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Neurodegenerative disorders are
characterized by synaptic and neu-

ronal dysfunction which precedes general
neuronal loss and subsequent cognitive
or behavioral anomalies. Although the
exact early cellular signaling mechanisms
involved in neurodegenerative diseases
are largely unknown, a view is emerging
that compromised synaptic function may
underlie the initial steps in disease pro-
gression. Much recent research has been
aimed at understanding these early
underlying processes leading to dysfunc-
tional synaptic signaling, as this knowl-
edge could identify putative sites of
interventions, which could potentially
slow progression and delay onset of dis-
ease. We have recently reported that syn-
aptic function in a Drosophila
melanogaster model can be modulated by
the presence of native mouse prion pro-
tein and this modulation is negatively
affected by a mutation within the protein
which is associated with the Gerstmann-
Str€aussler-Scheinker syndrome, a human
form of prion disease. Indeed, wild-type
prion protein facilitates synaptic release,
whereas the mutated form induced
diminished phenotypes. It is believed
that together with the gain-of-function
of neurotoxic misfolded prion signaling,
the lack of prion protein contributes to
the pathology in prion diseases. There-
fore, our study investigated a potential
endogenous role of prion protein in syn-
aptic signaling, the lack of which could
resemble a lack-of-function phenotype in
prion disease.

It is of great importance to understand
the signaling pathways involved in neuro-
degenerative processes as the average life-
span continues to increase worldwide and
with it the incidence of neurodegenerative

disorders (ND) such as Parkinson and
Alzheimer disease. Much research is now
focused on unravelling the molecular
mechanisms which lead to dysregulation
of synaptic transmission by studying sev-
eral synaptic proteins involved in neuro-
transmission. The neuronal network relies
on plasticity mechanisms where reversible
formation and disassembling of synaptic
connections occurs in a controlled man-
ner. It is generally accepted that in neuro-
degenerative conditions there is an early
onset dysfunction at the synapse, opening
up the possibility of intervention to
manipulate neuroprotective pathways to
balance between degenerative and survival
signaling. It is now widely established,
that the loss of presynaptic termini is a
key event in the process, which initiates
further axonal dysfunction and neuronal
cell soma loss, resulting in cell death as a
hall mark of many ND.1-4

Prion diseases are a form of transmissi-
ble spongiform encephalopathies (TSE),
fatal ND of mammals characterized by the
deposition of protease resistant misfolded
prion protein. The cellular prion protein
(PrPC) is a cell membrane-anchored gly-
coprotein which plays an important role
in a variety of neuronal processes includ-
ing circadian rhythm, neuroprotection
and neuroplasticity.5,6 Although the phys-
iological role of PrPC remains elusive, the
conversion of PrPC into the neurotoxic
infectious scrapie isoform of PrP (PrPSc)
during prion disease and its detrimental
signaling are well documented.6-9 As a
consequence of protein misfolding, several
mammalian species develop neurodegen-
erative conditions best known as scrapie in
sheep, bovine spongiform encephalopathy
in cattle (BSE), chronic wasting disease
(CWD) of elk and deer or Creutzfeldt-
Jacob disease (CJD) and Gerstmann-
Str€aussler-Scheinker syndrome (GSS) in
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human.8,10,11 The unique feature of these
conditions is that it can be caused by
either sporadic mutations or inherited var-
iants of the prion protein but it can also
be transmitted by the scrapie isoform of
PrP according to the ‘protein only’
hypothesis.7,12 The early onset of the dis-
ease before manifestation of neuronal cell
death may be caused by loss-of-function
of the prion protein and/or by a gain-of-
function of the cytotoxic PrPSc. It is there-
fore important to recognize the functions
of PrP, especially in the synaptic context.

