissue, the endothelium is in a quiescent state, but it can respond rapidly to form new
capillaries through a process termed angiogenesis. To facilitate a rapid response, the constituents
of the pro- and anti-angiogenic pathways are co-localized to specific regions of the plasma
membrane, such as lipid rafts and tetraspanin-enriched microdomains (Garcia-Parajo et al., 2014).
The recruitment of specific proteins and lipids to these clusters is a critical determinant of their
function. This spatial compartmentalization of the pathway components facilitates the efficient
regulation of signal transduction that is essential for correct physiological response.

Thrombospondin 1 (TSP-1) is a founding member of the matricellular family of proteins
(Adams and Lawler, 2011). These proteins are expressed primarily at the cell surface where they
participate in the dynamic changes that cells undergo in response to extracellular stimuli. TSP-1
is involved in cell-to-cell junctions in synapses and immune cell interactions (Soto-Pantoja et al.,
2015; Risher et al., 2018). As an example of the simplest form of cell-to-cell interaction, TSP-1
forms a molecular bridge between integrins on apoptotic neutrophils and CD36 on macrophages
(Ren and Savill, 1995). TSP-1 is also highly expressed in supramolecular attack particles that are
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made by cytotoxic T lymphocytes (Balint et al., 2020).
A molecular layer of TSP-1 on the attack particles presumably
functions to engage the target cell (Balint et al., 2020). TSP-1
also participates in the lateral association of membrane proteins
within a single cell, such as endothelial cells where it affects the
association of proteins involved in angiogenesis pathways. Taken
together, the data indicate that TSP-1 brings membrane proteins
together, either on the same cell or adjacent cells, to regulate
cellular behavior.

Thrombospondin 1 is a large multimeric extracellular matrix
protein that is expressed at sites of normal tissue development,
remodeling, and repair (Adams and Lawler, 2011). In cutaneous
wounds, TSP-1 is deposited by platelets to accelerate wound
closure (Agah et al., 2002). Its coordinated expression with
vascular endothelial growth factor (VEGF) is important for
normal ovarian follicular development (Michaely et al., 2004).
As a physiological activator of latent TGFβ, TSP-1 is also
involved in fibrotic and immune response (Murphy-Ullrich and
Suto, 2018). Additionally, TSP-1 expression is altered during
pathological conditions such as myocardial infarction and cancer
(Frangogiannis et al., 2005; Stenina-Adognravi et al., 2018).

Thrombospondin 1 antagonizes angiogenesis through
multiple mechanisms, several of which suppress the
bioavailability of VEGF. TSP-1 inhibits MMP9 activity and
suppresses the release of VEGF from the extracellular matrix
(Rodriguez-Manzaneque et al., 2001). TSP-1 also binds VEGF
and supports its clearance through an lipoprotein receptor-
related protein (LRP)-dependent mechanism (Greenaway et al.,
2007). A significant portion of the direct anti-angiogenic activity
of TSP-1 maps to the three, thrombospondin type 1 repeats,
designated 3TSR (Russell et al., 2015). These repeats, which were
first identified in TSP-1, contain binding sites for TGFβ and
CD36 (Tan et al., 2002). As described below, the binding of TSP-1
to CD36 activates apoptosis pathways in endothelial cells.

The ability of TSP-1 to strongly bind heparin has long been
identified and used as a strategic tool for purifying the protein
from human platelets (Lawler et al., 1978; Sipes et al., 2018).
Physiologically, this affinity for heparin may reflect the capacity
of TSP-1 to bind to heparan sulfate (HS) and to heparan sulfate
proteoglycans (HSPG; Sun et al., 1989). Binding to HS/HSPG has
direct consequences for the role played by TSP-1 in endothelial
cell adhesion, proliferation, motility, differentiation, and in the
modulation of activity of angiogenic growth factors (Vischer
et al., 1988; Vogel et al., 1993; Nunes et al., 2008).

The globular pentraxin-like heparin-binding N-terminal
domain (HBD) of TSP-1 bears the main high-affinity
sites for binding to heparin/HS (Clezardin et al., 1997).
A prototypical BBXB consensus heparin/HS-binding motif
(where B represents basic amino acids) in the HBD is
represented by the amino acid sequence MKKTRG (residues
79-84), while the sequences ARKGSGRR (residues 22–29) and
TRDLASIARLRIAKGVNDNF (residues 170–189) lack this
BBXB configuration. However, both are enriched in positively
charged residues, essential for the electrostatic interactions
playing a major role in the binding of heparin/HS to proteins
(Munoz and Linhardt, 2004). Heparin-binding sites have also
been identified in the three type-I repeats or properdin-like

domains (Guo et al., 1992; Yu et al., 2000) but, while studies
have confirmed the essential requirement for the HBD in the
interaction of TSP-1 with heparin/HS chains, it remains unclear
whether these secondary heparin binding sites are indeed
functional in the intact molecule (Yu et al., 2000). So far, TSP-1
interactions with perlecan (Vischer et al., 1997; Feitsma et al.,
2000), decorin (Winnemoller et al., 1992; Merle et al., 1997),
and some members of the syndecan (SDC) family of HSPG (see
below) have already been described.

In this review, we will focus on the well-characterized
interactions of TSP-1 with SDCs, lipoprotein receptor-related
protein 1 (LRP1), CD36, integrins, and CD47 in the context
of endothelial cell phenotype and angiogenesis (Figure 1).
We will discuss how the downstream signals elicited by
engagement of these receptors are integrated to determine
endothelial cell behavior.

SYNDECANS AS RECEPTORS FOR
TSP-1

Mammalian SDCs comprise four cell surface members bearing
type-I (single-pass) core proteins, with highly conserved short
cytoplasmic domains, a transmembrane domain and a varying
length extracellular domain, covalently substituted with HS
chains (chondroitin or dermatan-sulfate chains may also be
present occasionally, to a lesser extent) (Couchman, 2003). SDCs
act as receptors or coreceptors for extracellular matrix, growth
factors, chemokines, interleukins, and morphogens (Chung et al.,
2016) and can engage laterally with other classes of receptors,
such as integrins and tyrosine kinase receptors for growth
factors (FGFR1, EGFR, among others) (Couchman, 2003), thus
contributing to the triggering and modulation of pivotal signaling
including PKCα, Akt, and Wnt pathways (Gondelaud and
Ricard-Blum, 2019). Indeed, there is growing evidence that
SDCs are key parts of processes that involve tissue remodeling,
such as development, cancer, inflammation, and tissue repair
(Chung et al., 2016). TSP-1 bound to a HSPG recognized by
a monoclonal antibody later shown to react specifically with
the SDC1 isoform, in mammary epithelial cells (Sun et al.,
1989). Both molecules were also found colocalized during lung
development (Corless et al., 1992).

Although all four isoforms of SDC have been to some
extent implicated in the modulation of endothelial angiogenic
differentiation (De Rossi and Whiteford, 2014), a major
role for syndecan-4 (SDC-4) seems to prevail over other
SDC isoforms, in the context of angiogenesis associated with
inflammatory and mechanical stimuli, as well as with injuries
occurring in the cardiovascular system (Matsui et al., 2011;
Vuong et al., 2015; Russo et al., 2020). SDC-4-null mice
exhibit delayed dermal wound repair and defective angiogenesis
(Echtermeyer et al., 2001).

Among SDCs, SDC-4 isoform has a unique role in the
formation of fibronectin (FN)-induced focal adhesions, in
cooperation with β1-integrin receptors (Woods and Couchman,
1994). As other matricellular proteins found in the ECM, TSP-
1 destabilizes focal adhesions (Murphy-Ullrich and Sage, 2014),
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FIGURE 1 | Schematic representation of the endothelial cell receptors that interact with the various domains of TSP-1. The receptors are placed under the domain
with which they interact. The signaling proteins that associate with each receptor and the signal that is transduced are also indicated.

and this activity was specifically located in the HBD domain
of TSP-1, in endothelial models (Murphy-Ullrich et al., 1993;
Vogel et al., 1993). Interestingly, pro-angiogenic activities of TSP-
1 have also been attributed to HBD (Chandrasekaran et al., 2000;
Taraboletti et al., 2000; Ferrari do Outeiro-Bernstein et al., 2002).