In order to distinguish between these
2, not exclusive, possibilities it is crucial
to investigate the endogenous functions
of PrPC itself. PrPC is ubiquitously
expressed in the body, reaching the
highest levels in the nervous system.13-15

Morphological studies suggest that PrPC

is preferentially located along axons and
in presynaptic terminals15,16 but post-
synaptic localization and signaling has
also been reported.17,18 Evidence dem-
onstrates that neuroprotective roles of
PrPC are essential19,20 as loss-of-function
in Prnp¡/¡ animals or mutations in
PrPC lead to neuronal dysfunction.21-23

Interestingly, Prnp¡/¡ animals exhibit
phenotypes with impaired long-term
potentiation24-26, abnormal circadian
rhythm27 and glutamatergic synaptic sig-
naling.28,29 In addition, compromised
dopaminergic transmission30 but also
more severe characteristics such as Pur-
kinje cell degeneration and demyelin-
ation of peripheral nerves leading to ataxia
have been reported in Prnp¡/¡ animals.21,31

Comparisons of wild-type with Prnp¡/¡

mice have revealed that PrPC expression at
synapses contributes to hippocampal
synaptic function32 and exerts
neuroprotection by modulating neuronal
excitability.33-35 In particular, PrPC has
been shown to inhibit N-methyl-D-
aspartate receptors (NMDAR) containing
the NR2D subunit33,36, the activation of
which has direct links to the general neuro-
toxic signaling mediated via the
NMDAR-nitric oxide pathway.37 How-
ever, the above studies have investigated
prion protein functions in neuronal
networks, which include pre- and postsyn-
aptic compartments making it difficult
to unambiguously define specific roles
of PrP.

In order to study the functions of the
prion protein in more detail and to isolate
pre- and postsynaptic mechanisms, model
systems other than mouse have been
recently utilised. In particular, non-mam-
malian neurodegeneration models have
been employed38 with expression of wild-
type or mutant prion proteins in Drosoph-
ila melanogaster or C. elegans allowing
investigations of prion protein function in
host organisms that do not have a direct
prion protein ortholog.39-45

We recently showed that presynaptic
expression of a wild-type mouse prion
protein at a glutamatergic synapse, the
Drosophila neuromuscular junction
(NMJ), leads to an enhanced release of
synaptic vesicles as a result of larger
functional vesicle pools sizes.46 This
positive modulation of transmitter
release was accompanied by increased
presynaptic vesicle sizes leading to an
overall augmentation of transmission.
We did not observe any effects on the
NMJ morphology, including numbers
of release sites following prion protein
expression, consistent with previous
data.39 We hypothesized in this study
that expression of wild-type prion pro-
tein has a gain-of-function effect at pre-
synaptic signaling, which corroborates
previous findings in neurons of the
mammalian central nervous system.28

In our study we asked the question
whether the observed functional effects of
wild-type mouse PrP could be diminished
by expressing a mutated form of this prion
protein, in which proline 101 was substi-
tuted with leucine (P101L). This con-
served P102L mutation has been linked to
the human prion disorder GSS syndrome.
In our hands, expression of this mutated
prion protein resulted in a lack of some
functional phenotypes seen following
expression of wild-type prion protein.
Importantly, neither protein form showed
any proteinase K resistance suggesting that
the functional observations are not due to
a cytotoxic gain-of-function of misfolded
prion (PrPSc) but rather due to direct
effects of the non-misfolded proteins.
This is in contrast to studies using the
same P101L mutant expressed in
Drosophila, in which aged flies showed
characteristics of protein misfolding and
clear phenotypes of neurodegeneration

reminiscent of the GSS syndrome.40

Other data also indicate that expression of
hamster and mouse (although to a lesser
degree) PrP in Drosophila causes neurode-
generation in aged flies41 suggesting an
age- and species- dependent difference in
prion protein signaling. However, our
study provided important evidence that
prion protein signaling, in the absence of
misfolding and aggregation, has funda-
mental effects on synaptic transmission. It
further suggests that in prion disease, due
to the conversion of unfolded native PrPC

into PrPSc, neurons face both, a continu-
ously diminishing prion protein function
as well as an increasingly additional cyto-
toxic PrPSc function. So how can prion
protein contribute to synaptic function?
There are several lines of evidence suggest-
ing that endogenous prion protein can
modulate transmitter release via multiple
pathways. Studies in mouse NMJs and
hippocampal CA1 neurons showed that
PrPC potentiates synaptic release28,47 con-
sistent with PrPC expression at presynaptic
terminals.48 PrPC has been reported to
interact with synapsin49 (Fig. 1) and its
internalisation is mediated via clathrin-
coated pits50 in a dynamin-dependent
process.51 So it is conceivable to suggest
that PrPC may play a role in endocytosis,
vesicle replenishment and release, which is
likely to impact on vesicle pool availabili-
ties. This interaction offers a new func-
tional explanation of how PrPC can
modulate transmitter release and how a
consequent conversion of PrPC into PrPSc