A 18 kDa HBD comprising the amino acid sequence 1–
174—but not intact TSP-1—was able to stimulate tubulogenesis
(Ferrari do Outeiro-Bernstein et al., 2002) when physically
incorporated into fibrin plugs, a 3D support largely considered as
a “provisional matrix” comparable to inflammatory edema and
tumor microenvironments (Dvorak, 2015). The two sequences
known for both containing affinity for GAGs (TSP-HepI, aa 17–
35 and TSP-HepII, aa 78–94) and destabilizing focal adhesions
(Murphy-Ullrich et al., 1993) retained the major pro-angiogenic
activity of HBD (Nunes et al., 2008). Competitive binding assays
indicated that the two TSP-1 motifs could exert their effects by
interfering with the recognition of the high-affinity C-terminal
heparin-binding domain of FN (FN HepII) by cell surface SDC-
4. However, it is important to note that this interference in the
action of FN did not affect the maintenance of cell viability,
since pathways activated by SDC-4 in its regular role in focal
adhesions, e.g., its ability to promote the sequential activation
of protein-kinase C-α (PKC-α, a hallmark of SDC-4 activation)
and phosphoinositide 3-kinase (PI3K), which in turn activates
Akt/protein-kinase B (PKB; Oh et al., 1997; Ilan et al., 1998),
were also activated by the HBD domain and its angiogenic
peptides TSP-HepI and TSP-HepII (Nunes et al., 2008). These
data suggest that, in tissue remodeling microenvironments, the
N-terminal HBD possibly generated by proteases may provide

the appropriate level of adhesion relaxation of endothelial cells
engaged in tubulogenesis, while preserving cell viability.

Additional evidence for the biological relevance of pro-
angiogenic activities of the HBD domain of TSP-1 came
from studies performed with endothelial colony-forming cells
(ECFC), or endothelial progenitor cells, isolated from human
cord blood (Dias et al., 2012). Besides stimulating endothelial
tubulogenesis of ECFC, as previously observed with adult
primary endothelial cells (HUVECs; Nunes et al., 2008), TSP-
HepI peptide strongly potentiated FGF-2 angiogenic activity
in vivo, in the Matrigel plug model.

Adhesion to established endothelial layers is one of
the key steps of endothelial progenitor recruitment to
ischemic/inflammatory sites. It was shown that the overnight
pre-conditioning of ECFC with soluble TSP-HepI (but not with
intact TSP-1) significantly increased the adhesion of progenitors
to HUVEC monolayers under shear flow (Dias et al., 2012).
Interestingly, pre-conditioning with TSP-HepI also resulted in
augmented levels of α6 integrin chain on ECFC surfaces. The
presence of a neutralizing anti-SDC-4 antibody during the pre-
conditioning of ECFC with TSP-HepI inhibited their adhesion
to HUVEC monolayers by 84%. While the exact mechanisms for
these effects remain to be explored, these data suggested a role of
HBD domain in “priming” SDC-4/α6β1 cooperation.

The study of the crystal structure of the HBD (amino acids 1–
240) and its complex with a synthetic pentameric heparin (Tan
et al., 2008) has shown that, although the positively charged
residues of TSP-HepI and TSP-HepII are well separated on the
primary sequence of HBD, they congregate to form a patch in
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the tertiary structure of the domain. Thus, these heparin-binding
motifs used for SDC-4 recognition might be accessible in native
N-terminal fragments rapidly cleaved in vitro and in variable
sizes by several proteases relevant to the vascular compartment
(Bonnefoy and Legrand, 2000; Morandi, 2009).

LRP1 AS A RECEPTOR FOR TSP-1

The low density LRP1 is a large cell surface receptor that
mediates the endocytosis of a number of different ligands
including apolipoprotein E-enriched lipoproteins, protease
inhibitor complexes, and matrix proteins including TSP-1 (Lillis
et al., 2005). LRP1 is a member of the low-density lipoprotein
(LDL) receptor family, which contains seven members that
are closely related including the LDL receptor, very low
density lipoprotein (VLDL) receptor, apoE receptor2, multiple
epidermal growth factor-like domains 7 (MEGF7), glycoprotein
330 (gp330/megalin/LRP2), LRP1, and LRP1B. Similar to
the other family members, LRP1 contains several modular
structures including cysteine-rich complement-type repeats, EGF
repeats, β-propeller domains, a transmembrane domain, and a
cytoplasmic domain (Herz et al., 1990). LRP-1 is expressed by
many tissues including liver, lung, and brain and in multiple
cell types including hepatocytes, fibroblasts, smooth muscle cells,
neurons, and macrophages (Moestrup et al., 1992).

Similar to the other family members, LRP1 is an endocytic
receptor that at least partly functions to regulate the
concentration of extracellular ligand by transporting these
ligands through clathrin-coated pits into intracellular vesicles.
LRP1 internalizes more than 40 ligands from the pericellular and
extracellular environment, including proteinases, ECM proteins,
growth factors, and cell surface receptors (Strickland et al., 2002).

Lipoprotein receptor-related protein 1 recognizes a vast
number of different ligands and thus mechanisms must be
present to inhibit premature association with ligands in the
endoplasmic reticulum and allow for proper targeting to the
plasma membrane. To facilitate this, the chaperone receptor
associated protein (RAP) binds LRP1 with high affinity at
multiple sites and antagonizes ligand binding while it is in the
endoplasmic reticulum (Herz et al., 1991; Williams et al., 1992).

Lipoprotein receptor-related protein 1 binds TSP-1 at the
N-terminal heparin-binding domain, resulting in internalization
and degradation in lysosomes (Chen et al., 1996). Through this
internalization, TSP-1 can act as a bridging molecule between
LRP1 and extracellular ligands and facilitate their clearance.
TSP1/LRP-1 binding has been reported to be an important
mechanism of clearing matrix metalloproteinases (MMPs) from
the extracellular space (Bein and Simons, 2000; Yang et al., 2001).
TSP-1 can also associate with cell surface proteoglycans and
undergo endocytosis and degradation in an LRP-1-dependent
fashion (Godyna et al., 1995; Mikhailenko et al., 1995). LRP-1
and TSP-1 can also act as co-receptors and in the presence of
calreticulin can initiate a signaling cascade that results in focal
adhesion disassembly (Orr et al., 2003). In the ovary, TSP-1 has
been shown to participate in the clearance of VEGF via LRP1,
reducing VEGF bioavailability and inhibiting ovarian follicular
angiogenesis (Greenaway et al., 2007). TSP-1 also reduces the

bioavailability of fibroblast growth factor 2 and hepatocyte
growth factor/scatter factor (HGF/SF; Margosio et al., 2003).

CD36 AS A RECEPTOR FOR TSP-1

CD36 is a transmembrane glycoprotein that is a member of
the class B scavenger receptor family. It functions as a long
chain fatty acid translocase and a receptor for TSP-1, TSP-2,
and collagen (Silverstein and Febbraio, 2009). Through these
interactions, CD36 participates in a wide range of physiological
processes, including fatty acid metabolism, atherosclerosis, and
angiogenesis. CD36 mediates the inhibition of endothelial cell
migration and proliferation by TSP-1. Significant quantities
of CD36 are found in platelets, macrophages, adipocytes and
endothelial cells (Silverstein and Febbraio, 2009). In general,
CD36 is expressed on small, but not large, vessel endothelial
cells (Luscinskas and Lawler, 1994). Whereas the expression of
integrins on tumor vessels was found to vary with the stage of
tumor progression in the Rip-Tag model of pancreatic cancer,
CD36 is expressed at all stages (Xie et al., 2011). CD36 is a well
characterized receptor for TSP-1 in endothelial cells (Jimenez
et al., 2000). Engagement of CD36 by TSP-1 activates Fyn, JNK,
and p38MAPK to induce apoptosis through activation of caspase-
8- and -9-dependent pathways (Jimenez et al., 2000).