could lead to synaptic dysfunction. An
essential part of synaptic transmission is
synaptic Ca2C homeostasis in which Ca2C

influx through Ca2C channels determines
the release of neurotransmitter. Reports
showed that a mutation in PrPC leads to
impaired membrane delivery of the
a2d¡1 subunit of voltage-gated Ca2C

channels (VGCC) in cerebellar granule
neurons.23 This caused reduced Ca2C cur-
rents and a defective glutamate release sug-
gesting that PrPC function is directly
required for synaptic Ca2C signaling and
vesicular release.

In conclusion, given the fact that
PrP interacts with proteins involved in
synaptic release49 and additionally with
various metabotropic and ionotropic
neurotransmitter receptors20,52-55 and
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ion channels23 (Fig. 1), our data pro-
vides further evidence for a direct func-
tional role of presynaptic prion protein
signaling.46 This study highlights the
ability of prion protein to modulate
vesicles and release properties leading to
enhanced synaptic strength and trans-
mission thereby corroborating and
extending information gained from
mouse models.28-30,32 The use of the

Drosophila NMJ system allows detailed
investigations of presynaptic PrP func-
tions to support studies in other model
systems. Thus, our data point toward a
physiological role of prion protein in
synaptic function and will thereby
help understanding the fundamental
signaling pathways of prion proteins
and their involvement in prion
pathogeneses.
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Figure 1. Prion protein signaling at the synapse. General: PrPC possesses a normal, physiological activity, which is neuroprotective and is lost upon con-
version to PrPSc leading to a loss-of-function phenotype. Secondly in prion disease, the toxic gain-of-function mechanism: PrPSc possesses a novel neuro-
toxic activity that is independent of the normal function of PrPC. Presynaptic signaling: Prion protein is widely expressed at presynaptic sites. PrPC is
involved in vesicle pool maintenance. It potentially contributes to vesicle recycling/cycling leading to distinct availabilities of vesicles and function pool
sizes (1) and vesicle recruitment (2). It is further involved in trafficking of a VGCC subunit (a2d¡1) to the membrane, thereby facilitating Ca2C-dependent
neurotransmitter release (3). Its interaction with synapsin, a vesicular protein involved in transmitter release, also implicates PrPC in vesicle fusion mecha-
nisms (4). PrPC internalization is dependent upon activity of dynamin I, a key mechano-enzyme involved with the fission of endocytotic vesicles from the
plasma membrane (5). Postsynaptic signaling (excitatory or inhibitory): PrPC has been found to interact with several receptors and postsynaptic mol-
ecules. It is associated with postsynaptic densities (PSD-95) and has been shown to directly interact with NMDARs (NR2D) and glutamate receptors
(GluR6/7) thereby attenuating nNOS/NO-dependent excitotoxicity by inhibiting the receptors. The interaction with the a7nAChR complex promotes
receptor signaling. PrPC modulates G-protein coupled receptor signaling (activation of metabotropic glutamate receptor [mGluR1/5] signaling via direct
PrP-mGluR interaction) and leads to inhibition of the serotonin 1B receptor (5-HT1BR). All of the above prion protein-mediated functions will ultimately
affect synaptic signaling, action potential propagation and physiology with its dysfunction potentially contributing to neurodegenerative phenotypes.
Abbreviations: 5-HT1BR – Serotonin 1B receptor, AC – adenylyl cyclase, AP – action potential, AZ – active zone, a7nAChR – a-7 nicotinic acetylcholine
receptor, mGluR – metabotropic glutamate receptor, NMDAR – N-methyl-D-aspartate receptor, nNOS – neuronal nitric oxide synthase, NO – nitric oxide,
PLC – phospholipase C, RRP – ready releasable pool, RP – reserve pool, VGCC – voltage gated Ca2C channels.
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