The membrane localization of CD36 and its mobility in
the plasma membrane has been well studied. CD36 has
been reported to be enriched in lipid rafts and tetraspanin-
enriched microdomains (Miao et al., 2001; Thorne et al., 2006).
The tetraspanins are a family of proteins that contain four
transmembrane domains (Hemler, 2014; van Deventer et al.,
2020). They undergo homo- and heterotypic association to form
distinct regions in the plasma membrane that are enriched in
integrins and other membrane proteins. The N- and C-terminals
of CD36 contain short intracellular sequences that do not contain
consensus sequences for the docking of signal transduction
proteins. Thus, CD36 is thought to initiate signal transduction
indirectly through complex formation with lipids, integrins
and itself. In platelets, the association of CD36 with the Src
family kinase Lyn is reportedly mediated by lipids (Thorne
et al., 2006). However, the specific Src family kinase that is
immunoprecipitated with CD36 depends upon the presence of
TSP-1 (Sun et al., 2009). In endothelial cells from wild-type
mice, CD36 associates with Fyn and the quantity of Fyn that co-
immunoprecipitates with CD36 increases when 3TSR is added.
In TSP-1-null endothelial cells, Src replaces Fyn.

In 2006, Daviet et al. (1997) reported that CD36 exists as
monomers and dimers in the plasma membrane. Whereas the
addition of TSP-1 increases the formation of CD36 dimers
in the membrane, TSP-1 did not induce dimerization of a
soluble form of CD36. A more recent study reported that
over-expression of CD36 in an immortalized endothelial cell
line resulted in 40% of the CD36 molecules localizing to
nanoclusters that contained as many as 75 CD36 molecules
(Githaka et al., 2016). These nanoclusters are enriched in Fyn
and F-actin. The size of the clusters and the phosphorylation
of Fyn increases after addition of TSP-1 or an anti-CD36
IgM molecule (Githaka et al., 2016). The formation of
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nanoclusters is likely facilitated by the fact the CD36 mobility
in the plasma membrane is restricted by the cytoskeleton
(Jaqaman et al., 2011).

The clustering of CD36 promotes signal transduction through
recruitment of other membrane proteins, such as integrins, and
signaling molecules, such as Fyn and Syk (Figure 2; Kazerounian
et al., 2011). Complex formation of CD36 with the tetraspanins
CD9, CD81, and CD151 in platelets and endothelial cells has been
reported (Miao et al., 2001; Kazerounian et al., 2011). In addition,
association with αv, α5, β1, and β2 integrins has been detected
(Kazerounian et al., 2011). Since TSP-1 can engage integrins
in the absence of CD36 (see below), it may form multivalent
complexes with these proteins. In monocytes, the interaction of
Syk with CD36 is reportedly mediated by integrins and FcRγ

(Heit et al., 2013).
In the context of angiogenesis, the association of CD36

with VEGF receptor 2 (VEGFR2) is a particularly intriguing
one because it places receptors involved in pro- and anti-
angiogenic signaling in close proximity and raises the possibility
that these complexes function as molecular angiogenic switches
(Primo et al., 2005). Interestingly, this interaction is markedly
reduced in the absence of TSP-1 (Primo et al., 2005; Zhang
et al., 2009). VEGFR2 is a key receptor for the stimulation of
endothelial cell proliferation and migration by VEGF during
physiological and pathological angiogenesis (Simons et al., 2016).
The close juxtaposition of a pro-angiogenic signaling receptor
with CD36 offers a second pathway through which TSP-1 can
antagonize angiogenesis. This pathway involves the recruitment
of the phosphatase SHP1 to the CD36/VEGFR2 complex (Chu
et al., 2013). SHP1 dephosphorylates VEGFR2 and suppresses the
recruitment of pro-angiogenic, downstream signaling proteins.
Addition of TSP-1 increases the quantity of SHP1 associated with
VEGFR2 in endothelial and ovarian cancer cells (Russell et al.,
2015). The inhibition of VEGFR2 phosphorylation by TSP-1 is
disrupted when CD36 is mutated so as to lose its ability to interact
with β1 integrins (Primo et al., 2005).

Taken together, the data indicate that CD36 forms complexes
with multiple other membrane proteins to affect endothelial
behavior. Extracellular TSP-1 affects endothelial cell response
to stimuli by modulating the composition of these complexes.
The complexes that form may be heterogeneous in their
composition and size.

INTEGRIN BINDING TO TSP-1

The integrins are a family of heterodimeric membrane proteins
that function as receptors for extracellular matrix molecules,
including collagens, FN, vitronectin, and laminins (Hynes, 2002;
Luo et al., 2007). The term integrin was coined to reflect
the integral role of these protein complexes as mediators
of communication between the extracellular matrix and the
cytoskeleton (Tamkun et al., 1986). In addition, a subset of
integrins can activate TGFβ (Munger et al., 1999; Mu et al.,
2002). An early comparison of platelet GPIIb/GPIIIa and
endothelial cell αVβ3 was one of the first indications that
integrins are an extensive family of proteins, with various

members expressed on virtually all cell types (Charo et al.,
1986). Integrins are differentially expressed on large vessel and
microvascular endothelial cells, and by various growth factors
and cytokines (Luscinskas and Lawler, 1994). As indicated above,
integrins are included in tetraspanin-enriched microdomains
where they can associate with CD36 and VEGFR-2 in a TSP-
1-dependent manner. The αv, α5, β1, and β2 integrins have
been reported to be present in these complexes (Hemler, 2014;
van Deventer et al., 2020).

A direct RGD-dependent interaction of TSP-1 with αvβ3 has
been reported (Lawler et al., 1988; Chen et al., 2000). The RGD
sequence of TSP-1 lies within the type 3 repeats, which are
a contiguous set of calcium-binding sites. Removal of calcium
results in a significant change in the conformation of the TSP-
1 molecule and increases exposure of the RGD sequence (Sun
et al., 1992). The structure of the type 3 repeats is stabilized
by calcium and intrachain disulfide bonds (Tan et al., 2002).
Sun et al. (1992) reported that partial reduction of the disulfide
bonds in TSP-1 increases the exposure of the RGD sequence.
A follow-up study by Hotchkiss et al. (1998) found a disulfide
bond isomerase at the plasma membrane of endothelial cells
that increased the accessibility of the RGD sequence of TSP-
1. Microvascular endothelial cell attachment to and chemotaxis
toward TSP-1 are inhibited by antibodies to β3 (Lawler et al.,
1988; Taraboletti et al., 1990). TSP-1 may serve as a substrate for
endothelial αvβ3 in wounds where high quantities of TSP-1 are
deposited by activated platelets.

TSP-1 inhibits the migration of human umbilical vein
endothelial cells, which lack CD36, through an integrin β1-
dependent mechanism (Short et al., 2005). This pathway for
inhibition of migration appears to involve PI3K. Interestingly,
an antibody to β1 integrin also inhibits VEGF-induced migration
of microvascular endothelial cells that do express CD36 in the
presence of an anti-CD36 antibody (Short et al., 2005). These data
underscore the close interaction between CD36 and integrins that
may arise from their physical proximity in the plasma membrane.

As described above, the NH2 domain of TSP-1 promotes
angiogenesis through SDC-4 (Ferrari do Outeiro-Bernstein
et al., 2002; Dias et al., 2012). This domain has also been
reported to enhance angiogenesis through the α9β1 integrin on
microvascular endothelial cells through pathways that involve
Erk1/2 and paxillin (Staniszewska et al., 2007). The α3β1 and
α4β1 integrins have also been reported to bind to the NH2
domain of TSP-1 (Chandrasekaran et al., 2000; Calzada et al.,
2004). The binding of α4β1 to TSP-1 was observed with venous
but not microvascular endothelial cells (Calzada et al., 2004). The
interaction of α3β1 and α4β1 integrins with TSP-1 reportedly
promotes angiogenesis.

CD47 AS A RECEPTOR FOR TSP-1

CD47 is a 50 kDa transmembrane receptor, also known as
integrin-associated protein (IAP), that was initially identified
as a protein lost from red blood cells in patients with Rh-
null hemolytic anemia (Miller et al., 1987). CD47 consists of
an extracellular N-terminal IgV domain, five transmembrane
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FIGURE 2 | Schematic representation of the organization of endothelial membrane proteins in the absence (A) and presence (B) of TSP-1. In the absence of TSP-1,
Src co-immunoprecipitates with CD36. Fyn is preferentially associated with CD36 in the presence of TSP-1 and the formation of CD36 nanoclusters amplifies
Fyn-mediated signal transduction. The presence of TSP-1 also promotes the dissociation of VEGFR2 from CD47 and the association of VEGFR2 with CD36.
Integrins and SHP1 also complex with VEGFR2.

domains, and a short C-terminal intracellular tail (Mawby et al.,
1994). Four alternatively spliced isoforms of CD47 exist, differing
in the length of their cytoplasmic tails (Reinhold et al., 1995).
CD47 has two main roles: as a ligand for the signal-regulatory
protein alpha (SIRPα) and as a receptor for TSP-1. The CD47-
SIRPα axis delivers inhibitory signals for phagocytosis and
conveys a “don’t eat me” signal that has important functions
in hematopoiesis and innate immune surveillance (Tsai et al.,
2010; McCracken et al., 2015; Horrigan and Reproducibility
Project: Cancer Biology, 2017). Initial studies reported that CD47
is bound by TSP-1 at two peptide motifs on the carboxy-
terminal domain (Gao et al., 2017). While partial conservation
of some of these residues is found in TSP-2 and -4, CD47 only
binds to TSP-1 with high affinity (Isenberg et al., 2009). Some
molecules of CD47 contain proteoglycan side chains that are
important for high-affinity TSP-1 binding and signaling (Kaur
et al., 2011). The interaction with the proteoglycan moieties may
be specific to TSP-1.

Thrombospondin 1 binding to CD47 has an inhibitory
influence on VEGF signaling. CD47 constitutively associates
with VEGFR2 on endothelial (Kaur et al., 2010) and tumor
(Russell et al., 2015) cells. Binding of CD47 by TSP-1 inhibits the
association between CD47 and VEGFR-2 and disrupts VEGFR2
phosphorylation (Kaur et al., 2010). Ligation by TSP-1 prevents
VEGFR2 autophosphorylation, which decreases activation of
endothelial nitric oxide synthase (eNOS) associated with Akt

phosphorylation. This is consistent with the increased Akt
phosphorylation seen in retinal vasculature (Sun et al., 2009) and
in ovarian peri-follicular vasculature (Greenaway et al., 2007)
of TSP-1 null mice. Similar to the receptor clustering seen with
CD36, recent evidence suggests that clustering of CD47 is also
required for the high-affinity binding of TSP-1 (Wang et al.,
2020). These results suggest that in addition to the amount
of CD47 available, the distribution pattern of the receptor is
important in regulating TSP-1 signaling.

Activation of CD47 by TSP-1 ultimately inhibits
Ca2+/calmodulin-mediated activation of eNOS (Bauer et al.,
2010), activation of soluble guanylate cyclase (sGC) by nitric
oxide (NO; Isenberg et al., 2006), and downstream activation
of cGMP-dependent protein kinase (Isenberg et al., 2008b). At
physiologic concentrations of TSP-1 (100–200 pM), CD47 is
thought to be the dominant receptor for the ligand in inhibiting
activation of soluble guanylate cyclase or cGMP-dependent
protein kinase (Isenberg et al., 2006, 2008b). Using a systems
biology approach, it was determined that enhancing binding of
TSP-1 to CD47 decreases the amount of unbound TSP-1 and
protects TSP-1 from cleavage, enhancing the anti-angiogenic
effect of the ligand (Rohrs et al., 2016).

By disrupting TSP-1/CD47 signaling, angiogenesis can be
enhanced, which can have therapeutic benefit. Both TSP-1 and
CD47 null mice have decreased necrosis and improved healing
in the cutaneous flap model and in full-thickness skin grafts.
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Skin grafts implanted on wild-type mice fail due to a lack of
angiogenesis and tissue perfusion, while those grafted onto TSP-
1 or CD47 null mice survive (Isenberg et al., 2008a). Similarly,
pancreatic islet grafts have improved survival in TSP-1 null
mice, due to increased angiogenesis (Olerud et al., 2008). Using
function blocking antibodies to TSP-1 or CD47 has also been
shown to reestablish perfusion in ischemic tissues in rodents and
pigs (Isenberg et al., 2007, 2008a). In cancer, CD47 null mice had
elevated VEGF and VEGFR2 expression and there was increased
angiogenesis and accelerated tumor progression in a syngeneic
murine model of prostate cancer (Gao et al., 2017).

In addition to its role in angiogenesis, TSP-1/CD47 binding
is also involved in regulating tumor immunity. Ligation
of CD47 on immune cells inactivates antitumor adaptive
immunosurveillance and directly inhibits TCR-mediated T cell
activation (Li et al., 2001, 2002). Through CD47, TSP-1 also
reduces VEGF-induced immunosuppression in tumors (Kaur
et al., 2014), and enhances antitumor immunity by stimulating
CD8+cytotoxic T cells (Soto-Pantoja et al., 2014). TSP-1
signaling via CD47 also regulate NK and DC functions that
impact adaptive immunity (Weng et al., 2014).

CONCLUSION AND FUTURE
DIRECTIONS

In this review, we have highlighted the interaction of TSP-1
with endothelial membrane proteins (Figure 1). Through these
many interactions, TSP-1 is able to direct the formation of
supramolecular complexes that vary in composition over time
to modulate the endothelial cell’s response to environmental
stimuli (Kazerounian and Lawler, 2018). The data indicate
that endothelial cell behavior is determined at the level of
the plasma membrane and thus early in the signal generation.
The remodeling of membrane protein complexes that form in
response to TSP-1 serves to integrate signals from pro- and
anti-angiogenic stimuli. In the presence of TSP-1, VEGFR2
dissociates from CD47 and complexes with CD36, which results
in enhanced association with integrins and SHP1, leading to
dephosphorylation of VEGFR2 and suppression of VEGF signal
transduction. TSP-1 also initiates an anti-angiogenic signal
through CD36 that leads to decreased endothelial cell migration
and apoptosis. This pathway is amplified by the ability of TSP-1 to
drive the formation of CD36 nanoclusters, which in turn cluster
Fyn. It is important to determine how the concentrations of TSP-
1 and VEGF affect the above processes. Does the quantity of the
various supramolecular complexes have a linear effect on the net

signal, or are there thresholds that must be exceeded in order to
initiate response in a stepwise fashion? Can the negative signal
elicited by TSP-1 be reversed at some stages and not at others?
In addition, our understanding of the role of integrins and their
ligands in the way in which endothelial cells respond to TSP-1 is
far from complete.

Since tumor growth experiments in TSP-1-null mice indicate
that the absence of the intact molecule leads to increased
angiogenesis, the pro-angiogenic activity of the NH2 domain
may be masked or outweighed by the anti-angiogenic activity of
the TSRs and the C-terminal domain (Lawler et al., 2001; Xie
et al., 2011). In addition, the type 3 repeats have been reported
to inhibit angiogenesis by binding to fibroblast growth factor
2 (FGF2; Colombo et al., 2010). Proteolytic cleavage of TSP-
1 may produce pro- and anti-angiogenic domains with distinct
biological properties. Indeed, the first study to show that TSP-1 is
anti-angiogenic detected a proteolytic fragment of TSP-1 in the
condition media of p53 deficient fibroblasts from Li-Fraumeni
patients (Dameron et al., 1994). This fragment was produced by
a proteolytic cleavage between the HBD and the TSRs. We need
to better understand the physiological conditions that lead to the
release of the HBD from the intact molecule and the disposition
of the two or more fragments that are produced. Do the two
fragments have different biodistribution and/or stability? Like
the intact molecule, the HBD has multiple ligands, including
proteoglycans, LPR1, calreticulin and integrins.
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